JPH11144674A - Plasma ion source mass spectrometer - Google Patents
Plasma ion source mass spectrometerInfo
- Publication number
- JPH11144674A JPH11144674A JP9306803A JP30680397A JPH11144674A JP H11144674 A JPH11144674 A JP H11144674A JP 9306803 A JP9306803 A JP 9306803A JP 30680397 A JP30680397 A JP 30680397A JP H11144674 A JPH11144674 A JP H11144674A
- Authority
- JP
- Japan
- Prior art keywords
- ion
- concentration
- signal intensity
- accumulation time
- mass spectrometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はプラズマイオン源質
量分析装置に関する。The present invention relates to a plasma ion source mass spectrometer.
【0002】[0002]
【従来の技術】従来のプラズマイオン源質量分析装置に
よる定量分析方法は、目的元素の濃度を変えた標準溶液
を用意し、装置より得られるイオン信号強度を測定して
検量線を作成、未知試料のイオン信号強度を計測して、
その強度が指示する濃度を読み取る事により定量値を得
ていた。しかしながら、ng/lやpg/lレベルの極
微量の元素を分析する場合には、元素が加水分解を起こ
したり、器壁に吸着するなどの現象が生ずる事から、こ
の濃度レベルによる検量線の作成は難しい。2. Description of the Related Art In a conventional quantitative analysis method using a plasma ion source mass spectrometer, a calibration solution is prepared by preparing a standard solution in which the concentration of a target element is changed, measuring the ion signal intensity obtained from the device, and preparing an unknown sample. Measure the ion signal strength of
The quantitative value was obtained by reading the concentration indicated by the intensity. However, when analyzing a trace amount of elements at the ng / l or pg / l level, phenomena such as hydrolysis of the elements or adsorption to the vessel wall occur. Creation is difficult.
【0003】また、これらの現象を抑制する為に一般に
は酸を添加するが、これを添加する事が原因で目的元素
の汚染を引き起こす可能性もある。したがって、検量線
法を用いて極低濃度の元素の分析を行う事は大きな困難
が生じる。これを解決する方法としては、検量線を作成
しないで測定を行う方法や、検量線が確実に作成できる
濃度領域まで、試料中の目的元素を無汚染濃縮できれ
ば、信頼性の高い分析が可能となる。[0003] Further, in order to suppress these phenomena, an acid is generally added. However, the addition of the acid may cause contamination of a target element. Therefore, it is very difficult to analyze an element having an extremely low concentration using the calibration curve method. As a method to solve this, it is possible to perform highly reliable analysis if the target element in the sample can be concentrated without contamination to a concentration range where the calibration curve can be reliably created. Become.
【0004】本発明は、目的元素をイオントラップタイ
プの質量分析計内で蓄積し、先に得ている目的元素のイ
オン信号強度とイオンの蓄積時間の関係式、および目的
元素の濃度と蓄積時間の関係式から濃度を求めるもので
あり、極微量領域の検量線の作成は必要なく、信頼性の
高い分析を可能としている。According to the present invention, a target element is stored in a mass spectrometer of an ion trap type, and a relational expression between the ion signal intensity of the target element and the storage time of the ion obtained beforehand, and the concentration and storage time of the target element are obtained. Is obtained from the relational expression, and it is not necessary to prepare a calibration curve in a trace amount region, and highly reliable analysis is possible.
【0005】[0005]
【発明が解決しようとする課題】上記従来技術は、μg
/lレベルの濃度の分析については分析値の信頼性が確
保されているが、ng/l,pg/lレベルの濃度の分
析については、分析値の信頼性について配慮がなされて
いない。定量分析を行うには、あらかじめ検量線を作成
して、目的元素のイオン信号強度を測定し、この値から
分析値を得ていた。SUMMARY OF THE INVENTION The above prior art is based on the μg
Although the reliability of the analysis value is ensured for the analysis of the concentration at the / l level, no consideration is given to the reliability of the analysis value at the analysis of the concentration at the ng / l and pg / l levels. In order to perform quantitative analysis, a calibration curve was prepared in advance, the ion signal intensity of the target element was measured, and the analytical value was obtained from this value.
