JP2001324476A - Inductively-coupled plasma mass spectrometeric analysis method - Google Patents

Inductively-coupled plasma mass spectrometeric analysis method

Info

Publication number
JP2001324476A
JP2001324476A JP2000141707A JP2000141707A JP2001324476A JP 2001324476 A JP2001324476 A JP 2001324476A JP 2000141707 A JP2000141707 A JP 2000141707A JP 2000141707 A JP2000141707 A JP 2000141707A JP 2001324476 A JP2001324476 A JP 2001324476A
Authority
JP
Japan
Prior art keywords
intensity
peak
correction
target element
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000141707A
Other languages
Japanese (ja)
Inventor
Tadayuki Ogiwara
忠幸 荻原
Masahiro Homae
雅博 帆前
Yoshihiro Takase
可浩 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000141707A priority Critical patent/JP2001324476A/en
Publication of JP2001324476A publication Critical patent/JP2001324476A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inductively-coupled plasma mass spectrometric analysis method, capable of accurately determinating a target element, even if the peak of molecular ions with which a coexisting substance or the coexisting substance and a gas component are coupled overlaps with the peak of the mass spectrum of the target element. SOLUTION: When the peak of molecular ions, with which the coexisting substrate or the coexisting substrate and the gas component are coupled, overlaps with the peak of the mass spectrum of the target element at the determination of the trace amount of a substance in a sample, correction intensity is calculated from the intensities of two arbitrarily selected overlapped peaks according formula: I'=iI-(iDB/jDB)jI (where I' is correction intensity; iI is the measured intensity of a mass number i; and iDB is the isotoptip ratio of the mass number i of interference ions) to determinate the target element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘導結合プラズマ
質量分析装置を用いて各種試料中の微量物質(目的元
素)を定量する方法に関し、詳しくは試料中の共存物
質、ガス成分及びこれらの結合した分子イオンのピーク
の少なくとも一つが目的元素の質量スペクトルのピーク
に重なるような場合の誘導結合プラズマ質量分析方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying a trace substance (target element) in various samples using an inductively coupled plasma mass spectrometer, and more particularly, to a coexisting substance in a sample, a gas component, and a combination thereof. The present invention relates to an inductively coupled plasma mass spectrometry method in a case where at least one of the peaks of the molecular ions overlaps with the peak of the mass spectrum of the target element.

【0002】[0002]

【従来の技術】例えば、図5に示すように、質量数i
で、目的元素Aのピークに、妨害元素Bのピークが重な
るようなスペクトル干渉がある場合、従来は、下記の妨
害イオン干渉補正式(a)により、妨害イオンのみが現れ
ている質量数jの強度から、同位体比を係数として、目
的元素イオンに重なっている質量数iの分子イオン強度
を求め、これを減算して目的元素Aによる正味の強度を
求めている。 I’=I−(I ……(a) I’:補正強度、 I :質量数iの測定強度、:妨害イオンの質量数iの同位体比
2. Description of the Related Art For example, as shown in FIG.
In the case where there is spectral interference in which the peak of the interfering element B overlaps the peak of the target element A, conventionally, the following interfering ion interference correction formula (a) is used to calculate the mass number j in which only interfering ions appear. From the intensity, the molecular ion intensity of the mass number i overlapping with the target element ion is obtained using the isotope ratio as a coefficient, and this is subtracted to obtain the net intensity of the target element A. I '= i I- (i D B / j D B) j I ...... (a) I': correction intensity, i I: measured intensity of mass number i, j D B: isotopes of mass number i of interfering ions Body ratio

【0003】また、分子イオンのみが現れる質量数に第
三の元素が重なる場合には、同様の補正を繰り返して分
子イオンの強度を得るようにしている。例えば、As,
ArCl,Seのスペクトルが、図6に示すように干渉
する場合、Asの正味の強度は、75As75I−(75ArCl77
ArCl){77I−(77 Se78Se)
78I} となる。 なお、ここでArClSeはArC
lとSeの質量数iにおける同位体比である。
In addition, the mass number at which only molecular ions appear is
If three elements overlap, repeat the same correction
The strength of the child ion is obtained. For example, As,
ArCl and Se spectra interfere with each other as shown in FIG.
If so, the net intensity of As is75 IAs=75I- (75DArCl/77D
ArCl) {77I- (77D Se/78DSe)
78I}. Here,iDArCl,iDSeIs ArC
It is an isotope ratio at the mass number i of 1 and Se.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記従来の
補正式においては、分子イオン強度の算出のために、目
的元素イオンのピークが現れずに分子イオンのピークの
みが現れる質量数があることを前提としている。しか
し、目的元素と共存元素の組み合わせによってはこのよ
うな分子イオンのピークのみが現れる質量数が全くなか
ったり、分子イオンのピークのみが現れる質量数におい
ては、測定上望ましくない、非常に弱いピークであった
りして、十分な補正を行うことが困難な場合がある。
In the above-mentioned conventional correction equation, the calculation of molecular ion intensity requires that there is a mass number at which only the peak of the molecular ion appears without the peak of the target element ion. It is assumed. However, depending on the combination of the target element and the coexisting element, there is no mass number at which only the peak of such molecular ions appears, or at a mass number at which only the peak of molecular ions appears, which is undesirable for measurement and is a very weak peak. In some cases, it is difficult to perform sufficient correction.

【0005】本発明は上記問題点を解決するものであ
り、誘導結合プラズマ質量分析装置を用いて各種試料中
の微量物質を定量する際に、共存物質や共存物質とガス
成分の結合した分子イオンなどのピークが目的元素の質
量スペクトルのピークに重なるような場合にも、精度よ
く目的元素の定量を行うことが可能な誘導結合プラズマ
質量分析方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it has been found that, when an inductively coupled plasma mass spectrometer is used to quantify trace substances in various samples, coexisting substances or molecular ions in which coexisting substances and gas components are combined are used. It is an object of the present invention to provide an inductively coupled plasma mass spectrometry capable of accurately quantifying a target element even when such a peak overlaps a peak of a mass spectrum of the target element.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の誘導結合プラズマ質量分析方法は、(a)試
料中の共存物質、ガス成分(大気、プラズマガス)、及
びこれらの結合した分子イオンの質量スペクトルのピー
クの少なくとも一つが、測定元素の質量スペクトルのピ
ークに重なるスペクトル干渉を起こす場合であって、か
つ、目的元素の質量スペクトルのピークに、妨害イオン
の質量スペクトルのピークと重ならないピークがない場
合、又は、(b)試料中の共存物質、ガス成分(大気、プ
ラズマガス)、及びこれらの結合した分子イオンの質量
スペクトルのピークの少なくとも一つが、測定元素の質
量スペクトルのピークに重なるスペクトル干渉を起こす
場合であって、かつ、目的元素の質量スペクトルのピー
クのうちの、妨害イオンの質量スペクトルのピークと重
ならないピークの強度が、妨害イオンの質量スペクトル
のピークと重なりのあるピークの強度の10分の1未満
である場合、のいずれかの場合において、任意に選んだ
重なりのある2本のピークの強度から、式(1)によっ
て、補正強度を求めることにより、目的元素の定量を行
うことを特徴としている。 I’=I−(I ……(1) I’:補正強度 I :質量数iの測定強度:妨害イオンの質量数iの同位体比
In order to achieve the above object, an inductively coupled plasma mass spectrometry method according to the present invention comprises: (a) a coexisting substance, a gas component (atmosphere, plasma gas) in a sample; At least one of the peaks of the mass spectrum of the molecular ion that has occurred, causing spectral interference overlapping the peak of the mass spectrum of the measurement element, and the peak of the mass spectrum of the target element, the peak of the mass spectrum of the interfering ion When there is no overlapping peak, or (b) at least one of the peaks of the mass spectrum of the coexisting substance, the gas component (atmosphere, plasma gas), and the molecular ion combined with these in the sample is the mass spectrum of the measured element. When there is spectral interference that overlaps with the peak, and the interference in the peak of the mass spectrum of the target element An arbitrarily chosen overlap in any case where the intensity of the peak that does not overlap the peak of the ON mass spectrum is less than one tenth of the intensity of the peak that overlaps the peak of the interfering ion mass spectrum; The method is characterized in that the target element is quantified by obtaining the corrected intensity from the intensity of two peaks having the following equation (1). I '= i I- (i D B / j D B) j I ...... (1) I': correction intensity i I: measured intensity of mass number i i D B: isotope ratio mass number i of interfering ions

【0007】このように、任意に選んだ重なりのある2
本のピークの強度から、式(1)によって、補正強度を
求めて目的元素の定量をすることにより、試料中の共存
物質、ガス成分及びこれらの結合した分子イオンのピー
クの少なくとも一つが目的元素の質量スペクトルのピー
クに重なるような場合にも、精度よく目的元素を定量す
ることが可能になる。
As described above, the arbitrarily selected overlapping 2
From the intensity of this peak, the corrected intensity is determined by the equation (1) to determine the target element, and at least one of the peaks of the coexisting substance, the gas component, and the bonded molecular ion in the sample becomes the target element. It is possible to accurately quantify the target element even when the peak overlaps with the peak of the mass spectrum.

