JPH1114453A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPH1114453A
JPH1114453A JP9178903A JP17890397A JPH1114453A JP H1114453 A JPH1114453 A JP H1114453A JP 9178903 A JP9178903 A JP 9178903A JP 17890397 A JP17890397 A JP 17890397A JP H1114453 A JPH1114453 A JP H1114453A
Authority
JP
Japan
Prior art keywords
signal
rectangular wave
photosensitive element
photodetector
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9178903A
Other languages
Japanese (ja)
Inventor
Yoshikazu Tominaga
義和 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP9178903A priority Critical patent/JPH1114453A/en
Publication of JPH1114453A publication Critical patent/JPH1114453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To add a light interceptor which can maintain an open state or a shut-off state, which is operated surely and whose power consumption is small by installing a square-wave oscillator or the like which oscillates a square-wave signal and a changeover signal which is synchronized with its rise. SOLUTION: A square-wave oscillator 1 outputs a square-wave signal (a) and a changeover signal (b) which is synchronized with its rise. A psudo differentiating circuit 2 outputs a signal (c) which time-differentiates the square-wave signal (b), and an amplifier circuit 3 amplifies the square-wave signal (a) so as to output a signal (a'). Whenever the changeover signal (b) is output, a signal changeover circuit 4 changes over the signal (c) and the signal (a') so as to output a signal waveform (d), and a power amplifier 5 amplifies the signal waveform (d) so as to excite an exciting coil by a voltage (d'). Then, since a large attraction force is generated between a core and a permanent magnet only during a short time in which a shutter used to shut off incidentlight is moved to an open position from a closed position, the shutter can be operated surely by increasing a slight power consumption, and the reliability of a light detecting apparatus is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、任意の時間周期で
入射光を遮断する光遮断器を備えた光検出装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photodetector provided with a light blocker for blocking incident light at an arbitrary time period.

【0002】[0002]

