JPH02244441A - Magneto-optical recording medium and magneto-optical recording system - Google Patents

Magneto-optical recording medium and magneto-optical recording system

Info

Publication number
JPH02244441A
JPH02244441A JP6365089A JP6365089A JPH02244441A JP H02244441 A JPH02244441 A JP H02244441A JP 6365089 A JP6365089 A JP 6365089A JP 6365089 A JP6365089 A JP 6365089A JP H02244441 A JPH02244441 A JP H02244441A
Authority
JP
Japan
Prior art keywords
film
magneto
magnetic
optical recording
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6365089A
Other languages
Japanese (ja)
Other versions
JP2875276B2 (en
Inventor
Toshio Niihara
敏夫 新原
Norio Ota
憲雄 太田
Jiichi Miyamoto
治一 宮本
Yoshio Suzuki
良夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13235438&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02244441(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1063650A priority Critical patent/JP2875276B2/en
Publication of JPH02244441A publication Critical patent/JPH02244441A/en
Application granted granted Critical
Publication of JP2875276B2 publication Critical patent/JP2875276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize and simplify means for impressing magnetic fields by providing a magnetic film having perpendicular magnetic anisotropy and a spin rearrangeable film on a transparent substrate. CONSTITUTION:The magnetic film 4 having the perpendicular magnetic anisotropy and the spin rearrangeable film 3 are provided on the transparent substrate 1. Since the spin rearrangeable film 3 assists the magnetization inversion of the magnetic film 4, information can be recorded with the small magnetic field. Namely, the magnetic field to be impressed at the time of recording and erasing in optical modulation recording to modulate the intensity of laser light can be made small, the decrease of the number of turns of an electromagnetic coil and driving current for generating the magnetic field and the use of an inexpensive permanent magnet are possible. Contribution is made in this way to the miniaturization, simplification and cost reduction of the magneto- optical recording device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ光を用い、外部より磁界を印加して記録
を行なう光磁気記録媒体およびそれを用いて記録方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium in which recording is performed by using a laser beam and applying a magnetic field from the outside, and a recording method using the same.

〔従来の技術〕[Conventional technology]

垂直磁気異方性を有する磁性膜を用いる光磁気記録媒体
では、磁性膜の磁化の向きを情報の“1″パ0”に対応
させるために、記録のみならず消去・再記録が可能であ
る。
In a magneto-optical recording medium that uses a magnetic film with perpendicular magnetic anisotropy, it is possible to not only record but also erase and re-record in order to make the direction of magnetization of the magnetic film correspond to the information "1" pa 0. .

光磁気記録媒体に記録を行なう時、レーザ光による熱エ
ネルギーと磁界とを同時に該光磁気記録媒体に与える。
When recording on a magneto-optical recording medium, thermal energy from a laser beam and a magnetic field are simultaneously applied to the magneto-optical recording medium.

磁界としては一般に数百エルステッド必要であり、電磁
コイル、永久磁石が磁界印加手段として用いられる。し
かしながら、電磁コイルを用いて数百エルステッドの磁
界を発生させるためには、コイルの巻数が多くなったり
大電流を駆動する電源が必要となったりするため、光磁
気記録装置が大型化・複雑化する。また、永久磁石を用
いたときには、強力な磁界を得るために高性能な永久磁
石を採用しなければならず、このため価格が高い永久磁
石を使用することになり不利である。
The magnetic field generally requires several hundred oersteds, and an electromagnetic coil or a permanent magnet is used as the magnetic field applying means. However, in order to generate a magnetic field of several hundred Oersteds using an electromagnetic coil, the number of turns in the coil increases and a power source that drives a large current is required, making the magneto-optical recording device larger and more complex. do. Furthermore, when permanent magnets are used, high-performance permanent magnets must be used in order to obtain a strong magnetic field, which is disadvantageous because expensive permanent magnets are used.

当然のことながら、前記磁界印加手段を光磁気記録媒体
に近づけることにより、より大きな磁界を得ることがで
きる。この種の磁界印加手段としては、たとえば特開昭
63−204532に磁気ヘッドを用いる旨の記載があ
る。しかしながら、磁界印加手段を光磁気記録媒体に近
づけることは、電磁コイルの巻き数や駆動電流を低減し
光磁気記録装置の小型化・単純化を寄与することにはな
るが、光磁気記録媒体と磁界印加手段との接触、摩耗、
クラッシュ等の新たな問題を生じることになる。
Naturally, a larger magnetic field can be obtained by bringing the magnetic field applying means closer to the magneto-optical recording medium. As this type of magnetic field applying means, for example, Japanese Patent Laid-Open No. 63-204532 describes the use of a magnetic head. However, bringing the magnetic field applying means closer to the magneto-optical recording medium reduces the number of turns of the electromagnetic coil and the drive current, contributing to miniaturization and simplification of the magneto-optical recording device. Contact with magnetic field application means, abrasion,
This will cause new problems such as crashes.