【0008】以下に、誘導結合プラズマ質量分析方法に
おいて、妨害イオン(妨害元素)のピークが目的元素の
ピークに重なる場合(図1参照)をモデルとして本発明
を説明する。
Hereinafter, the present invention will be described with reference to a model in which the peak of an interfering ion (interfering element) overlaps the peak of a target element in the inductively coupled plasma mass spectrometry (see FIG. 1).

【0009】図1に示すように、目的元素Aが妨害イオ
ン(妨害元素)Bのスペクトル干渉を受ける場合、すな
わち、AとBの質量スペクトルのピークが図1に示すよ
うに重なる場合、AとBの混合ピークの強度は、両者に
ついての「濃度×同位体存在比×検出感度」の和と考え
られる。質量数i,jの混合ピーク2本の強度を、下記
の二元一次方程式 I=
I=
ただし、 i,j:測定する質量数(以下、質量数iの場合を示す
が、jの場合も同様とする。):質量数iでの目的元素Aと妨害イオン
Bの正味の強度 C,C:目的元素Aと妨害イオンBの濃度:質量数iでのA又はBの同位体比 A,A:試料中の元素濃度に対する同位体合計での
測定強度を示す感度係数として表し、これを解くことに
より、測定元素イオン強度()の定数倍となる補
正強度(I’)を算出することができる。
As shown in FIG. 1, when the target element A is subject to spectral interference of interfering ions (interfering elements) B, that is, when the peaks of the mass spectra of A and B overlap as shown in FIG. The intensity of the mixed peak of B is considered to be the sum of “concentration × isotopic abundance × detection sensitivity” for both. Mass number i, the mixed peak two of the intensity of j, two yuan one following equations i I = i I A + i I B = i D A A A C A + i D B A B C
B j I = j I A + j I B = j D A A A C A + j D B A B C
B, however, i, j: mass number to be measured (hereinafter, shows the case of a mass number i, the same applies to j.) I I A, i I B: The purpose element A and the interference with the mass number i strength of net ionic B C a, C B: concentration i D a purpose element a and interfering ion B, i D B: isotopes of a or B in the mass number i a a, a B: sample of This is expressed as a sensitivity coefficient indicating the measured intensity of the total isotope with respect to the element concentration, and by solving this, the correction intensity (I ′) that is a constant multiple of the measured element ionic intensity ( i I A ) can be calculated.

【0010】すなわち、 I’=I−(I とおくことにより、この補正強度は I’=I−(I =−()( ) ={1−()()} …… (2) ={1−()()} ……( 3) となり、目的元素Aの質量数iにおける正味の強度に比
例した値となる。そして、この補正強度を用いることに
より、妨害イオンの影響を排除して目的元素の定量を行
うことが可能になる。
That is, I '=iI- (iDB/jDB)jI, this correction intensity becomes I '=iI- (iDB/jDB)jI =iDAAACA+iDBABCB− (iDB/jDB) (jDAAACA+ j DBABCB) = {1- (iDB/jDB) (jDA/iDA)}iDAAACA …… (2) = {1- (iDB/jDB) (jDA/iDA)}iIA ... (3), which is compared with the net intensity at the mass number i of the target element A.
It will be the value shown. And using this correction strength
Quantification of the target element by eliminating the effects of interfering ions
It becomes possible.

【0011】また、上式(2),(3)の{ }内の定数
は、補正強度として得られる値が本来のより補正
強度が減少する割合を示している。そこで、この定数に
寄与する同位体存在比を比較することにより、有効感度
を最大にすることができる測定質量数を測定前に選択す
ることが可能になる。
Further, the above equation (2), the constants in {} of (3), the value obtained as the correction strength indicates the rate at which correction intensity decreases from the original i I A. Therefore, by comparing isotope abundance ratios that contribute to this constant, it becomes possible to select a measured mass number that can maximize the effective sensitivity before measurement.

【0012】また、特に図示しないが、目的元素Aに2
種類の妨害元素B,Cが重なる場合、すなわち、下記の
連立方程式で表される場合には、 I=
I=
I=
以下のように、2式ずつ同様の補正強度を求めることに
より、 I’=I−(I={1−(
)()}
{1−()()}
={1−()(
)}+{1−()(
)} I’=I−(I={1−(
)()}
{1−()()}
={1−()(
)}+{1−()(
)} となり、妨害成分Cの寄与を消去することができる。こ
の補正強度I’,I’と、補正による強度減少率を
かけた同位対比({1−()(
)}など)を用いて、再度同様の補正、す
なわち、 I”=I’-[{1−(/)(
)}/{1−()(
)}I’ の補正を行うことにより、目的元素Aの正味の強度に比
例した補正強度I”を求めることができる。このよう
に、妨害元素が多種にわたる場合でも、同様の補正を繰
り返して目的元素に対する補正強度を計算することがで
きる。
Although not particularly shown, the target element A has 2
When the kinds of interfering elements B and C overlap, that is,
When represented by simultaneous equations,i I =iIA+iIB=iDAAACA+iDBABC
B+iDCACCC j I =jIA+jIB=jDAAACA+jDBABC
B+jDCACCC k I =kIA+kIB=kDAAACA+kDBABC
B+kDCACCC To find the same correction strength for each two equations as follows
Than,i I '=iI- (iDC/kDC)kI = {1- (iD
C/kDC) (kDA/iDA)}iDAAACA+
{1- (iDC/kDC) (kDB/iDB)}iDB
ABCB= {1- (iDC/kDC) (kDA/
iDA)}iIA+ {1- (iDC/kDC) (kDB
/iDB)}iIB j I '=jI- (jDC/kDC)kI = {1- (jD
C/kDC) (kDA/jDA)}jDAAACA+
{1- (jDC/kDC) (kDB/jDB)}jDB
ABCB= {1- (jDC/kDC) (kDA/
jDA)}jIA+ {1- (jDC/kDC) (kDB
/jDB)}jIB  Thus, the contribution of the interference component C can be eliminated. This
Correction strengthiI ',jI ′ and the intensity reduction rate due to the correction
Multiplied isotope contrast ({1- (iDC/kDC) (kDA/
iDA)}iDAEtc.) and make the same correction and
That is, I "=iI '-[{1- (iDC/kDC) (kDB/i
DB)}iDB/ {1- (jDC/kDC) (kDB/
jDB)}jDB]jBy correcting I ′, the net intensity of target element A can be reduced.
An exemplary correction intensity I ″ can be determined.
In addition, the same correction is repeated even when the number of interfering elements varies.
It is possible to calculate the correction strength for the target element
Wear.

【0013】また、請求項2の誘導結合プラズマ質量分
析方法は、妨害の原因となる共存物質を任意の濃度で含
有する多数の未知試料に対して、その共存物質を含まな
い標準液群(検量線)を使用し、内標準法による補正を
併用して、検量線法による未知試料中の目的元素の定量
を行うことを特徴としている。
According to the inductively coupled plasma mass spectrometry method of the present invention, a standard solution group (calibration) containing no coexisting substances is used for a large number of unknown samples containing coexisting substances causing interference at an arbitrary concentration. Quantitative analysis of the target element in the unknown sample by the calibration curve method using the calibration curve and the internal standard method.