【従来の技術】任意の時間周期で入射光を遮断する光遮
断器を備えた光検出装置、たとえば、焦電型赤外線検出
装置は、温度変化の時間微分値から入射する赤外線の光
量を測定する装置なので、連続して測定を行うために
は、赤外線の入射を周期的に断続させる必要がある。こ
のため、光遮断器を用いて、赤外線の入射を周期的に断
続させている。この従来の光遮断器付き光検出装置の構
成例を、図5に示す。図において、Hは図示しない光源
が発する検出対象の入射光である。8はベースであり、
ベース8には、感光素子9と架台10が固定されてい
る。架台10には、2本の圧電バイモルフ11が並列に
固定され、それぞれの先端には、スリット板12が、上
下に重なって、感光素子9を覆って、入射光Hを遮るよ
うに、取り付けられている。スリット板12には、所定
のスリット開口が開いている。圧電バイモルフ11に電
圧を印加していない時は、2枚のスリット板12は、そ
れぞれの前記スリット開口が互いに重なり、入射光Hが
前記スリット開口を通って、感光素子9に届く。圧電バ
イモルフ11に電圧を印加すると、圧電バイモルフ11
が変位して、2枚のスリット板12の前記スリット開口
が互いにずれて、入射光Hを遮断する。このように、圧
電バイモルフ11に周期的に電圧を印加することによっ
て、感光素子9への入射光Hを周期的に遮断する。この
ように、圧電バイモルフ11とスリット板12で光遮断
器を構成している(例えば、SANYO techni
cal review vol.21 No.2 JU
N.1989)。この構成では、圧電バイモルフの変位
量が小さいので、スリット板の動作量位量を大きくしに
くかった。動作量を大きくするためには、圧電バイモル
フを長くするか、あるいは圧電バイモルフに共振周波数
で変動する電圧を印加する必要があった。しかし圧電バ
イモルフを長くすると、光検出装置の寸法が大きくなる
という問題があり、共振周波数で変動する電圧を印加す
ると、光遮断器を開放または、遮断した状態で止めてお
くことが出来ないという問題があった。
2. Description of the Related Art A photodetector equipped with a light blocker for blocking incident light at an arbitrary time period, for example, a pyroelectric infrared detector, measures the amount of incident infrared light from the time differential value of temperature change. Since it is a device, it is necessary to periodically interrupt the incidence of infrared rays to perform continuous measurement. For this reason, the incidence of infrared rays is periodically interrupted using an optical circuit breaker. FIG. 5 shows a configuration example of this conventional photodetector with an optical circuit breaker. In the drawing, H is incident light of a detection target emitted from a light source (not shown). 8 is the base,
A photosensitive element 9 and a gantry 10 are fixed to the base 8. Two piezoelectric bimorphs 11 are fixed to the gantry 10 in parallel, and a slit plate 12 is attached to the tip of each to cover the photosensitive element 9 so as to block the incident light H at the top and bottom. ing. The slit plate 12 has a predetermined slit opening. When no voltage is applied to the piezoelectric bimorph 11, the slits of the two slit plates 12 overlap with each other, and the incident light H reaches the photosensitive element 9 through the slits. When a voltage is applied to the piezoelectric bimorph 11, the piezoelectric bimorph 11
Is displaced, and the slit openings of the two slit plates 12 are shifted from each other, thereby blocking the incident light H. Thus, by periodically applying a voltage to the piezoelectric bimorph 11, the light H incident on the photosensitive element 9 is periodically blocked. Thus, an optical circuit breaker is constituted by the piezoelectric bimorph 11 and the slit plate 12 (for example, SANYO techni).
cal review vol. 21 No. 2 JU
N. 1989). In this configuration, since the displacement amount of the piezoelectric bimorph is small, it is difficult to increase the operation amount of the slit plate. In order to increase the operation amount, it was necessary to lengthen the piezoelectric bimorph or to apply a voltage that fluctuates at the resonance frequency to the piezoelectric bimorph. However, if the piezoelectric bimorph is lengthened, there is a problem that the dimensions of the photodetector increase, and if a voltage that fluctuates at the resonance frequency is applied, the optical circuit breaker cannot be opened or stopped in a cut-off state. was there.