【0006】しかしながら、極低濃度領域においては、
目的元素の加水分解や器壁への吸着が起こり検量線の作
成自身が困難である。分析値の信頼性を確保する為に
は、測定を目的とする元素の化学的性質についても考慮
されなければならない。However, in the extremely low concentration region,
Hydrolysis of the target element and adsorption to the vessel wall occur, making the calibration curve itself difficult. In order to ensure the reliability of the analytical values, the chemical properties of the element to be measured must also be considered.
【0007】本発明の目的は、目的元素をイオントラッ
プタイプの質量分析計内に蓄積し、先に得ている目的元
素のイオン信号強度とイオンの蓄積時間の関係式、およ
び目的元素の濃度と蓄積時間の関係式から濃度を求める
ものであり、極微量の領域の検量線の作成は必要なく、
信頼性の高い分析を可能としているプラズマイオン源質
量分析装置を提供することにある。An object of the present invention is to accumulate a target element in an ion trap type mass spectrometer, obtain a relational expression between the ion signal intensity of the target element obtained previously and the ion accumulation time, and obtain the concentration of the target element. The concentration is calculated from the relational expression of the accumulation time, and there is no need to create a calibration curve for a trace amount area.
An object of the present invention is to provide a plasma ion source mass spectrometer capable of performing highly reliable analysis.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
めの手段として、本発明は、試料中に存在する目的元素
をイオン源にてイオン化し、イオントラップタイプの質
量分析計に取り込み、イオンの蓄積時間とイオンの信号
強度の関係を求め、さらにあるイオン信号強度における
蓄積時間と目的元素の濃度との関係を先に求めておき、
定量分析に際してはあらかじめ設定しておいたイオン信
号強度値に到達するまでの時間を計測し、蓄積時間と濃
度との関係から目的元素の濃度を知る手段を採用したも
のであり、ごく低濃度試料の検量線の作成は必要ない。As a means for solving the above-mentioned problems, the present invention provides a method for ionizing a target element present in a sample with an ion source, taking it into an ion trap type mass spectrometer, The relationship between the accumulation time of the ion and the signal intensity of the ions is determined, and the relationship between the accumulation time and the concentration of the target element at a certain ion signal intensity is determined first,
In quantitative analysis, a method is used in which the time required to reach a preset ion signal intensity value is measured, and means for knowing the concentration of the target element from the relationship between the accumulation time and the concentration is adopted. It is not necessary to create a calibration curve.
【0009】[0009]
【発明の実施の形態】以下、本発明の一実施例を図1か
ら図6を用いて説明する。図1にはプラズマイオン源質
量分析装置のブロック構成図を示した。図2は従来法に
よる検量線の作成例を示した。図3はプラズマイオン源
質量分析装置におけるイオントラップタイプの質量分析
計にて、ある濃度の溶液をプラズマイオン源質量分析装
置に導入し、イオンの蓄積時間とイオンの信号強度の関
係を求めた図である。イオントラップの容量が許す限り
イオンの蓄積が可能であり、イオンの蓄積時間とイオン
の信号強度の関係は良い直線性を示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a block diagram of a plasma ion source mass spectrometer. FIG. 2 shows an example of preparing a calibration curve by a conventional method. FIG. 3 is a diagram in which a solution of a certain concentration is introduced into a plasma ion source mass spectrometer in a plasma ion source mass spectrometer in a plasma ion source mass spectrometer, and a relationship between an ion accumulation time and an ion signal intensity is obtained. It is. As long as the capacity of the ion trap permits, ions can be accumulated, and the relationship between the ion accumulation time and the signal intensity of ions shows good linearity.