これらの結果から考えると、磁界印加手段を小型化・単
純化し、かつ、磁気ヘッド方式のようにヘッド・媒体の
接触又は近接配置のような制約を受けることのないよう
にするには、媒体構成に何らかの工夫が必要である。
Considering these results, in order to miniaturize and simplify the magnetic field application means, and to avoid the constraints of the magnetic head method such as contact or close arrangement of the head and medium, it is necessary to improve the medium configuration. Some kind of ingenuity is required.

このような観点から、たとえば、特開昭63−1520
50に光誘起性磁性膜を設ける旨の記載がある。
From this point of view, for example, Japanese Patent Application Laid-Open No. 63-1520
No. 50 states that a photo-induced magnetic film is provided.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、レーザ光が照射された部分で光誘起
性磁性膜が磁化し、磁界発生手段により発生した磁束が
この部分に集中するとしている。
In the above-mentioned conventional technology, the photo-induced magnetic film is magnetized in the portion irradiated with the laser beam, and the magnetic flux generated by the magnetic field generating means is concentrated in this portion.

ところがこのような光誘起性の磁性が発現するのは一般
に液体窒素温度以下の極低温であり、室温近傍で用いる
光磁気記録媒体として実際に効力を発揮するものではな
い。
However, such photo-induced magnetism is generally expressed at extremely low temperatures below the temperature of liquid nitrogen, and is not actually effective as a magneto-optical recording medium used near room temperature.

本発明の目的は、磁界印加手段を小型化・単純化でき、
かつ、磁気ヘッド方式のようにヘッド・媒体の接触又は
近接配置のような制約を受けることがないような光磁気
記録媒体であり、しかも、通常の温度で有効に動作する
ような光磁気記録媒体を提供することにある。
An object of the present invention is to miniaturize and simplify the magnetic field applying means,
Moreover, it is a magneto-optical recording medium that is not subject to restrictions such as contact or close arrangement of the head and medium as in the magnetic head method, and moreover, a magneto-optical recording medium that operates effectively at normal temperatures. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明では、透明基板上に垂
直磁気異方性を有する磁性膜と、スピン再配列性膜とを
設けたことを特徴としている。
In order to achieve the above object, the present invention is characterized in that a magnetic film having perpendicular magnetic anisotropy and a spin realignment film are provided on a transparent substrate.

上記透明基板としてはガラス、紫外線硬化樹脂。The transparent substrate mentioned above is glass or ultraviolet curing resin.

ポリカーボネート(P(:)tポリメチルメタクリレー
ト(PMMA)、などが用いられる。
Polycarbonate (P(:)t polymethyl methacrylate (PMMA), etc.) is used.

垂直磁気異方性を有する磁性膜としては、C0−Cr、
Fa−Cr、Go−Cooなどの結晶合金や希土類と遷
移金属とからなる非晶質合金を用いる。ここで希土類と
してはLa、Ca、)’r。
As the magnetic film having perpendicular magnetic anisotropy, C0-Cr,
A crystalline alloy such as Fa-Cr or Go-Coo or an amorphous alloy made of a rare earth and a transition metal is used. Here, the rare earths include La, Ca, )'r.

Nd、Pm、Sm、Eu、Gd、 Tb、Dy。Nd, Pm, Sm, Eu, Gd, Tb, Dy.

Ho、Er、Tm、Yb、Lu、Hfの元素であり、遷
移金属としてはF’ e 、 G o 、 N i 、
 S a 。
The elements are Ho, Er, Tm, Yb, Lu, and Hf, and the transition metals include F' e , G o , N i ,
Sa.

’l’i、V、Cr、Mn、cu、Y、Zr、Nb。'l'i, V, Cr, Mn, cu, Y, Zr, Nb.

Mo、Ru、Rh、Pd、Ag、Hf、’l’a、W。Mo, Ru, Rh, Pd, Ag, Hf, 'l'a, W.