【0003】これらの問題を解決する第2の従来技術の
例として、電磁石で駆動される光遮断器を備えた光検出
装置が提案されている。この第2の従来技術による光遮
断器付き光検出装置の構成例を、図6に示す。図におい
て、8はベースであり、ベース8には、感光素子9と電
磁石21が固定されている。電磁石21は、励磁コイル
22を鉄心23に巻いたものである。24はアームであ
り、軸25を介してベース8に回動自在に取付けられて
いる。アーム24の一方の端には、感光素子9の上方を
覆うようにシャッタ26が固定されている。シャッタ2
6は平板の一部にスリット27を開けた物である。アー
ム24の反対の端部には、永久磁石28が固定され、鉄
心23と向かい合っている。励磁コイル22に通電しな
い時、永久磁石28は鉄心23に吸引されるので、アー
ム24は反時計周りに回転した位置にある。この時、ス
リット27が、感光素子8の真上に来て、上方からの入
射光が、感光素子8に入射する。励磁コイル22に永久
磁石28は鉄心23が反発するような方向に通電する
と、アーム24は時計周りに回転して、スリット27
が、感光素子8の真上から外れた位置に来るので、上方
からの入射光が遮断される。このように、この第2の従
来技術による光遮断器付き光検出装置では、図7に示す
ような、ON/OFF型の矩形波電流を励磁コイルに通
電して、シャッタを駆動している。
As a second prior art example which solves these problems, there has been proposed a photodetector provided with an optical circuit breaker driven by an electromagnet. FIG. 6 shows an example of the configuration of a photodetector with an optical circuit breaker according to the second prior art. In the figure, reference numeral 8 denotes a base, on which a photosensitive element 9 and an electromagnet 21 are fixed. The electromagnet 21 has an exciting coil 22 wound around an iron core 23. An arm 24 is rotatably attached to the base 8 via a shaft 25. A shutter 26 is fixed to one end of the arm 24 so as to cover above the photosensitive element 9. Shutter 2
Reference numeral 6 denotes a flat plate having a slit 27 formed in a part thereof. A permanent magnet 28 is fixed to the opposite end of the arm 24, and faces the iron core 23. When the excitation coil 22 is not energized, the permanent magnet 28 is attracted to the iron core 23, so that the arm 24 is at a position rotated counterclockwise. At this time, the slit 27 comes directly above the photosensitive element 8, and incident light from above enters the photosensitive element 8. When the permanent magnet 28 is energized to the exciting coil 22 in such a direction that the iron core 23 repels, the arm 24 rotates clockwise and the slit 27
Comes to a position deviated from directly above the photosensitive element 8, so that incident light from above is blocked. As described above, in the photodetector with an optical circuit breaker according to the second conventional technique, an ON / OFF type rectangular wave current as shown in FIG. 7 is supplied to the exciting coil to drive the shutter.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来技術で
は、ON/OFF型の矩形波電流を励磁コイルに通電し
て、永久磁石と励磁されていない鉄心の間の吸引力で、
シャッタを閉位置から開位置に駆動するので、駆動力が
弱く動作が不確実になるという問題があった。また、永
久磁石と鉄心の間の吸引力を強くするために、励磁コイ
ルに、逆方向の電流を通電する、すなわち図8に示すよ
うな、極性が交互に変わるような、矩形波電流を通電す
ると、常時通電することになるので、消費電力が多くな
るとともに、励磁コイルが発熱するという問題があっ
た。そこで、本発明は、開放または遮断状態を保持で
き、動作が確実で、消費電力が少ない光遮断器付き光検
出装置を提供することを目的とする。
However, in the prior art, an ON / OFF type rectangular wave current is supplied to the exciting coil, and the attractive force between the permanent magnet and the non-excited iron core is used.
Since the shutter is driven from the closed position to the open position, there is a problem that the driving force is weak and the operation becomes uncertain. Also, in order to increase the attractive force between the permanent magnet and the iron core, a current in the opposite direction is supplied to the exciting coil, that is, a rectangular wave current whose polarity alternates as shown in FIG. 8 is supplied. Then, since the power is always supplied, there is a problem that the power consumption increases and the exciting coil generates heat. Therefore, an object of the present invention is to provide a photodetector with an optical circuit breaker that can maintain an open or shut-off state, operates reliably, and consumes less power.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
に、本発明は、電磁石と、矩形波信号と前記矩形波信号
の立ち上がり下がりに同期した切り替え信号とを発振す
る矩形波発振器と、前記矩形波信号を増幅する増幅回路
と、前記矩形波信号を微分する疑似微分回路と、前記増
幅回路の出力と前記疑似微分回路の出力とを前記切り替
え信号により交互に切り換える信号切り替え回路と、前
記信号切り替え回路の出力に比例した電流を前記電磁石
に流す電力増幅器によってシャッタを駆動するものであ
る。
In order to solve the above problems, the present invention provides an electromagnet, a rectangular wave oscillator that oscillates a rectangular wave signal and a switching signal synchronized with rising and falling of the rectangular wave signal, An amplifier circuit for amplifying a rectangular wave signal; a pseudo-differential circuit for differentiating the rectangular wave signal; a signal switching circuit for alternately switching an output of the amplifier circuit and an output of the pseudo-differential circuit by the switching signal; The shutter is driven by a power amplifier that supplies a current proportional to the output of the switching circuit to the electromagnet.