【0010】また図4は、イオン信号強度が、あるカウ
ント数を示すときの測定溶液中の目的元素の濃度と蓄積
時間の関係を示したものである。試料溶液中の目的元素
の濃度とイオンの蓄積時間は逆相関関数となる。定量分
析時には、上記でそれぞれの関係を作成した時の目的元
素の感度と実際に測定を行うときの感度を比較し補正係
数を求める。補正係数の求め方を図5に示した。また、
実施例についてフローシートを図6に簡単に示した。FIG. 4 shows the relationship between the concentration of the target element in the measurement solution and the accumulation time when the ion signal intensity indicates a certain count number. The concentration of the target element in the sample solution and the accumulation time of the ions are inversely correlated. At the time of quantitative analysis, a correction coefficient is obtained by comparing the sensitivity of the target element when the above relationships are created with the sensitivity at the time of actual measurement. FIG. 5 shows how to determine the correction coefficient. Also,
The flow sheet for the example is shown briefly in FIG.
【0011】本発明を適用する装置は、図1に示すよう
に試料1をプラズマイオン源発生部のプラズマ3に導入
して、目的元素をイオン化し、インターフェイス4を介
してイオンを真空系に導入する。イオンレンズ6により
イオンを収束してイオントラップタイプ質量分析計7に
入射させる。ここで目的元素のイオンを蓄積して、検出
器へこれを一挙に放出することにより高感度測定を行う
ものである。In the apparatus to which the present invention is applied, as shown in FIG. 1, a sample 1 is introduced into a plasma 3 in a plasma ion source generating section to ionize a target element, and ions are introduced into a vacuum system via an interface 4. I do. The ions are converged by the ion lens 6 and incident on the ion trap type mass spectrometer 7. Here, high-sensitivity measurement is performed by accumulating ions of the target element and discharging them at once to a detector.
【0012】今、目的元素がng/l,pg/lレベル
の非常に濃度が低い試料がある。従来法の検量線を用い
た定量分析の場合は、検量線が図2のaに示したよう
に、目的元素の濃度が低いと加水分解を起こしたり、器
壁へ吸着して直線性の良い検量線が得られず、信頼性の
ある分析が行えない。At present, there is a sample in which the concentration of the target element is very low at the ng / l and pg / l levels. In the case of the quantitative analysis using the calibration curve of the conventional method, as shown in FIG. 2A, when the concentration of the target element is low, hydrolysis occurs or the linearity is improved due to adsorption to the vessel wall. A calibration curve cannot be obtained and reliable analysis cannot be performed.
【0013】また、このような現象を抑制する為に酸を
添加することも行われているが、目的元素の汚染を引き
起こし図2のbに示すように再現性のある検量線が得ら
れない場合がある。したがって、極低濃度の試料を分析
するには、検量線の直線性のある範囲まで試料を濃縮す
るなどの前処理を行うか、検量線を用いずに分析を行う
必要がある。In order to suppress such a phenomenon, an acid is added. However, contamination of a target element is caused, and a reproducible calibration curve cannot be obtained as shown in FIG. 2B. There are cases. Therefore, in order to analyze a sample having an extremely low concentration, it is necessary to perform pretreatment such as concentrating the sample to a range having a linearity of the calibration curve, or to perform the analysis without using the calibration curve.
【0014】そこで、本発明においては、図3に示すよ
うに、まず目的元素のある濃度の標準溶液(ここでは1
0μg/lとする)を用意し、イオンの蓄積時間とイオ
ンの信号強度の関係を求めておく。この場合、イオント
ラップタイプの質量分析計の容量が許す範囲までは、良
好な直線性を示す。Therefore, in the present invention, first, as shown in FIG.
0 μg / l), and the relationship between the ion accumulation time and the signal intensity of the ions is determined. In this case, good linearity is exhibited to the extent permitted by the capacity of the ion trap type mass spectrometer.
【0015】次にイオン信号強度を固定し(ここでは1
0,000 カウントとする)、イオンの蓄積時間と目的
元素の濃度の関係を図4のごとく求める。この場合、得
られる関係式は逆相関関数となる。ここまでの作業およ
び作業で得た関係式は、定量分析に先立ち図1の操作用
コンピュター8にストアしておく。Next, the ion signal intensity is fixed (here, 1
0000 counts), and the relationship between the ion accumulation time and the concentration of the target element is determined as shown in FIG. In this case, the obtained relational expression is an inverse correlation function. The operations up to this point and the relational expressions obtained by the operations are stored in the operation computer 8 of FIG. 1 prior to the quantitative analysis.