【0014】妨害の原因となる共存物質を含有する未知
試料に対して、その共存物質を含まない標準液群(検量
線)を使用し、内標準法による補正を併用して、検量線
法により目的元素の定量を行うことにより、効率よくし
かも高精度に未知試料中の目的元素を定量することが可
能になる。なお、内標準法とは、測定試料及び標準液中
に予め一定濃度の内標準元素を存在させておき、測定元
素強度と内標準元素強度の比を測定元素の強度(相対強
度)として用いることで、検出感度の変動を補正する方
法を意味する概念である。
For an unknown sample containing a coexisting substance causing interference, a standard solution group (calibration curve) not containing the coexisting substance is used, and the correction is performed by the calibration curve method together with the correction by the internal standard method. By quantifying the target element, the target element in the unknown sample can be quantified efficiently and with high accuracy. The internal standard method means that a certain concentration of the internal standard element is present in the measurement sample and standard solution in advance, and the ratio between the measured element intensity and the internal standard element intensity is used as the intensity of the measured element (relative intensity). This is a concept meaning a method of correcting the fluctuation of the detection sensitivity.

【0015】また、請求項3の誘導結合プラズマ質量分
析方法は、目的元素と妨害イオンの同位体比から補正時
の有効強度を計算し、最大の有効強度を与える質量数を
選択して測定を行うことを特徴としている。
According to the inductively coupled plasma mass spectrometry method of the present invention, the effective intensity at the time of correction is calculated from the isotope ratio of the target element and the interfering ion, and the mass number giving the maximum effective intensity is selected for measurement. It is characterized by performing.

【0016】目的元素と妨害イオンの同位体比から補正
時の有効強度を計算し、最大の有効強度を与える質量数
を選択して測定を行うことにより、さらに精度よく微量
物質を定量することが可能になる。
By calculating the effective intensity at the time of correction from the isotope ratio of the target element and the interfering ion, and selecting the mass number that gives the maximum effective intensity and performing the measurement, the trace substance can be more accurately quantified. Will be possible.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を示し
て、その特徴とするところをさらに詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described, and features thereof will be described in more detail.

【0018】[実施形態1]この実施形態1では、上述
の本発明の干渉補正式 I’=I−(I ……(1) を用いて、誘導結合プラズマ質量分析方法(ICP−M
S)により、Er中のWを測定(定量)する場合
を例にとって説明する。このICP−MSによるEr
中のWの測定においては、Wは試料中に共存するE
rと、大気などに起因する酸素が結合した分子イオンE
rOのスペクトル干渉を受ける。酸素の同位体は9
9.8%が質量数16で、他の酸素の同位体による分子
イオンは装置の測定精度上無視することができる。それ
ゆえ、分子イオンはEr16Oで、同位体存在比
ErOi−16Erと考えることができる。
[0018] [Embodiment 1] In Embodiment 1, by using the interference correction formula I '= i of the invention described above I- (i D B / j D B) j I ...... (1), inductive coupling Plasma mass spectrometry (ICP-M
The case where W in Er 2 O 3 is measured (quantified) by S) will be described as an example. Er 2 by this ICP-MS
In the measurement of W in O 3 , W is a coexisting E in the sample.
r and a molecular ion E in which oxygen originating from the atmosphere or the like is bonded
Receives spectral interference of rO + . The oxygen isotope is 9
9.8% has a mass number of 16, and molecular ions due to other isotopes of oxygen can be neglected in the measurement accuracy of the apparatus. Therefore, the molecular ion is Er 16 O, and the isotope abundance i D
ErO can be considered as i- 16D Er .

【0019】この実施形態では、試料としてEr
硝酸溶液に既知量のWを添加したものを用いた。測定質
量数は183,l86及び175(内標準元素(L
u))とし、さらに従来法(前述の従来技術を参照)と
の比較のため質量数178を測定した。ただし質量数1
78は強度が非常に低いため、積算時間を他の10倍と
した。
In this embodiment, Er 2 O 3 is used as a sample.
A solution obtained by adding a known amount of W to a nitric acid solution was used. The measured mass numbers were 183, 186 and 175 (internal standard element (L
u)), and the mass number 178 was measured for comparison with the conventional method (see the above-mentioned conventional technology). However, mass number 1
In the case of No. 78, since the intensity was very low, the integration time was set to another ten times.

【0020】測定はEr及びWの濃度を変化させ
た試料群について行い、 特に補正をしない場合(無補正の場合)の186I強
度 従来法の補正式:I’=186I−(14.9/0.
14)178Iによる補正強度I’ 本発明の補正式:I’=186I−(14.9/2
3.0)183Iによる補正強度I’ を、それぞれEr濃度毎にW添加濃度に対してプ
ロットした。上記の無補正の場合の補正強度(相対強
度)を図2に、前記の従来法の補正式により補正した
場合の補正強度(相対強度)を図3に,前記の本発明
の補正式により補正した場合の補正強度(相対強度)を
図4にそれぞれ示す。なお、補正係数は補正測定と同一
装置による各元素の同位対比測定から求めた。
The measurement is performed on a sample group in which the concentrations of Er 2 O 3 and W are changed, and the 186 I intensity when no correction is made (in the case of no correction) The correction formula of the conventional method: I ′ = 186 I− ( 14.9 / 0.
14) Correction intensity I ′ by 178 I Correction formula of the present invention: I ′ = 186 I− (14.9 / 2)
3.0) The corrected intensity I ′ by 183 I was plotted against the W added concentration for each Er 2 O 3 concentration. FIG. 2 shows the correction strength (relative strength) in the case of no correction as described above, and FIG. 3 shows the correction strength (relative strength) in the case where the correction strength is corrected by the above-described conventional correction formula. FIG. 4 shows the corrected intensities (relative intensities) obtained in this case. The correction coefficient was determined from the isotope contrast measurement of each element using the same apparatus as the correction measurement.

【0021】図2より、上記の補正を行わない場合に
おいては、ErOの分子イオン干渉により、ほぼEr
濃度に比例して186Iは増加し、Er
存下での強度はErが共存しない場合と一致しな
いことがわかる。
[0021] From FIG. 2, in the case without the above correction, the molecular ion interferences ErO +, approximately Er
2 O 3 is 186 I in proportion to the concentration increases, the intensity at the Er 2 O 3 presence is seen may not match with not coexist Er 2 O 3.

【0022】また、図3より、上記の従来法による補
正を行った場合にも、Er共存下での強度はEr
が共存しない場合と十分には一致しないことがわ
かる。これは従来法では非常に弱いピークである175
Iを測定しなければならず、測定カウントのばらつきや
他の微量成分のスペクトル干渉などに影響され、補正誤
差が生じ易いためと考えられる。
FIG. 3 also shows that the intensity in the coexistence of Er 2 O 3 is Er even when the correction by the above-mentioned conventional method is performed.
It can be seen that this does not sufficiently coincide with the case where 2 O 3 does not coexist. This is a very weak peak of 175 in the conventional method.
It is considered that I must be measured, and correction errors are likely to occur due to the influence of variations in measurement counts and spectral interference of other trace components.

【0023】これに対し、本発明の方法による補正を行
った場合、図4に示すように、Er 共存下での強
度は、Erが共存しない場合の強度と一致し、E
rO 分子イオン干渉の影響が排除されてW濃度のみに
比例する理想的な補正強度になっていることがわかる。
On the other hand, correction by the method of the present invention is performed.
In this case, as shown in FIG. 2O3Strength under coexistence
The degree is Er2O3Is consistent with the intensity when no
rO +Eliminates the effects of molecular ion interference and focuses only on W concentration
It can be seen that the proportional correction ideal intensity is obtained.

【0024】このように、本発明の方法によれば、従来
の方法では十分な補正を行うことができないような場合
においても適切な補正を行うことが可能になり、正しい
補正強度を求めることができる。
As described above, according to the method of the present invention, it is possible to perform an appropriate correction even when the conventional method cannot perform a sufficient correction, and it is possible to obtain a correct correction intensity. it can.