【0006】[0006]

【発明の実施の形態】以下、本発明の第1の実施例を図
に基づいて説明する。光検出装置の機構自体は、前記第
2の従来技術による光遮断器付き光検出装置と同様なの
で、電気回路について説明する。図1は、本発明の実施
例を示す光検出装置の光遮断器の電気回路のブロック図
であり、図2はこの電気回路を流れる電気信号を示すタ
イムチャートである。図において、1は矩形波発振器で
あり、矩形波信号aと矩形波信号aの立ち上がり下がり
に同期した切り替え信号bを出力する。2は疑似微分回
路であり、矩形波信号aを受けて、矩形波信号aを時間
微分した波形の信号cを出力する。3は増幅回路であ
り、矩形波信号aを受けて、矩形波信号aを増幅した信
号a’を出力する。4は信号切り替え回路であり、矩形
波発振器1の切り替え信号bと、疑似微分回路2の出力
信号cと、増幅回路3の出力信号a’を受けて、前記切
り替え信号を入力する度に、疑似微分回路2の出力信号
cと、増幅回路3の出力信号a’を切り替えて、信号波
形dを作って出力する。5は電力増幅器であり、信号波
形dを増幅して、所要の電圧d’を得て、励磁コイル2
2に通電する。次に図2に基づいて、信号切り替え回路
4の出力波形dを説明する。T1で示した時間区間にお
いては、励磁コイル22には、永久磁石28と鉄心23
が反発するような方向に電流が流れ続け、永久磁石28
は鉄心23から離れ、シャッタ26は入射光を遮断する
位置にある。次のT2で示した時間区間では、励磁コイ
ル22に、永久磁石28と鉄心23が吸引するような方
向に電流が流れ、永久磁石23は大きな力で吸引され、
鉄心23に吸着され、シャッタ26は入射光を通過させ
る位置に動く。さらに次の時間区間T3では、電圧が0
になり、励磁コイル22には、電流が流れない。この
時、永久磁石28は、鉄心23を吸着して、シャッタ2
6を開放状態に保持し続ける。時間区間T2は、T1お
よびT2に比べて短い時間である。これは、閉鎖位置に
おいて、永久磁石28と鉄心23との距離が大きいの
で、励磁コイル22に通電しない状態では、永久磁石2
8と鉄心23との間に作用する吸引力は、軸25と軸受
の間の摩擦力より弱いので、起動時、すなわちT2の短
い区間だけ大きな力が必要だからである。永久磁石28
と鉄心23との距離が近くなると、励磁コイル22に通
電しなくても、前記摩擦力に打ち勝つだけの十分な吸引
力が得られる。 また時間区間T3において、電流を流
し続ければ、消費電力の不経済であり、また励磁コイル
22からの発熱が大きくなるという問題もある。なお、
矩形波発振器1で所要の特性の矩形波が得られるなら
ば、増幅回路3を省いて、矩形波発振器1の矩形波出力
を信号切り替え回路4に直接入力する構成も選択出来
る。また、矩形波発振器1で所要の電力が得られるなら
ば、電力増幅器5を省いた構成も選択できる。次に、本
発明の第2の実施例を図に基づいて説明する。光検出装
置の機構自体は、前記第1の実施例と同様なので、電気
回路について説明する。図3は、本発明の実施例を示す
光検出装置の光遮断器のブロック図である。図におい
て、1は任意のパターンの矩形波を発振する矩形波発振
器であり、例えば、任意の矩形波のパターンをデジタル
信号の形で入力し、半導体メモリーに記憶させ、随時、
このデジタル信号を読み出して、先に入力したパターン
の矩形波を発振するような、公知の技術で得られる装置
である。5は電力増幅器であり、信号矩形波発振器1の
出力を増幅して、所要の電圧を得て、励磁コイル22に
通電する。矩形波発振器1で所要の電力を得られるなら
ば、電力増幅器5を省いた構成も選択できる。図4に、
矩形波発振器1に入力する矩形波のパターンを示す。図
において、Ta,Tb,Tcは、それぞれ時間区間を示
し、まず、時間区間Taにおいては、鉄心23と永久磁
石28が反発し合う方向に電流が流れるように、一定の
電圧を保持する。次に時間区間Tbにおいては、鉄心2
3と永久磁石28が大きな力で引き合うように、時間区
間Taとは逆極性の電圧を発生させる。最後に時間区間
Tcにあっては、電圧を0にして、鉄心23を消磁す
る。このパターンを繰り返す矩形波を矩形発振器1で発
振させると、シャッタ26が閉位置から開位置に移動す
る短い時間だけ大きな吸引力を鉄心23と永久磁石28
の間で発生させるので、わずかな消費電力の増加で、シ
ャッタ26の動作を確実にできる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. Since the mechanism of the photodetector itself is the same as that of the photodetector with a light breaker according to the second prior art, an electric circuit will be described. FIG. 1 is a block diagram of an electric circuit of an optical circuit breaker of a photodetector showing an embodiment of the present invention, and FIG. 2 is a time chart showing electric signals flowing through the electric circuit. In the figure, reference numeral 1 denotes a rectangular wave oscillator which outputs a rectangular wave signal a and a switching signal b synchronized with rising and falling of the rectangular wave signal a. A pseudo-differential circuit 2 receives the rectangular wave signal a and outputs a signal c having a waveform obtained by time-differentiating the rectangular wave signal a. Reference numeral 3 denotes an amplifying circuit which receives the rectangular wave signal a and outputs a signal a 'obtained by amplifying the rectangular wave signal a. Reference numeral 4 denotes a signal switching circuit which receives a switching signal b of the rectangular wave oscillator 1, an output signal c of the pseudo differentiating circuit 2, and an output signal a 'of the amplifying circuit 3, and generates a pseudo signal every time the switching signal is inputted. The output signal c of the differentiating circuit 2 and the output signal a 'of the amplifying circuit 3 are switched to generate and output a signal waveform d. A power amplifier 5 amplifies the signal waveform d to obtain a required voltage d ',
2 is energized. Next, an output waveform d of the signal switching circuit 4 will be described with reference to FIG. In the time section indicated by T1, the exciting coil 22 includes the permanent magnet 28 and the iron core 23.
Current continues to flow in such a direction that
Is separated from the iron core 23, and the shutter 26 is at a position for blocking incident light. In the next time section indicated by T2, a current flows through the exciting coil 22 in such a direction as to attract the permanent magnet 28 and the iron core 23, and the permanent magnet 23 is attracted by a large force.
Adsorbed on the iron core 23, the shutter 26 moves to a position where the incident light passes. In the next time section T3, the voltage becomes 0.