Re、Os、Ir、Pt、Auそして希土類と遷移金属
とからなる非晶質合金としては、Tb−F e −G 
o 、 G d −T b −F e 、 T b −
D y −G  o  、   D  y  −F  
e  −G  o  、   N  d  −T  b
  −ド e −Go、 P r−Tb−F e−Go
、 Tb−F e −G o −N b 、 T b 
−F e −G o −Cr 、 G d −F a 
−Co −P tなどを用いる。
Examples of amorphous alloys made of Re, Os, Ir, Pt, Au, rare earths, and transition metals include Tb-Fe-G
o, Gd-Tb-Fe, Tb-
D y -G o , D y -F
e −G o , N d −T b
-do e -Go, P r-Tb-F e-Go
, Tb-Fe-Go-Nb, Tb
-F e -G o -Cr, G d -F a
-Co-Pt etc. are used.

またスピン再配列性膜としては、鉄ボレートFe5BO
sや希土類オルソフェライトRF a Oaあるいは希
土類−Co化合物R−Goなどが用いられる。ここにR
は前述の希土類元素群から選ばれた少なくとも一つの希
土類元素を表わす。
In addition, as a spin rearrangement film, iron borate Fe5BO
s, rare earth orthoferrite RF a Oa, or rare earth-Co compound R-Go. R here
represents at least one rare earth element selected from the aforementioned rare earth element group.

磁性膜やスピン再配列性膜の作製には、スパッタ法、蒸
着法、 CVD (Chemical Vaporl)
aposition)法、イオンブレーティング法など
を用いる。
Magnetic films and spin realignment films can be produced using sputtering, vapor deposition, or CVD (Chemical Vaporl).
aposition method, ion blating method, etc. are used.

本発明においては、磁化方向が90°回転するスピン再
配列現象を利用することが好ましい。
In the present invention, it is preferable to utilize a spin rearrangement phenomenon in which the magnetization direction is rotated by 90 degrees.

垂直磁気異方性を有する磁性膜とスピン再配列性膜とが
設けられた光磁気記録媒体に一定強度のレーザ光あるい
は磁界を印加しつつ、極性が変調された磁界あるいは強
度が変調されたレーザ光を印加することにより記録を行
なう方式が好ましい、・〔作用〕 スピン再配列とは磁性体の磁気モーメント(スピン)の
配列状態が、温度によって変化する現象である0本発明
においては、磁化方向が90”回転するスピン再配列現
象を利用することが好ましい、レーザ光が照射されない
か、あるいはレーザ光のパワーが弱いときには、スピン
再配列性膜の磁化は膜面内を向いている0強いレーザ光
が照射され、スピン再配列が生じる温度(スピン再配列
温度)以上に熱せられると磁化は90°回転し膜面に垂
直な方向を向く、このときの磁化は2つの向きを取り得
るが磁界印加手段から発生する磁界方向にならう、しか
も必要な磁界は極く小さい。
Applying a laser beam or magnetic field of constant intensity to a magneto-optical recording medium provided with a magnetic film having perpendicular magnetic anisotropy and a spin realignment film, while applying a magnetic field or a laser whose polarity is modulated or whose intensity is modulated. A method of recording by applying light is preferable. [Operation] Spin rearrangement is a phenomenon in which the arrangement state of the magnetic moments (spins) of a magnetic material changes depending on the temperature. In the present invention, the magnetization direction It is preferable to use the spin realignment phenomenon in which the spins rotate by 90". When the laser light is not irradiated or the power of the laser light is weak, the magnetization of the spin realignable film is oriented in the film plane. When irradiated with light and heated above the temperature at which spin rearrangement occurs (spin rearrangement temperature), the magnetization rotates 90 degrees and points in a direction perpendicular to the film surface. At this time, the magnetization can take two orientations, but the magnetic field It follows the direction of the magnetic field generated from the application means, and the required magnetic field is extremely small.

このスピン再配列性膜の磁化から発生する磁界と。The magnetic field generated from the magnetization of this spin-reordering film.

磁界印加手段から生じる磁界とが、重置磁気異方性を有
する磁性膜に対するバイアス磁界として作用する0強い
レーザ光の照射により該磁性膜の保磁力は低下している
から、前記バイアス磁界の方向にその磁化は向く。
The magnetic field generated from the magnetic field applying means acts as a bias magnetic field for the magnetic film having superposed magnetic anisotropy.Since the coercive force of the magnetic film is reduced by the irradiation with strong laser light, the direction of the bias magnetic field is Its magnetization is directed towards.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

〔実施例1〕 第1図は本発明になる光磁気記録媒体6である。[Example 1] FIG. 1 shows a magneto-optical recording medium 6 according to the present invention.

ポリカーボネート基板1上には、窒化シリコン膜2、N
d−Goスピン再配列性膜3.’l’b−Fe−Co−
Nb磁性![4,窒化シリコン膜5がスパッタリングに
より積層されている。
On the polycarbonate substrate 1, a silicon nitride film 2, N
d-Go spin rearrangement film 3. 'l'b-Fe-Co-
Nb magnetic! [4, Silicon nitride film 5 is laminated by sputtering.