【0025】なお、Erが100μg/mlの割合
で共存している場合における分子イオン干渉の影響を、
同強度を示すW濃度で換算すると、無補正の場合、
従来法による補正を行った場合、本発明の方法による
補正を行った場合において、それぞれ以下のようにな
る。 無補正の場合 30ng/ml 従来法による補正の場合 2ng/ml 本発明の方法による補正の場合 0.2ng/ml
The effect of molecular ion interference when Er 2 O 3 coexists at a rate of 100 μg / ml is as follows:
When converted with the W density indicating the same intensity, when no correction is made,
When the correction is performed by the conventional method and when the correction is performed by the method of the present invention, the results are as follows. Uncorrected 30 ng / ml Corrected by the conventional method 2 ng / ml Corrected by the method of the present invention 0.2 ng / ml

【0026】また、分子イオン干渉の影響が定量値の1
0%未満である範囲を定量限界とすると、このときの質
量比は、以下のようになる(ただし、各定量法共に9試
料の平均値)。 無補正 W/Er=3000wtppm(3000μg/g) 従来法補正 W/Er=200wtppm(200μg/g) 本発明の補正 W/Er=20wtppm(20μg/g)
The influence of molecular ion interference is one of the quantitative values.
Assuming that the range of less than 0% is the quantification limit, the mass ratio at this time is as follows (however, the average value of 9 samples for each quantification method). No correction W / Er 2 O 3 = 3000 wtppm (3000 μg / g) Conventional method correction W / Er 2 O 3 = 200 wtppm (200 μg / g) Correction of the present invention W / Er 2 O 3 = 20 wtppm (20 μg / g)

【0027】上記結果より、本発明の方法による補正を
行うことにより、測定限界を、無補正の場合に対して約
150倍、従来法に対して10倍改善できるようになる
ことがわかる。ただし、通常の測定限界は測定ばらつき
により、いずれの定量法でも上値より若干悪化する傾向
がある。
From the above results, it can be seen that by performing the correction according to the method of the present invention, the measurement limit can be improved about 150 times as much as the case without correction and 10 times as much as the conventional method. However, the normal measurement limit tends to be slightly worse than the upper limit in any of the quantitative methods due to measurement variations.

【0028】また、本発明は上記実施形態の場合に限ら
ず、その他の様々な分子イオン干渉がある場合に適用す
ることが可能であり、その場合、上記の実施形態の場合
と同様に測定限界を改善することが可能になる。
Further, the present invention is not limited to the case of the above-described embodiment, but can be applied to the case where there are other various molecular ion interferences. Can be improved.

【0029】上述のように、本発明の干渉補正式を用い
ることにより、試料中の微量物質を、分子イオン干渉の
影響を除いて精度よく定量することが可能になる。ま
た、本発明の方法によれば、分子イオンと目的元素が混
合した強度のみから補正を行うことができるため、両者
の同位体質量数が完全に一致して従来法による補正式を
用いることができないような場合(例えばDy
のHfを定量する場合など)にも適用することが可能で
あり、有意義である。
As described above, the use of the interference correction formula of the present invention makes it possible to accurately quantify a trace substance in a sample, excluding the influence of molecular ion interference. Further, according to the method of the present invention, since the correction can be performed only from the intensity at which the molecular ion and the target element are mixed, it is possible to use the correction formula according to the conventional method when both the isotope mass numbers completely match. The present invention can be applied to a case where it cannot be performed (for example, a case where Hf in Dy 2 O 3 is quantified) and is significant.

【0030】また、本発明の方法によれば、強度の低い
ピーク測定する必要がなくなるため、強度の低いピーク
測定を行う場合(例えば、従来法では、強度の非帯に低
い質量数の測定を余儀なくされるような、Er
のWを定量する場合など)に比べて、測定精度の改善と
積算時間の短縮を図ることができる。
Further, according to the method of the present invention, it is not necessary to measure a peak having a low intensity. Therefore, when a peak measurement having a low intensity is performed (for example, in the conventional method, a measurement of a low mass number is performed in a non-band with an intensity). As compared to the case where W in Er 2 O 3 is quantified, which is unavoidable, the measurement accuracy can be improved and the integration time can be shortened.

【0031】なお、本発明の方法以外にも、他の補正手
段として共存元素の単原子イオン強度を測定し、分子イ
オン生成率をもとに分子イオン干渉の寄与を補正する方
法も考えられるが、分子イオン生成率は装置の状態変化
や共存元素の非スペクトル干渉の影響を受けやすく、誤
差を生じる可能性がある。
In addition to the method of the present invention, a method of measuring the monoatomic ion intensity of a coexisting element and correcting the contribution of molecular ion interference based on the molecular ion generation rate can be considered as another correction means. However, the molecular ion generation rate is susceptible to changes in the state of the apparatus and non-spectral interference of coexisting elements, which may cause errors.

【0032】これに対し、本発明において分子イオン強
度算出の基としている同位体存在比はこの影響を受けに
くいが、これは同元素または同分子の同位体が装置上で
類似した挙動を示すことによるものであると考えられ
る。したがって、本発明によれば、分子イオン生成率を
基にした補正を行う場合にくらべて、より高精度な定量
を行うことが可能になる。
On the other hand, the isotope abundance used as the basis for calculating the molecular ionic strength in the present invention is hardly affected by this, but this is because the isotope of the same element or the same molecule shows similar behavior on the apparatus. It is thought to be due to. Therefore, according to the present invention, it is possible to perform more accurate quantification than when performing correction based on the molecular ion generation rate.

【0033】[実施形態2] <測定例1>Erを硝酸で溶解し、既知量のW標
準液を添加して試料を調製した。この試料についてIC
P−MSによる測定を行い、実施形態1の補正強度を用
いて、Er100μg/ml共存下で、W10ng/m
lの定量を行った。なお、定量はErを含まない
標準液群(検量線)を用いた検量線法で行った。
Embodiment 2 <Measurement Example 1> A sample was prepared by dissolving Er 2 O 3 with nitric acid and adding a known amount of a W standard solution. IC for this sample
Measurement was performed by P-MS, and W10 ng / m 2 was used in the presence of 100 μg / ml of Er 2 O 3 using the corrected intensity of the first embodiment.
l was quantified. The quantification was performed by a calibration curve method using a standard solution group (calibration curve) not containing Er 2 O 3 .

【0034】また、定量を行うにあたっては、内標準と
して、試料及び標準液群(検量線)にLu10ng/mlを
添加し、内標準添加法による感度変動の補正を併せて行
った。さらに、従来法の補正式による測定(測定質量数
186,178)も平行して行い、本発明の補正方法と
の比較を行った。なお、測定条件は両者とも同一とし、
表1に示すような条件で測定を行ったが、従来法による
補正を行うために必要な質量数178は強度が非常に低
いため、積算時間を10倍にした。また、検量線につい
ても未知試料と同様に補正強度を算出し、これを検量線
法に用いた。
In performing the quantification, 10 ng / ml of Lu was added to the sample and the standard solution group (calibration curve) as an internal standard, and the sensitivity fluctuation was corrected by the internal standard addition method. Further, the measurement by the conventional correction formula (measured mass number 186, 178) was also performed in parallel, and compared with the correction method of the present invention. The measurement conditions were the same for both,
The measurement was performed under the conditions shown in Table 1. However, since the mass number 178 required for performing the correction by the conventional method has a very low intensity, the integration time was increased by a factor of 10. The correction intensity was calculated for the calibration curve in the same manner as for the unknown sample, and this was used for the calibration curve method.

【0035】[0035]

【表1】 [Table 1]

【0036】また、表1に示す条件で測定、定量を行っ
た結果を表2に示す。
Table 2 shows the results of measurement and quantification under the conditions shown in Table 1.