, And no current flows through the exciting coil 22. At this time, the permanent magnet 28 attracts the iron core 23 and
6 is kept open. The time section T2 is a shorter time than T1 and T2. This is because the distance between the permanent magnet 28 and the iron core 23 is large in the closed position.
This is because the suction force acting between the shaft 8 and the iron core 23 is weaker than the frictional force between the shaft 25 and the bearing. Permanent magnet 28
When the distance between the coil 23 and the iron core 23 is short, a sufficient attractive force to overcome the frictional force can be obtained without energizing the exciting coil 22. In the time section T3, if the current continues to flow, power consumption is uneconomical, and the heat generated from the exciting coil 22 increases. In addition,
If a rectangular wave with required characteristics can be obtained by the rectangular wave oscillator 1, a configuration in which the amplifier circuit 3 is omitted and the rectangular wave output of the rectangular wave oscillator 1 is directly input to the signal switching circuit 4 can be selected. If the required power can be obtained by the rectangular wave oscillator 1, a configuration in which the power amplifier 5 is omitted can be selected. Next, a second embodiment of the present invention will be described with reference to the drawings. Since the mechanism of the photodetector is the same as that of the first embodiment, the electric circuit will be described. FIG. 3 is a block diagram of an optical circuit breaker of the photodetector according to the embodiment of the present invention. In the figure, reference numeral 1 denotes a rectangular wave oscillator that oscillates a rectangular wave of an arbitrary pattern. For example, an arbitrary rectangular wave pattern is input in the form of a digital signal, stored in a semiconductor memory, and
This is a device obtained by a known technique that reads out this digital signal and oscillates a rectangular wave of the previously input pattern. Reference numeral 5 denotes a power amplifier, which amplifies the output of the signal rectangular wave oscillator 1 to obtain a required voltage, and energizes the exciting coil 22. If the required power can be obtained by the square wave oscillator 1, a configuration in which the power amplifier 5 is omitted can be selected. In FIG.
2 shows a pattern of a rectangular wave input to the rectangular wave oscillator 1. In the figure, Ta, Tb, and Tc denote time sections, respectively. In the time section Ta, a constant voltage is maintained so that a current flows in a direction in which the iron core 23 and the permanent magnet 28 repel each other. Next, in the time section Tb, the core 2
A voltage having a polarity opposite to that of the time section Ta is generated so that the permanent magnet 3 and the permanent magnet 28 attract with a large force. Finally, in the time section Tc, the voltage is set to 0 and the iron core 23 is demagnetized. When a rectangular wave repeating this pattern is oscillated by the rectangular oscillator 1, a large attractive force is applied to the iron core 23 and the permanent magnet 28 for a short time during which the shutter 26 moves from the closed position to the open position.
Therefore, the operation of the shutter 26 can be ensured with a slight increase in power consumption.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、次
のような効果がある。 (1)電磁石が永久磁石を吸引する方向に通電するの
で、シャッタの動作がより確実になり、光検出装置の信
頼性が向上する。 (2)電磁石が永久磁石を吸引する方向に通電する時間
は短いので、消費電力が少なく、励磁コイルからの発熱
も小さいので、光検出装置を小形にできる。
As described above, according to the present invention, the following effects can be obtained. (1) Since the electromagnet is energized in the direction to attract the permanent magnet, the operation of the shutter is more reliable, and the reliability of the photodetector is improved. (2) Since the time during which the electromagnet is energized in the direction to attract the permanent magnet is short, the power consumption is small and the heat generated from the exciting coil is small, so that the photodetector can be downsized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す光遮断器の電気回
路のブロック図である。
FIG. 1 is a block diagram of an electric circuit of an optical circuit breaker according to a first embodiment of the present invention.