第2図は、第1図の構成になる光磁気記録媒体6の磁性
膜4に情報を記録する方式である。レーザ光源7から出
たレーザ光12はコリメートレンズ8により平行光束と
なり、集光レンズ9を通過した後、光磁気記録媒体6に
入射する。
FIG. 2 shows a method for recording information on the magnetic film 4 of the magneto-optical recording medium 6 having the structure shown in FIG. Laser light 12 emitted from laser light source 7 is turned into a parallel beam by collimating lens 8 , passes through condensing lens 9 , and then enters magneto-optical recording medium 6 .

入射したレーザ光12はNd−Goスピン再配列性膜3
とT b −F e −G o −N b磁性ls4を
加熱する。このレーザ光12の強度は一定に保ったまま
、情帽信号10で電磁コイル11を励磁し、変調磁界1
3を光磁気記録媒体6に印加する。以下にはこの記録方
式による記録原理を述べる。
The incident laser beam 12 is transmitted to the Nd-Go spin realignment film 3.
and T b -F e -G o -N b magnetic ls4 is heated. While the intensity of this laser beam 12 is kept constant, the electromagnetic coil 11 is excited by the magnetic signal 10, and the modulated magnetic field 1
3 is applied to the magneto-optical recording medium 6. The recording principle of this recording method will be described below.

第3図は、レーザ光12により加熱されるNd−Goス
ピン再配列性膜3の温度に対する磁化14の裏面に垂直
な方向成分Haを示したものである。温度が150℃以
下では磁化14は面内を向いているためM c = O
であるが150℃以上では磁化14は膜面に垂直方向を
向くためMeはある値をもつようになる。つまり、スピ
ン再配列温度は150℃である。
FIG. 3 shows the direction component Ha of the magnetization 14 perpendicular to the back surface with respect to the temperature of the Nd--Go spin realignment film 3 heated by the laser beam 12. When the temperature is below 150°C, the magnetization 14 is oriented in the plane, so M c = O
However, at temperatures above 150° C., the magnetization 14 is oriented perpendicular to the film surface, so Me has a certain value. That is, the spin rearrangement temperature is 150°C.

第4図から第8図は、レーザ光12により加熱されるN
d −G oスピン再配列性膜3の磁化14と’I’ 
b −F a −G o −N b磁性膜4の磁化15
の向きを説明する図である。
4 to 8 show N heated by the laser beam 12.
Magnetization 14 and 'I' of d-Go spin realignment film 3
b -F a -G o -N b Magnetization 15 of magnetic film 4
FIG.

第4図に示すように室温においては゛l″b−Fa−C
o−Nb磁性!lI4は磁化15が下向きになるように
着磁されている* N d −G oスピン再配列性W
i3の磁化14は面内である。第5図のようにレーザ光
12を照射し上向きの変調磁界13が印加されると、レ
ーザ光12で照射されたスピン再配列性膜3の領域はス
ピン再配列温度以上になり、その磁化14は上を向く。
As shown in Figure 4, at room temperature,
o-Nb magnetism! lI4 is magnetized so that the magnetization 15 is directed downward *N d -G o spin rearrangement property W
The magnetization 14 of i3 is in-plane. When a laser beam 12 is irradiated and an upward modulating magnetic field 13 is applied as shown in FIG. looks up.

磁性膜4の磁化15は、スピン再配列性膜3の磁化14
から受ける静磁界あるいは磁気的交換結合力により、ス
ピン再配列性膜3の磁化14と同じ方向、すなわち上向
きとなる。
The magnetization 15 of the magnetic film 4 is the same as the magnetization 14 of the spin realignment film 3.
Due to the static magnetic field or magnetic exchange coupling force received from the magnetic field, the magnetization 14 of the spin realigning film 3 is directed in the same direction as the magnetization 14, that is, upward.

第6図のようにレーザ光12の照射が終了すると、スピ
ン再配列性膜3はスピン再配列温度以下に冷却し、その
磁化14は再び面内を向く、磁性g4の保磁力は周Sa
a度付近では充分大きいため磁化反転領域16の磁化1
5は上を向いたままである。すなわち、磁性膜4の中に
磁化反転領域16が形成される。
As shown in FIG. 6, when the irradiation of the laser beam 12 is completed, the spin reorientation film 3 is cooled below the spin reorientation temperature, its magnetization 14 is again directed in-plane, and the coercive force of the magnetic g4 is
Since it is sufficiently large near a degree, the magnetization of the magnetization reversal region 16 is 1.
5 remains facing upwards. That is, a magnetization reversal region 16 is formed in the magnetic film 4.