【0037】[0037]

【表2】 [Table 2]

【0038】表2に示すように、無補正の場合及び従来
法による補正の場合には、分子イオン干渉により定量値
及び回収率に正の誤差を生じたが、本発明の方法におい
ては、添加濃度回収率100±10%の範囲内で定量を
行うことができた。なお、補正をしない場合、回収率1
00±10%となるのは、W/Er=10000
wtppm(10000μg/g)までであり、従来法による
補正を行った場合でも、1000wtppm(1000μg/
g)までであった。この結果から、本発明の方法によれ
ば、10〜100倍の測定限界の改善が可能になること
がわかる。
As shown in Table 2, in the case of no correction and the correction by the conventional method, positive errors occurred in the quantitative value and the recovery rate due to molecular ion interference. Quantification could be performed within a concentration recovery rate of 100 ± 10%. When no correction is made, the recovery rate is 1
The ratio of 00 ± 10% is W / Er 2 O 3 = 10000
wtppm (10000 μg / g), and even when corrected by the conventional method, 1000 wtppm (1000 μg / g).
g). From these results, it is understood that the measurement limit can be improved by a factor of 10 to 100 according to the method of the present invention.

【0039】<測定例2>上記測定例1の場合と同様の
補正を行い、Dy100μg/ml共存下のHf、
及びEr100μg/ml共存下のPb濃度の定量
を行った。測定条件を表3及び表4に示す。
<Measurement Example 2> The same correction as in the above Measurement Example 1 was performed, and Hf, Dy 2 O 3 in the presence of 100 μg / ml was used.
The Pb concentration was determined in the presence of 100 μg / ml of Er 2 O 3 . Tables 3 and 4 show the measurement conditions.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】そして、本発明の干渉補正式を用いて、補
正強度I’を求めた。 Dy中のHf:I’=180I−(28.3/2
4.9)179I Er中のPb:I’=208I−(26.8/3
3.6)206I Hf及びPbの定量結果を表5、表6に示す。
Then, the correction intensity I 'was obtained by using the interference correction formula of the present invention. Hf in Dy 2 O 3 : I ′ = 180 I− (28.3 / 2
4.9) Pb in 179 I Er 2 O 3 : I ′ = 208 I− (26.8 / 3
3.6) Tables 5 and 6 show the results of quantification of 206 I Hf and Pb.

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】表5、表6より、いずれの元素について
も、添加濃度回収率100±10%の精度で定量できる
ことがわかる。
From Tables 5 and 6, it can be seen that any of the elements can be quantified with an addition concentration recovery rate of 100 ± 10%.

【0046】<測定例3>Er共存濃度の異なる
溶液試料群中のWについて、上記実施形態1と同様の方
法で測定を行うとともに、上記実施形態1の場合と同様
の補正強度I’= 186I−(14.9/23.0)
183Iを用いて、その定量を行った。なお、定量はE
を含まない検量線を用いて行った。測定結果を
表7に示す。
<Measurement Example 3> Er2O3Different coexistence concentration
W in the solution sample group is the same as in the first embodiment.
Measurement in the same manner as in the first embodiment.
Correction intensity I '= 186I- (14.9 / 23.0)
183The quantification was performed using I. The quantification is E
r2O3Was performed using a calibration curve containing no. Measurement results
It is shown in Table 7.

【0047】[0047]

【表7】 [Table 7]

【0048】この結果から、Er含有率の異なる
試料群に対して、Erを含まない共通の標準試料
群により、精度よくWの定量を行うことが可能であるこ
と、及び詳細なEr濃度が未知の場合にも、効率
のよい簡便な測定を行うことが可能になることがわか
る。
From these results, it is found that W can be quantitatively determined with high accuracy by using a common standard sample group containing no Er 2 O 3 with respect to sample groups having different Er 2 O 3 contents. It can be seen that efficient and simple measurement can be performed even when the detailed Er 2 O 3 concentration is unknown.

【0049】また、本発明は様々な分子イオン干渉に適
用することが可能であり、種々の試料に対し同様の簡便
な測定を行うことができる。さらに、補正強度はそのま
ま通常の(分子イオン干渉を考慮しない)検量線計算処
理で定量値に換算することが可能で、効率よく精度の高
い定量を行うことができる。
Further, the present invention can be applied to various molecular ion interferences, and similar simple measurements can be performed on various samples. Furthermore, the correction intensity can be directly converted into a quantitative value by a normal (not considering molecular ion interference) calibration curve calculation process, and efficient and accurate quantification can be performed.

【0050】共存元素の影響は、妨害イオンのスペクト
ル干渉と非スペクトル干渉(物理干渉、イオン化干渉な
どの全体的な強度変化)に分けられる。上記実施形態1
の方法により補正された補正強度I’は試料中のEr濃
度及びErO濃度に影響されず、常に正味の目的元素
強度の定数倍を与える。この定数は同位体存在比のみに
依存し、試料の同位体存在比が天然同位対比から外れな
い限り定数とみなすことができる。これは試料中にEr
が含まれない場合も同様である。そして、実施形態2の
ように、適切な内標準元素による内標準添加法を併用す
ることにより、標準添加法を用いなくても非スペクトル
干渉を補正することが可能になる。
The influence of coexisting elements can be divided into spectral interference of interfering ions and non-spectral interference (overall intensity changes such as physical interference and ionization interference). Embodiment 1
The correction intensity I ′ corrected by the method described above is not affected by the Er concentration and the ErO + concentration in the sample, and always gives a constant multiple of the net target element intensity. This constant depends only on the isotope abundance ratio, and can be regarded as a constant as long as the isotope abundance ratio of the sample does not deviate from the natural isotope ratio. This is because Er in the sample
The same applies to the case where is not included. Then, as in Embodiment 2, the non-spectral interference can be corrected without using the standard addition method by using the internal standard addition method using an appropriate internal standard element.

【0051】このように、実施形態2の方法によれば、
任意のEr濃度の試料とEr を含まない検
量線について共通の補正強度を求めることにより、簡便
な検量線法によって、精度よく目的元素の定量を行うこ
とが可能になる。さらに、検量線と未知試料の双方に対
して、正味の測定元素強度の定数倍である補正強度を求
めることができるため、補正強度を、通常の検量線計算
処理にそのまま使用することが可能である。
As described above, according to the method of the second embodiment,
Any Er2O3Concentration sample and Er 2O3Inspection does not include
Simple calculation by finding a common correction strength for the dose line
Quantification of the target element with high accuracy by a simple calibration curve method.
And become possible. In addition, both calibration curves and unknown
To obtain a correction intensity that is a constant multiple of the net measured element intensity.
The correction intensity can be calculated using the standard calibration curve calculation.
It can be used for processing as it is.

【0052】[実施形態3]ここでは、測定質量数を決
定(選択)方法について説明する。すなわち、上記実施
形態1及び2の方法によりEr中のWの定量を行
うに際しては、以下の基準で測定質量数を決定した。 各質量数の強度がErOとWの2成分によるもので
あるから、測定する質量数の数を2とする。 以下のa),b)に従う質量数i,jを決定する。た
だし、i,jのどちらを大とするかについては、a)の
係数が正となる方を大として採用する。 a)補正強度の有効感度を決定する係数{1−(
i−16Erj−16Er)(
)}が大きい(1に近い)こと。 b)各質量数の測定強度(トータル強度)が大きいこ
と。 例として、Er中のWの定量を考えると、Er,
及びWの質量数及び同位体存在比は表8、表9のように
なる。
[Embodiment 3] Here, a method of determining (selecting) the measured mass number will be described. That is, when quantifying W in Er 2 O 3 by the methods of Embodiments 1 and 2, the measured mass number was determined based on the following criteria. Since the intensity of each mass number is due to two components of ErO + and W, the number of mass numbers to be measured is 2. The mass numbers i and j according to the following a) and b) are determined. However, as to which of i and j is larger, the one in which the coefficient of a) is positive is adopted as larger. a) Coefficient {1- () that determines effective sensitivity of correction intensity
i-16 D Er / j- 16 D Er) (j D W /
i D W )} is large (close to 1). b) The measured intensity (total intensity) of each mass number is large. As an example, considering the quantification of W in Er 2 O 3 , Er,
Table 8 and Table 9 show the mass numbers and the isotope abundance ratios of and W.