【図2】本発明の第1の実施例を示す光遮断器の電気信
号のタイムチャートである。
FIG. 2 is a time chart of an electric signal of the optical circuit breaker according to the first embodiment of the present invention.

【図3】本発明の第2の実施例を示す光遮断器の電気回
路のブロック図である。
FIG. 3 is a block diagram of an electric circuit of an optical circuit breaker according to a second embodiment of the present invention.

【図4】本発明の第2の実施例を示す光遮断器の電気信
号のタイムチャートである。
FIG. 4 is a time chart of an electric signal of an optical circuit breaker according to a second embodiment of the present invention.

【図5】従来技術の第1の例を示す光検出装置の斜視図
である。
FIG. 5 is a perspective view of a photodetector showing a first example of the prior art.

【図6】従来技術の第2の例を示す光検出装置の斜視図
である。
FIG. 6 is a perspective view of a photodetector showing a second example of the related art.

【図7】従来技術の第2の例を示す光遮断器の電気信号
のタイムチャートである。
FIG. 7 is a time chart of an electric signal of an optical circuit breaker showing a second example of the related art.

【図8】従来技術の第2の例を示す光遮断器の電気信号
のタイムチャートである。
FIG. 8 is a time chart of an electric signal of an optical circuit breaker showing a second example of the related art.

【符号の説明】[Explanation of symbols]

1:矩形波発振器 2:疑似微分回路 3:増幅回路 4:信号切り替え回路 5:電力増幅回路 8:ベース 9:感光素子 10:架台 11:圧電バイモルフ 12:スリット板 21:電磁石 22:励磁コイル 23:鉄心 24:軸 25:アーム 26:シャッタ 27:スリット 28:永久磁石 a:矩形波信号 a’:増幅回路の出力信号 b:切り替え信号 c:疑似微分回路の出力信号 d:信号切り替え回路の出力波形 d’:電力増幅器の出力電圧 H:入射光 1: square wave oscillator 2: pseudo differentiation circuit 3: amplification circuit 4: signal switching circuit 5: power amplification circuit 8: base 9: photosensitive element 10: mount 11: piezoelectric bimorph 12: slit plate 21: electromagnet 22: excitation coil 23 : Iron core 24: Axis 25: Arm 26: Shutter 27: Slit 28: Permanent magnet a: Rectangular wave signal a ': Output signal of amplifier circuit b: Switching signal c: Output signal of pseudo-differential circuit d: Output of signal switching circuit Waveform d ': output voltage of power amplifier H: incident light