【0016】未知試料の定量分析時には、試料をイオン
トラップタイプの質量分析計より構成されるプラズマイ
オン源質量分析計に導入し、目的元素のカウントが10,
000カウントを得るまでの蓄積時間を計測する。得られ
た蓄積時間を図4に示す関係式に代入し濃度を求める。At the time of quantitative analysis of an unknown sample, the sample is introduced into a plasma ion source mass spectrometer comprising an ion trap type mass spectrometer, and the count of the target element is reduced to 10,
Measure the accumulation time until 000 counts are obtained. The obtained accumulation time is substituted into the relational expression shown in FIG. 4 to obtain the density.
【0017】プラズマの状態やイオン光学系の設定状態
により、初期設定時の感度と定量時の感度が異なるかど
うかは、図3の関係式を得た時と同様の濃度の試料を装
置へ導入し、ある蓄積時間におけるイオン信号強度を比
較するか、あるイオン信号強度を得るまでの蓄積時間を
比較すればよい。異なる場合には補正係数を求め、得ら
れた濃度にこれを乗ずる事によって正確な濃度を求め
る。Whether the sensitivity at the initial setting and the sensitivity at the time of quantification are different depending on the state of the plasma and the setting state of the ion optical system is determined by introducing a sample having the same concentration as that obtained when the relational expression of FIG. Then, the ion signal intensity at a certain accumulation time may be compared, or the accumulation time until a certain ion signal intensity is obtained may be compared. If different, a correction coefficient is obtained, and the obtained density is multiplied by this to obtain an accurate density.
【0018】補正係数の求め方を図5を使って説明す
る。直線hcは、初期値として装置に記憶させたある元
素の関係式を示し、直線hdは、あるイオンの蓄積時間
jにおいて補正係数を求める際に得られた標準溶液のイ
オン信号強度iと原点hを通る直線を示している。直線
関係が得られる事は、既に直線hcの作成時に確認済み
である為、一点のみを測定して原点hと結べばよい。A method for obtaining the correction coefficient will be described with reference to FIG. A straight line hc indicates a relational expression of a certain element stored in the apparatus as an initial value, and a straight line hd indicates an ion signal intensity i of the standard solution obtained when a correction coefficient is obtained at a certain ion accumulation time j and the origin h. Shows a straight line that passes through. Since the fact that a straight line relationship has been obtained has already been confirmed at the time of creating the straight line hc, it is sufficient to measure only one point and connect it to the origin h.
【0019】これより、求める感度補正係数は、ある蓄
積時間におけるイオン信号強度を比較する場合にはfi
/giとなる。また、あるイオン信号強度を得るまでの
蓄積時間を比較する場合には、gi/eiとなる。この
補正係数を求めるのは、定量分析の前であってもよいし
後でもよい。From this, the sensitivity correction coefficient to be obtained is fi when the ion signal intensity at a certain accumulation time is compared.
/ Gi. Gi / ei is obtained when comparing the accumulation time until a certain ion signal intensity is obtained. The determination of the correction coefficient may be performed before or after the quantitative analysis.
【0020】また、求められた濃度が正確かどうかを確
認する為に、図3では10,000カウントとして蓄積
時間を求めたが、これを20,000 カウントの場合、
40,000 カウントの場合と複数点で測定を行って定
量値を求め、その算術平均により定量値を決定してもよ
い。In addition, in order to confirm whether or not the obtained concentration is accurate, the accumulation time was calculated as 10,000 counts in FIG. 3, but in the case of 20,000 counts,
The quantitative value may be obtained by performing measurement at 40,000 counts and at a plurality of points to determine the quantitative value, and determining the quantitative value by the arithmetic average.