【0053】[0053]

【表8】 [Table 8]

【0054】[0054]

【表9】 [Table 9]

【0055】このうち質量数178と180は存在比が
小さく、強度が低くなる(質量数182〜184,18
6の約1/10以下)ため除外し、他の質量数の組み合
わせにおける係数{1−(i−16Erj−16
Er)()}を考えると、表10のよう
になる。
Of these, the mass numbers 178 and 180 have a small abundance ratio and a low strength (mass numbers 182 to 184, 18
6 or less) and the coefficient {1- ( i- 16DEr / j- 16D ) in other combinations of mass numbers.
Considering Er) (j D W / i D W)}, so that the table 10.

【0056】[0056]

【表10】 [Table 10]

【0057】この結果から、最大の係数を与える質量数
183,186を測定質量数として選択する。他の元素
についても、同様に測定質量数を選択することができ
る。すなわち、影響のある妨害イオン干渉の種類が判明
している場合(通常、定性測定スペクトルから判断可能
であり、また原料分析では原料の主成分元素から酸化
物、水素化物、アルゴン化物などの影響を予測すること
が可能である)、強度に寄与する成分が2つならば2質
量数の強度(2元の連立方程式)、3つならば3質量数
の強度で各成分の補正強度を求めることができる。
From the results, the mass numbers 183 and 186 giving the maximum coefficient are selected as the measured mass numbers. For other elements, the measured mass number can be similarly selected. In other words, when the type of interfering ion interference that has an influence is known (usually, it can be determined from the qualitative measurement spectrum, and in the raw material analysis, the influence of oxides, hydrides, argon compounds, etc., from the main components of the raw material) If the number of components that contribute to the intensity is 2, the intensity of 2 mass numbers (binary simultaneous equations), and if it is 3, the correction intensity of each component is calculated with the intensity of 3 mass numbers. Can be.

【0058】また、本発明による補正強度は、例えば、
Er中のWの定量の場合では I’={1−(i−16Erj−16Er)(
)} 、 で表され、正味の目的元素強度が、一定の係数
{1−(i−16Er j−16Er)(
)}により減少しているものであることが分か
る。したがって、係数を1に近づけるような同位体存在
比をもつ質量数を選択すれば有効感度の低下による精度
悪化を避けることができる。
The correction intensity according to the present invention is, for example,
Er2O3In the case of quantification of W inside, I '= {1- (i-16DEr/j-16DEr) (j
DW/iDW)}iI W, Represented by the net target element strengthiIWIs a constant coefficient
{1- (i-16DEr/ j-16DEr) (jDW/
iDW) I understand that it is decreasing due to}
You. Therefore, the isotope that makes the coefficient close to 1
If a mass number with a ratio is selected, accuracy due to a decrease in effective sensitivity
Deterioration can be avoided.

【0059】また、同位体存在比によっては、計算上こ
の係数が負の場合があり、その場合絶対値は1を越える
場合がある。ただし、この場合はの強度が低く、
j− 16Erの強度が低い(つまりの強度が高
い)ことになり、測定値の減算結果である補正強度にお
いて精度の向上は期待できない。この場合はiとjを交
換し係数を正にした場合と同じであると考えられるの
で、本発明ではi,jの組み合わせを正の係数を与える
場合に限定した。
Also, depending on the isotope abundance ratio, this coefficient may be negative in calculation, and in this case, the absolute value may exceed 1. However, in this case, the intensity of i I W is low,
Since the intensity of j- 16 I Er is low (that is, the intensity of j I W is high), improvement in accuracy cannot be expected in the correction intensity that is the result of subtraction of the measured value. In this case, it is considered that this is the same as the case where i and j are exchanged and the coefficient is made positive. Therefore, in the present invention, the combination of i and j is limited to the case where a positive coefficient is given.

【0060】なお、本発明は、上記実施形態1〜3に限
定されるものではなく、発明の要旨の範囲内において、
種々の応用、変形を加えることができる。
Note that the present invention is not limited to the first to third embodiments, and within the scope of the invention,
Various applications and modifications can be made.

【0061】[0061]

【発明の効果】上述のように、本発明(請求項1)の誘
導結合プラズマ質量分析方法は、任意に選んだ重なりの
ある2本のピークの強度から、I’=I−(
I(式(1) )によって、補正強度を求めて目
的元素の定量をするようにしているので、試料中の共存
物質、ガス成分及びこれらの結合した分子イオンのピー
クの少なくとも一つが目的元素の質量スペクトルのピー
クに重なるような場合にも、精度よく目的元素を定量す
ることができるようになる。すなわち、請求項1の発明
により、共存元素による分子イオン干渉の影響を受ける
元素の定量において干渉の影響を排除し、測定限界を1
0〜100倍向上させることができる。また、測定質量
数の制限が緩和されるため、ほぼ全ての元素に適用する
ことが可能になり、低強度質量数の測定を避けて、積算
時間を約1/10程度に短縮することが可能になる。
According to the present invention as described above, inductively coupled plasma mass spectrometry method of the present invention (claim 1), from the two intensity peaks with overlapping arbitrarily selected, I '= i I- (i D B /
by j D B) j I (Formula (1)), since such a quantitative objective elements seeking correction intensity, the peak of the coexisting substance, gas components and their bound molecular ion in the sample at least Even when one of them overlaps the peak of the mass spectrum of the target element, the target element can be accurately quantified. That is, according to the first aspect of the present invention, the influence of interference is eliminated in the determination of elements affected by molecular ion interference by coexisting elements, and the measurement limit is set to 1
It can be improved by 0 to 100 times. In addition, since the limitation of the measured mass number is relaxed, it can be applied to almost all elements, and the measurement of low intensity mass number can be avoided, and the integration time can be reduced to about 1/10. become.

【0062】また、請求項2の誘導結合プラズマ質量分
析方法のように、妨害の原因となる共存物質を任意の濃
度で含有する多数の未知試料に対して、その共存物質を
含まない標準液群(検量線)を使用し、内標準法による
補正を併用して、検量線法により未知試料中の目的元素
の定量を行うようにした場合、効率よくしかも高精度に
未知試料中の目的元素を定量することが可能になる。す
なわち、請求項2の発明により、共存元素の分子イオン
干渉を受ける元素の定量において、共存元素濃度の異な
る試料群、又は共存元素濃度が未知の試料群に対し、共
存元素を含まない標準液群(検量線)を用いた検量線法
による定量が可能になり、標準添加法による前処理の煩
雑さや、検量線に共存元素のマトリックスマッチングを
行う場合の試薬中不純物の影響を回避することができ
る。また、補正強度は通常の測定強度と同様に扱うこと
が可能になり、干渉が無い場合と同様の計算処理が可能
となる。このため、導入に際しては現行の分析処理に単
純な計算を追加するだけで本発明を効率よく実施するこ
とが可能になる。
Further, as in the inductively coupled plasma mass spectrometry method according to claim 2, for a large number of unknown samples containing a coexisting substance causing interference at an arbitrary concentration, a standard solution group containing no coexisting substance. (Calibration curve) and the correction by the internal standard method together with the quantification of the target element in the unknown sample by the calibration curve method, the target element in the unknown sample can be efficiently and accurately determined. Quantitation becomes possible. That is, according to the invention of claim 2, in the quantification of an element that undergoes molecular ion interference of a coexisting element, a standard liquid group containing no coexisting element is compared with a sample group having a different coexisting element concentration or a sample group having an unknown coexisting element concentration. Quantification by the calibration curve method using (calibration curve) becomes possible, and the complexity of pretreatment by the standard addition method and the influence of impurities in reagents when performing matrix matching of coexisting elements on the calibration curve can be avoided. . Further, the correction intensity can be handled in the same way as the normal measurement intensity, and the same calculation processing as when there is no interference can be performed. For this reason, at the time of introduction, the present invention can be efficiently implemented only by adding a simple calculation to the existing analysis processing.