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 入射光を検出する感光素子と、永久磁石
と電磁石の間に働く磁気反発力と磁気吸引力で駆動さ
れ、前記感光素子に入射する光線を周期的に遮断する光
遮断器とからなる光検出装置において、 矩形波信号と、前記矩形波信号の立ち上がりに同期した
切り替え信号とを発振する矩形波発振器と、前記矩形波
信号を微分する疑似微分回路と、前記矩形波信号と前記
疑似微分回路の出力とを前記切り替え信号により交互に
切り換える信号切り替え回路とを備えた光遮断器を有す
ることを特徴とする光検出装置。
1. A photosensitive element for detecting incident light, an optical circuit breaker driven by magnetic repulsion and magnetic attraction acting between a permanent magnet and an electromagnet, and periodically intercepting a light beam incident on the photosensitive element. A photodetector comprising: a rectangular wave signal; a rectangular wave oscillator that oscillates a switching signal synchronized with a rise of the rectangular wave signal; a pseudo-differential circuit that differentiates the rectangular wave signal; A photodetector, comprising: a light breaker provided with a signal switching circuit that alternately switches the output of a pseudo-differential circuit with the switching signal.
【請求項2】 入射光を検出する感光素子と、永久磁石
と電磁石の間に働く磁気反発力と磁気吸引力で駆動さ
れ、前記感光素子に入射する光線を周期的に遮断する光
遮断器とからなる光検出装置において、 矩形波信号と、前記矩形波信号の立ち上がりに同期した
切り替え信号とを発振する矩形波発振器と、前記矩形波
信号を微分する疑似微分回路と、前記矩形波信号と前記
疑似微分回路の出力とを前記切り替え信号により交互に
切り換える信号切り替え回路と、前記信号切り替え回路
の出力に比例した電流を前記電磁石に流す電力増幅器と
を備えた光遮断器を有することを特徴とする光検出装
置。
2. A photosensitive element for detecting incident light, an optical circuit breaker driven by a magnetic repulsive force and a magnetic attractive force acting between a permanent magnet and an electromagnet, and periodically intercepting a light beam incident on the photosensitive element. A photodetector comprising: a rectangular wave signal; a rectangular wave oscillator that oscillates a switching signal synchronized with a rise of the rectangular wave signal; a pseudo-differential circuit that differentiates the rectangular wave signal; An optical circuit breaker comprising: a signal switching circuit that alternately switches the output of a pseudo-differential circuit by the switching signal; and a power amplifier that causes a current proportional to the output of the signal switching circuit to flow through the electromagnet. Photodetector.
【請求項3】 入射光を検出する感光素子と、永久磁石
と電磁石の間に働く磁気反発力と磁気吸引力で駆動さ
れ、前記感光素子に入射する光線を周期的に遮断する光
遮断器とからなる光検出装置において、 任意の波形の矩形波信号を発振する矩形波発振器を備え
た光遮断器を有することを特徴とする光検出装置。
3. A photosensitive element for detecting incident light, an optical circuit breaker driven by a magnetic repulsive force and a magnetic attractive force acting between a permanent magnet and an electromagnet, and periodically intercepting a light beam incident on the photosensitive element. A light detecting device comprising: a light interrupter provided with a rectangular wave oscillator that oscillates a rectangular wave signal having an arbitrary waveform.
【請求項4】 入射光を検出する感光素子と、永久磁石
と電磁石の間に働く磁気反発力と磁気吸引力で駆動さ
れ、前記感光素子に入射する光線を周期的に遮断する光
遮断器とからなる光検出装置において、 任意の波形の矩形波信号を発振する矩形波発振器と、前
記矩形波発振器の出力に比例した電流を前記電磁石に流
す電力増幅器とを備えた光遮断器を有することを特徴と
する光検出装置。
4. A photosensitive element for detecting incident light, an optical circuit breaker driven by a magnetic repulsive force and a magnetic attractive force acting between a permanent magnet and an electromagnet, and periodically intercepting a light beam incident on the photosensitive element. An optical detector comprising: a rectangular wave oscillator that oscillates a rectangular wave signal having an arbitrary waveform; and a power amplifier that includes a power amplifier that causes a current proportional to the output of the rectangular wave oscillator to flow through the electromagnet. Characteristic photodetector.
【請求項5】 前記波形は、一定時間、一定電圧を保持
し、次に短時間、逆電圧に転じ、また次に零電圧を一定
時間保持し、再び最初の電圧に戻るサイクルを繰り返す
ことを特徴とする請求項3または請求項4に記載の光検
出装置。
5. The waveform repeats a cycle of holding a constant voltage for a certain period of time, then turning to reverse voltage for a short period of time, then holding zero voltage for a certain period of time, and returning to the initial voltage again. The photodetector according to claim 3 or 4, wherein
JP9178903A 1997-06-18 1997-06-18 Photodetector Pending JPH1114453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9178903A JPH1114453A (en) 1997-06-18 1997-06-18 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9178903A JPH1114453A (en) 1997-06-18 1997-06-18 Photodetector