【0021】半定量分析に関しては、各元素について求
めた図3の関係式についてあるイオンの信号強度(ここ
では10,000 カウントとする)に着目し、代表とな
る元素を基準にして元素間の感度比を求め、これを初期
設置値として装置に記憶させる。With respect to the semi-quantitative analysis, focusing on the signal intensity of a certain ion (here, 10,000 counts) in the relational expression of FIG. The sensitivity ratio is obtained, and this is stored in the apparatus as an initial setting value.
【0022】感度比は、イオン信号強度を10,000
カウントに設定し、そのイオン信号強度を得るまでの時
間について各元素間にて比較するもので、代表元素のイ
オンの蓄積時間で、他の元素のイオンの蓄積時間を除す
ることによって求められる。代表元素より傾きの大きい
元素は、感度比が1より小さくなり、代表元素より傾き
の小さい元素は、感度比が1より大きくなる。The sensitivity ratio is determined by setting the ion signal intensity to 10,000.
The count is set, and the time until the ion signal intensity is obtained is compared between the respective elements. It is obtained by dividing the accumulation time of the ions of the other elements by the accumulation time of the ions of the representative element. An element having a larger slope than the representative element has a sensitivity ratio smaller than 1, and an element having a smaller slope than the representative element has a sensitivity ratio larger than 1.
【0023】代表元素の濃度を決定するには、上述のよ
うに10,000 カウントが得られるまでの蓄積時間を
計測し、得られた蓄積時間を図4に示す関係式に代入し
て濃度を求め、別に得た補正係数から代表元素の濃度を
補正計算する。To determine the concentration of the representative element, the accumulation time until 10,000 counts are obtained as described above is measured, and the obtained accumulation time is substituted into the relational expression shown in FIG. Then, the concentration of the representative element is corrected and calculated from the separately obtained correction coefficient.
【0024】その他の元素についても10,000 カウ
ントが得られる蓄積時間を計測し、代表元素の図4の関
係式を用いて濃度を求め、元素間の感度比から濃度換算
を行い、補正係数を乗する事によって半定量値を求める
ものである。すなわち、代表元素と他の元素との感度比
と代表元素の補正係数を用いて、他の元素の半定量値を
求めるものである。For other elements, the accumulation time for obtaining 10,000 counts is measured, the concentration is obtained using the relational expression of FIG. 4 for the representative element, the concentration is converted from the sensitivity ratio between the elements, and the correction coefficient is calculated. A semi-quantitative value is obtained by riding. That is, the semi-quantitative value of the other element is determined using the sensitivity ratio of the representative element to the other element and the correction coefficient of the representative element.
【0025】以上のような方法を用いる事により、極微
量の試料をその作成が煩わしい検量線を用いずに分析で
き、しかも信頼性の高い分析値を得る事ができる。By using the above-mentioned method, a very small amount of sample can be analyzed without using a calibration curve which is troublesome to prepare, and a highly reliable analytical value can be obtained.
【0026】[0026]
【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。即
ち、本発明は、極低濃度領域における金属元素の分析方
法に関するもので、あらかじめ求めておいたイオンの蓄
積時間とイオンの信号強度の関係と蓄積時間と目的元素
の濃度の関係を用いて、未知試料の濃度を算出するもの
で、極低濃度領域の目的元素の濃度を検量線を用いずに
信頼性高く分析する事ができる。Since the present invention is configured as described above, it has the following effects. That is, the present invention relates to a method for analyzing a metal element in an extremely low concentration region, using the relationship between the accumulation time of ions and the signal intensity of ions and the relationship between the accumulation time and the concentration of the target element determined in advance, It calculates the concentration of an unknown sample, and can analyze the concentration of a target element in an extremely low concentration region with high reliability without using a calibration curve.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の実施例であるプラズマイオン源質量分
析装置のブロック構成図である。FIG. 1 is a block diagram of a plasma ion source mass spectrometer according to an embodiment of the present invention.
【図2】従来法の検量線の作成例を示した特性図であ
る。FIG. 2 is a characteristic diagram showing an example of creating a calibration curve according to a conventional method.