【0063】また、請求項3の誘導結合プラズマ質量分
析方法のように、目的元素と妨害イオンの同位体比から
補正時の有効強度を計算し、最大の有効強度を与える質
量数を選択して測定を行うようにした場合、さらに精度
よく微量物質を定量することが可能になる。すなわち、
請求項3の発明により、分子イオン干渉補正のための測
定質量数を簡単に決定することが可能になり、必要最低
限の質量数で測定を行うことが可能になる。したがっ
て、強度の大きい質量数を使用できることと合わせて測
定時の積算時間の短縮を図ることが可能になる。また、
積算時間の短縮は直接測定時間の短縮につながるばかり
でなく、ETV,レーザーアブレーション,フローイン
ジェクション,イオンクロマトグラフィーなどの併用に
よる時間依存性の強度を測定する上における1回の質量
スキャンの時間短縮にもつながる。しかも、スキャン中
の強度変化の影響を小さくすることにより、精度の向上
を図ることが可能になる。
Further, as in the inductively coupled plasma mass spectrometry method according to the third aspect, the effective intensity at the time of correction is calculated from the isotope ratio of the target element and the interfering ion, and the mass number giving the maximum effective intensity is selected. When the measurement is performed, it is possible to quantify the trace substance with higher accuracy. That is,
According to the third aspect of the invention, it is possible to easily determine the measured mass number for molecular ion interference correction, and it is possible to perform measurement with the minimum necessary mass number. Therefore, it is possible to shorten the integration time at the time of measurement, in addition to the fact that a mass number having a large strength can be used. Also,
Shortening the integration time not only directly reduces the measurement time, but also shortens the time for one mass scan in measuring the time-dependent intensity by using ETV, laser ablation, flow injection, ion chromatography, etc. Also leads. Moreover, the accuracy can be improved by reducing the influence of the intensity change during scanning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】誘導結合プラズマ質量分析方法において、妨害
イオン(妨害元素)のピークが目的元素のピークに重な
る場合を模式的に示す図である。
FIG. 1 is a diagram schematically showing a case where a peak of an interfering ion (interfering element) overlaps a peak of a target element in the inductively coupled plasma mass spectrometry.

【図2】Er中のW測定における、無補正の場合
の強度(相対強度)とW濃度の関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the intensity (relative intensity) and the W concentration in the case of uncorrected W measurement in Er 2 O 3 .

【図3】Er中のW測定における、従来の方法に
よる補正を行った場合の強度(相対強度)とW濃度の関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between the intensity (relative intensity) and the W concentration when correction is performed by a conventional method in W measurement in Er 2 O 3 .

【図4】Er中のW測定における、本発明(請求
項1)の方法による補正を行った場合の強度(相対強
度)とW濃度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the intensity (relative intensity) and the W concentration in the measurement of W in Er 2 O 3 when the correction according to the method of the present invention (claim 1) is performed.

【図5】従来の誘導結合プラズマ質量分析方法における
補正方法を概念的に示す図である。
FIG. 5 is a diagram conceptually showing a correction method in a conventional inductively coupled plasma mass spectrometry method.

【図6】誘導結合プラズマ質量分析方法によるAs測定
に対するArClの干渉の状態を概念的に示す図であ
る。
FIG. 6 is a diagram conceptually showing a state of interference of ArCl with respect to As measurement by the inductively coupled plasma mass spectrometry.

フロントページの続き (72)発明者 高瀬 可浩 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 5C038 HH28 Continuation of front page (72) Inventor Takahiro Takase 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto F-term in Murata Manufacturing Co., Ltd. (reference) 5C038 HH28

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)試料中の共存物質、ガス成分(大気、
プラズマガス)、及びこれらの結合した分子イオンの質
量スペクトルのピークの少なくとも一つが、測定元素の
質量スペクトルのピークに重なるスペクトル干渉を起こ
す場合であって、かつ、 目的元素の質量スペクトルのピークに、妨害イオンの質
量スペクトルのピークと重ならないピークがない場合、
又は、 (b)試料中の共存物質、ガス成分(大気、プラズマガ
ス)、及びこれらの結合した分子イオンの質量スペクト
ルのピークの少なくとも一つが、測定元素の質量スペク
トルのピークに重なるスペクトル干渉を起こす場合であ
って、かつ、 目的元素の質量スペクトルのピークのうちの、妨害イオ
ンの質量スペクトルのピークと重ならないピークの強度
が、妨害イオンの質量スペクトルのピークと重なりのあ
るピークの強度の10分の1未満である場合、 のいずれかの場合において、任意に選んだ重なりのある
2本のピークの強度から、式(1)によって、補正強度
を求めることにより、目的元素の定量を行うことを特徴
とする誘導結合プラズマ質量分析方法。 I’=I−(I ……(1) I’:補正強度 I :質量数iの測定強度:妨害イオンの質量数iの同位体比
(1) Coexisting substances and gas components in a sample (atmosphere,
Plasma gas), and at least one of the peaks of the mass spectrum of the combined molecular ions causes spectral interference overlapping with the peak of the mass spectrum of the element to be measured, and at the peak of the mass spectrum of the target element, If there is no peak that does not overlap with the peak of the interfering ion mass spectrum,
Or (b) at least one of the peaks of the mass spectrum of the coexisting substance, the gas component (atmosphere, plasma gas) and the combined molecular ion in the sample causes spectral interference overlapping with the peak of the mass spectrum of the element to be measured. And the intensity of the peak that does not overlap the peak of the interfering ion mass spectrum among the peaks of the mass spectrum of the target element is 10 minutes of the intensity of the peak that overlaps the peak of the interfering ion mass spectrum. In the case of any of the following cases, it is determined from the intensity of two arbitrarily selected overlapping peaks that the corrected intensity is obtained by the equation (1), thereby quantifying the target element. Inductively coupled plasma mass spectrometry. I '= i I- (i D B / j D B) j I ...... (1) I': correction intensity i I: measured intensity of mass number i i D B: isotope ratio mass number i of interfering ions
【請求項2】妨害の原因となる共存物質を任意の濃度で
含有する多数の未知試料に対して、その共存物質を含ま
ない標準液群(検量線)を使用し、内標準法による補正
を併用して、検量線法による未知試料中の目的元素の定
量を行うことを特徴とする請求項1記載の誘導結合プラ
ズマ質量分析方法。
2. For a large number of unknown samples containing a coexisting substance causing interference at an arbitrary concentration, a standard solution group (calibration curve) not containing the coexisting substance is used, and correction by an internal standard method is performed. 2. The inductively coupled plasma mass spectrometry method according to claim 1, wherein the target element in the unknown sample is quantified by the calibration curve method in combination.
【請求項3】目的元素と妨害イオンの同位体比から補正
時の有効強度を計算し、最大の有効強度を与える質量数
を選択して測定を行うことを特徴とする請求項1又は2
記載の誘導結合プラズマ質量分析方法。
3. The method according to claim 1, wherein the effective intensity at the time of correction is calculated from the isotope ratio of the target element and the interfering ion, and the mass number giving the maximum effective intensity is selected for measurement.
The inductively coupled plasma mass spectrometry method according to the above.
JP2000141707A 2000-05-15 2000-05-15 Inductively-coupled plasma mass spectrometeric analysis method Pending JP2001324476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141707A JP2001324476A (en) 2000-05-15 2000-05-15 Inductively-coupled plasma mass spectrometeric analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141707A JP2001324476A (en) 2000-05-15 2000-05-15 Inductively-coupled plasma mass spectrometeric analysis method

Publications (1)

Publication Number Publication Date
JP2001324476A true JP2001324476A (en) 2001-11-22

Family

ID=18648787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141707A Pending JP2001324476A (en) 2000-05-15 2000-05-15 Inductively-coupled plasma mass spectrometeric analysis method

Country Status (1)