Publications (1)

Publication Number Publication Date
JPH1114453A true JPH1114453A (en) 1999-01-22

Family

ID=16056709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9178903A Pending JPH1114453A (en) 1997-06-18 1997-06-18 Photodetector

Country Status (1)

Country Link
JP (1) JPH1114453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171468A1 (en) * 2019-02-18 2020-08-27 Samsung Electronics Co., Ltd. Wearable electronic device including biometric sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171468A1 (en) * 2019-02-18 2020-08-27 Samsung Electronics Co., Ltd. Wearable electronic device including biometric sensor
US11540736B2 (en) 2019-02-18 2023-01-03 Samsung Electronics Co., Ltd. Wearable electronic device including biometric sensor

Similar Documents

Publication Publication Date Title
DE69833214D1 (en) BARCODE SYMBOL READING SYSTEM
US10866405B2 (en) Shutter for laser modulation
JPH1114453A (en) Photodetector
KR100702167B1 (en) Driving device and light-amount adjusting device provided with the same
US5020042A (en) Apparatus for selectively inverting a magnetic bias field using a rod-shaped permanent magnet surrounded with an electrically conductive damping means
JPH0682711A (en) Driving device of scanning mirror
JPH1114454A (en) Photodetector
JP4254220B2 (en) Electromagnetic actuator and mechanical quantity sensor
KR100376007B1 (en) Self-excited vibration type vibration device with electromagnet
JP2005181395A (en) Light deflector
JP3641346B2 (en) Self-holding rotary solenoid
JPH0886968A (en) Light shutting-off device
JP3792644B2 (en) Scan motor and scan motor control method
JPH06346921A (en) Optical scanning device
JP2001356387A (en) Electromagnetic driving device, electromagnetically driven light quantity controller and optical device incorporating the same electromagnetic driving device
JP3618804B2 (en) Light control device
JPS62113130A (en) Shutter device for camera
JP2878752B2 (en) Magnetic field generator
JPH02244441A (en) Magneto-optical recording medium and magneto-optical recording system
JP3249872B2 (en) Dustproof shutter device
JP2840997B2 (en) Apparatus and method for erasing entire surface of magneto-optical disk medium
JPH1082957A (en) Light interrupter
JP3137501B2 (en) Magnetic field application device
JPH05300771A (en) Thermomagnetically driven actuator and bistable type switch
JP2925418B2 (en) Light control device