【図3】図1におけるイオントラップタイプ質量分析計
における目的元素の蓄積時間とイオン信号強度との関係
について求めた特性図である。FIG. 3 is a characteristic diagram showing a relationship between an accumulation time of a target element and an ion signal intensity in the ion trap type mass spectrometer in FIG.
【図4】本発明のイオントラップタイプ質量分析計にお
ける目的元素の蓄積時間と濃度の関係について求めた特
性図である。FIG. 4 is a characteristic diagram showing the relationship between the accumulation time and the concentration of a target element in the ion trap type mass spectrometer of the present invention.
【図5】本発明の補正係数の求め方について示した特性
図である。FIG. 5 is a characteristic diagram showing a method for obtaining a correction coefficient according to the present invention.
【図6】本発明の実施例について示したフローシート図
である。FIG. 6 is a flow sheet diagram showing an example of the present invention.
1…試料、2,3…プラズマ、4…インターフェイス、
5…イオン軌道、6…イオンレンズ、7…イオントラッ
プタイプ質量分析計、8…操作用コンピュータ。1 ... sample, 2,3 ... plasma, 4 ... interface,
5 ... Ion orbit, 6 ... Ion lens, 7 ... Ion trap type mass spectrometer, 8 ... Operation computer.
Claims (4)
質量分析部にイオントラップタイプの質量分析計を使用
したプラズマイオン源質量分析装置において、試料中に
存在する目的元素をイオン源にてイオン化し、イオント
ラップタイプの質量分析計に取り込み、イオンの蓄積時
間とイオンの信号強度の関係を求め、さらにあるイオン
信号強度における蓄積時間と目的元素の濃度との関係を
先に求めておき、定量分析に際してはあらかじめ設定し
ておいたイオン信号強度値に到達するまでのイオンの蓄
積時間を計測し、蓄積時間と濃度の関係から目的元素の
濃度を知る手段を備えたことを特徴とするプラズマイオ
ン源質量分析装置。An ICP or MIP is used as an ion source.
In a plasma ion source mass spectrometer using an ion trap type mass spectrometer in the mass spectrometry section, target elements present in the sample are ionized by the ion source and taken into the ion trap type mass spectrometer to accumulate ions. The relationship between the time and the signal intensity of the ions is determined, and the relationship between the accumulation time and the concentration of the target element at a certain ion signal intensity is determined in advance, and reaches a preset ion signal intensity value during quantitative analysis. A plasma ion source mass spectrometer characterized by comprising means for measuring an ion accumulation time until completion and determining a concentration of a target element from a relationship between the accumulation time and the concentration.
オン信号強度値を複数点設け、計算される濃度の平均値
や相対標準偏差値を求め、測定値の信頼性を高める手段
を備えたことを特徴とするプラズマイオン減質量分析装
置。2. The apparatus according to claim 1, further comprising means for providing a plurality of preset ion signal intensity values, obtaining an average value and a relative standard deviation value of the calculated concentrations, and improving the reliability of the measured values. Characteristic plasma ion mass reduction analyzer.
オンの信号強度の関係を求め、さらにあるイオン信号強
度における蓄積時間と目的元素の濃度との関係を先に求
めておくことにおいて、実際に定量分析を行う場合に、
先に求めておいた関係式における元素の感度と定量分析
時における感度が異なる時、ある蓄積時間におけるイオ
ン信号強度を比較するか、あるイオン信号強度を得るま
での蓄積時間を比較することによって、補正係数を算出
する手段を具備したプラズマイオン源質量分析装置。3. The method according to claim 1, wherein the relationship between the accumulation time of the ions and the signal intensity of the ions is determined, and the relationship between the accumulation time and the concentration of the target element at a certain ion signal intensity is determined first. When performing quantitative analysis on
When the sensitivity of the element and the sensitivity at the time of quantitative analysis in the relational expression obtained earlier are different, by comparing the ion signal intensity at a certain accumulation time or by comparing the accumulation time until obtaining a certain ion signal intensity, A plasma ion source mass spectrometer comprising means for calculating a correction coefficient.