Country Link
JP (1) JP2001324476A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309661A (en) * 2006-05-16 2007-11-29 Shimadzu Corp Chromatograph mass analyzer
JP2008268221A (en) * 2002-04-16 2008-11-06 Diakyne Pty Ltd Sampling device and mass spectrometry of device
CN106093177A (en) * 2016-08-12 2016-11-09 绍兴出入境检验检疫局综合技术服务中心 A kind of method utilizing inductively coupled plasma mass spectrometry to measure fabric Ge content
JP2017156332A (en) * 2016-03-04 2017-09-07 株式会社島津製作所 Mass spectrometry and inductively coupled plasma mass spectrometer
CN109283265A (en) * 2017-07-21 2019-01-29 日本株式会社日立高新技术科学 Quality analysis apparatus and mass analysis method
JP2019109058A (en) * 2017-12-15 2019-07-04 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. Mass spectrometry using plasma ion source
CN110031582A (en) * 2018-01-11 2019-07-19 日本株式会社日立高新技术科学 Quality analysis apparatus and mass analysis method
CN114113291A (en) * 2020-08-25 2022-03-01 江苏隆达超合金航材有限公司 Method for determining content of main element in multi-element alloy by using proportional coefficient correction glow mass spectrometry

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102764U (en) * 1987-12-25 1989-07-11
JPH04366759A (en) * 1991-06-13 1992-12-18 Kawasaki Steel Corp Method for directly analyzing solid sample
JPH0877964A (en) * 1994-08-31 1996-03-22 Shimadzu Corp High frequency induction binding plasma mass spectrograph
JPH08111203A (en) * 1994-10-13 1996-04-30 Jeol Ltd High resolution mass spectrometer
JPH0933439A (en) * 1995-07-18 1997-02-07 Sumika Bunseki Center:Kk Analysis method for total phosphorus
JPH09199076A (en) * 1996-01-11 1997-07-31 Seiko Instr Inc Inductively coupled plasma mass spectrograph
JP2000036284A (en) * 1998-07-21 2000-02-02 Hitachi Ltd Plasma ion source mass spectroscope
JP2001311720A (en) * 2000-02-25 2001-11-09 Hitachi Ltd Mass spectrometry and mass spectrometer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102764U (en) * 1987-12-25 1989-07-11
JPH04366759A (en) * 1991-06-13 1992-12-18 Kawasaki Steel Corp Method for directly analyzing solid sample
JPH0877964A (en) * 1994-08-31 1996-03-22 Shimadzu Corp High frequency induction binding plasma mass spectrograph
JPH08111203A (en) * 1994-10-13 1996-04-30 Jeol Ltd High resolution mass spectrometer
JPH0933439A (en) * 1995-07-18 1997-02-07 Sumika Bunseki Center:Kk Analysis method for total phosphorus
JPH09199076A (en) * 1996-01-11 1997-07-31 Seiko Instr Inc Inductively coupled plasma mass spectrograph
JP2000036284A (en) * 1998-07-21 2000-02-02 Hitachi Ltd Plasma ion source mass spectroscope
JP2001311720A (en) * 2000-02-25 2001-11-09 Hitachi Ltd Mass spectrometry and mass spectrometer

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268221A (en) * 2002-04-16 2008-11-06 Diakyne Pty Ltd Sampling device and mass spectrometry of device
JP2007309661A (en) * 2006-05-16 2007-11-29 Shimadzu Corp Chromatograph mass analyzer
JP4577266B2 (en) * 2006-05-16 2010-11-10 株式会社島津製作所 Chromatograph mass spectrometer
JP2017156332A (en) * 2016-03-04 2017-09-07 株式会社島津製作所 Mass spectrometry and inductively coupled plasma mass spectrometer
CN106093177A (en) * 2016-08-12 2016-11-09 绍兴出入境检验检疫局综合技术服务中心 A kind of method utilizing inductively coupled plasma mass spectrometry to measure fabric Ge content
US10636638B2 (en) 2017-07-21 2020-04-28 Hitatchi High-Tech Science Corporation Mass analysis apparatus and method
TWI770190B (en) * 2017-07-21 2022-07-11 日商日立高新技術科學股份有限公司 Mass analysis device and mass analysis method
JP2019023571A (en) * 2017-07-21 2019-02-14 株式会社日立ハイテクサイエンス Mass analysis device and mass analysis method
KR102556760B1 (en) * 2017-07-21 2023-07-18 가부시키가이샤 히다치 하이테크 사이언스 Apparatus and method for analyzing mass
CN109283265B (en) * 2017-07-21 2023-02-28 日本株式会社日立高新技术科学 Mass spectrometer and mass spectrometry method
KR20190010426A (en) * 2017-07-21 2019-01-30 가부시키가이샤 히다치 하이테크 사이언스 Apparatus and method for analyzing mass
US10847355B2 (en) 2017-07-21 2020-11-24 Hitachi High-Tech Science Corporation Mass analysis apparatus and method
CN109283265A (en) * 2017-07-21 2019-01-29 日本株式会社日立高新技术科学 Quality analysis apparatus and mass analysis method
JP2019109058A (en) * 2017-12-15 2019-07-04 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. Mass spectrometry using plasma ion source
JP2019121581A (en) * 2018-01-11 2019-07-22 株式会社日立ハイテクサイエンス Mass spectrometer and mass spectroscopy method
KR20190085842A (en) * 2018-01-11 2019-07-19 가부시키가이샤 히다치 하이테크 사이언스 Apparatus and method for analyzing mass
CN110031582A (en) * 2018-01-11 2019-07-19 日本株式会社日立高新技术科学 Quality analysis apparatus and mass analysis method
KR102545416B1 (en) 2018-01-11 2023-06-20 가부시키가이샤 히다치 하이테크 사이언스 Apparatus and method for analyzing mass
CN114113291A (en) * 2020-08-25 2022-03-01 江苏隆达超合金航材有限公司 Method for determining content of main element in multi-element alloy by using proportional coefficient correction glow mass spectrometry

Similar Documents

Publication Publication Date Title
Schoenberg et al. An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS
US7202473B2 (en) Mass spectrometer
JP5375411B2 (en) Chromatograph mass spectrometry data analysis method and apparatus
US8145438B2 (en) Method for quantitating substance to be measured
US9711339B2 (en) Method to generate data acquisition method of mass spectrometry
US20170138955A1 (en) Quantitative peptide analysis by mass spectrometry
ITMI20110535A1 (en) ANALYSIS SYSTEM FOR THE QUANTITATIVE CHEMICAL ANALYSIS OF SAMPLES, IN PARTICULAR IN MEDICAL AREA, WITH CALIBRATION OF THE INSTRUMENTAL RESPONSE OF THE INSTRUMENTATION USED TO DETECT THE QUANTITATIVE DATA OF THE ANALYTES PRESENT IN ANAL CHAMPIONS
JP2011512534A (en) Quantification method by mass spectrometry
Baublys et al. Simultaneous determination of δ33SV‐CDT and δ34SV‐CDT using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer
JP5464711B2 (en) A method for improving signal-to-noise for quantification by mass spectrometry
Yang et al. Comparison of mass bias correction models for the examination of isotopic composition of mercury using sector field ICP-MS
US20190074169A1 (en) Determining isotope ratios using mass spectrometry
JP5227556B2 (en) Analysis equipment
EP3073510A1 (en) Systems and methods for mass calibration
JP2001324476A (en) Inductively-coupled plasma mass spectrometeric analysis method
Al-Ammar et al. Correction for non-spectroscopic matrix effects in inductively coupled plasma-mass spectrometry by common analyte internal standardization
CN110988104A (en) Hydrogen isotope gas quadrupole mass spectrometry based on double correction
JP4497455B2 (en) Mass spectrometer
JP4434026B2 (en) Isotope ratio analysis method using plasma ion source mass spectrometer
Davis et al. Stabilization of gas-phase uranyl complexes enables rapid speciation using electrospray ionization and ion mobility-mass spectrometry
Field et al. Precise and accurate determination of calcium isotope ratios in urine using HR-ICP-SFMS
JP4256208B2 (en) Isotope ratio analysis using a plasma ion source mass spectrometer
US20200203139A1 (en) Mass Spectrometer Compensating Ion Beams Fluctuations
US8119415B2 (en) X-ray fluorescence method for a composition analysis of a sample containing at least two elements
JPH08129002A (en) Chromatrograph mass spectrometer using sim method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511