イオン信号強度の関係式について、あるイオン信号強度
に着目し、代表となる元素を基準にして元素間の感度比
を求め、これを装置に記憶させ、代表元素の濃度測定に
関し、あるカウントが得られる時のイオンの蓄積時間を
計測し、得られたイオン蓄積時間をイオンの蓄積時間と
代表元素の濃度の関係式に代入して濃度を求め、得た補
正係数から代表元素の濃度を補正計算し、その他の元素
についてはあるカウントが得られるイオンの蓄積時間を
計測し、代表元素との感度比と補正係数から濃度を求め
ることを特徴とするプラズマイオン源質量分析装置。4. A relational expression between the ion accumulation time and the ion signal intensity obtained for each element, focusing on a certain ion signal intensity, obtaining a sensitivity ratio between the elements with reference to a representative element, In the measurement of the concentration of the representative element, the ion accumulation time when a certain count is obtained is measured, and the obtained ion accumulation time is substituted into the relational expression between the ion accumulation time and the concentration of the representative element to obtain the concentration. Calculate the concentration of the representative element from the obtained correction coefficient, measure the accumulation time of ions that can obtain a certain count for other elements, and calculate the concentration from the sensitivity ratio with the representative element and the correction coefficient. Characteristic plasma ion source mass spectrometer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9306803A JPH11144674A (en) | 1997-11-10 | 1997-11-10 | Plasma ion source mass spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9306803A JPH11144674A (en) | 1997-11-10 | 1997-11-10 | Plasma ion source mass spectrometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11144674A true JPH11144674A (en) | 1999-05-28 |
Family
ID=17961456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9306803A Pending JPH11144674A (en) | 1997-11-10 | 1997-11-10 | Plasma ion source mass spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11144674A (en) |
-
1997
- 1997-11-10 JP JP9306803A patent/JPH11144674A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170138955A1 (en) | Quantitative peptide analysis by mass spectrometry | |
US20160042937A1 (en) | Methods for Predictive Automatic Gain Control for Hybrid Mass Spectrometers | |
US20220328295A1 (en) | Calibration of mass spectrometry systems | |
US7829846B2 (en) | Analytical system and method utilizing the dependence of signal intensity on matrix component concentration | |
WO1997006430A1 (en) | Method and apparatus for total reflection x-ray fluorescence spectroscopy | |
JP4434026B2 (en) | Isotope ratio analysis method using plasma ion source mass spectrometer | |
JP3683749B2 (en) | Mass spectrometry method | |
JP4497455B2 (en) | Mass spectrometer | |
US6248592B1 (en) | Method for measuring lead concentrations in blood | |
JP2008008801A (en) | Mass analyzing system | |
JP2004361367A (en) | Isotope-ratio analysis using plasma ion source mass analyzer | |
Gourgiotis et al. | Transient signal isotope analysis using multicollection of ion beams with Faraday cups equipped with 10 12 Ω and 10 11 Ω feedback resistors | |
JPH11144674A (en) | Plasma ion source mass spectrometer | |
JP2001324476A (en) | Inductively-coupled plasma mass spectrometeric analysis method | |
JP3185825B2 (en) | Standard sample | |
JPH08129002A (en) | Chromatrograph mass spectrometer using sim method | |
Oliva et al. | Measurement of uncertainty in peptide molecular weight determination using size-exclusion chromatography with multi-angle laser light-scattering detection and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry | |
JP2002181746A (en) | Quantitative analysis method and auxiliary sample and standard sample thereof | |
JPS63111461A (en) | Mass spectroscopy with gas chromatography | |
JPH0381660A (en) | Selective ion detection using mass spectrometer | |
JPH0326499B2 (en) | ||
JP3047579B2 (en) | Chromatographic data processor | |
JPH1194802A (en) | Gloaw-discharge mass spectrometry | |
JP2001221755A (en) | Secondary ion mass spectrometry | |
JPH10132789A (en) | Mass spectrometry for laser-ionization neutral particle |