第7図のように磁化反転領域16に再びレーザ光12が
照射され、下向きの変調磁界13が印加されると、スピ
ン再配列性膜3の磁化14は下を向く、磁性膜4の磁化
15は前述した理由により今度は下向きとなる。第8図
のようにレーザ光12の照射が終了すると、スピン再配
列性膜3の磁化14は再び面内を向き、磁性膜4の磁化
15は全て下向きとなる。すなわち、磁化反転領域16
が消滅したことになる。
As shown in FIG. 7, when the magnetization reversal region 16 is again irradiated with the laser beam 12 and a downward modulating magnetic field 13 is applied, the magnetization 14 of the spin realigning film 3 turns downward, and the magnetization 15 of the magnetic film 4 turns downward. is now downward due to the reasons mentioned above. As shown in FIG. 8, when the irradiation with the laser beam 12 is completed, the magnetization 14 of the spin realigning film 3 is directed in-plane again, and the magnetization 15 of the magnetic film 4 is all directed downward. That is, the magnetization reversal region 16
has disappeared.

なお、電磁コイル11のかわりに、磁気ヘッドや永久磁
石を用いて磁界を印加してもよい。
Note that instead of the electromagnetic coil 11, a magnetic head or a permanent magnet may be used to apply the magnetic field.

[実施例2] 第9図は本発明になる他の実施例であり、光磁気記録媒
体27が以下のように構成される。ガラス基板34上に
は、光スポットの案内溝形成用の紫外線硬化樹脂17が
約30μm形成されている。
[Embodiment 2] FIG. 9 shows another embodiment of the present invention, in which the magneto-optical recording medium 27 is configured as follows. On the glass substrate 34, an ultraviolet curing resin 17 for forming a guide groove for a light spot is formed to a thickness of about 30 μm.

その上には窒化アルミニウム膜18が800人、G d
 −Tb −F” e −Co磁性膜19が800人、
Fe5BO*スピン再配列性膜20が500人、窒化ア
ルミニウム膜21が1000人だけスパッタリングによ
り形成されている。
On top of that, there is an aluminum nitride film 18, G d
-Tb -F" e -Co magnetic film 19 for 800 people,
The Fe5BO* spin realignment film 20 was formed by sputtering by 500 people, and the aluminum nitride film 21 by 1000 people.

[実施例3] 第10図は上記媒体27を用いた情報記録システムの構
成図である0、光磁気記録装置27は、スピンドル31
に取付けられ、モータ30により一定回転数で回転して
いる。半導体レーザ22から出たレーザ光23は、コリ
メートレンズ24により平行光となった後、偏光ビーム
スプリッタ25を透過して絞り込みレンズ26により直
径1μm程度の大きさに絞られて、光磁気記録媒体27
に照射される。光磁気記録媒体27の、レーザ光23が
入射する面の反対面側には永久磁石32が配置されてい
る。光磁気記録媒体27に入射し、そして反射したレー
ザ光23は、偏光ビームスプリッタ25に入射後横方向
にけり出され、検光子28を通って光検出子29に入射
する。
[Embodiment 3] FIG. 10 is a configuration diagram of an information recording system using the medium 27 described above.
The motor 30 rotates at a constant rotation speed. The laser beam 23 emitted from the semiconductor laser 22 is turned into parallel light by the collimating lens 24, and then transmitted through the polarizing beam splitter 25 and narrowed down to a diameter of about 1 μm by the focusing lens 26.
is irradiated. A permanent magnet 32 is arranged on the side of the magneto-optical recording medium 27 opposite to the surface on which the laser beam 23 is incident. The laser beam 23 that is incident on the magneto-optical recording medium 27 and reflected is laterally kicked out after being incident on the polarizing beam splitter 25, passes through the analyzer 28, and enters the photodetector 29.

磁性膜19は第11図に示すようにフェリ磁性体であり
、GdやTbの希土類の副格子磁化35と、FaやCo
の遷移金属の副格子磁化34とからなる。永久磁石32
の光磁気記録媒体27に近い面はN極となっているため
、外部磁界33は永久磁石32から磁性膜19へ向かう
ように印加されている。
The magnetic film 19 is a ferrimagnetic material as shown in FIG.
The sublattice magnetization 34 of the transition metal. Permanent magnet 32
Since the surface near the magneto-optical recording medium 27 is the north pole, the external magnetic field 33 is applied from the permanent magnet 32 toward the magnetic film 19 .

半導体レーザ22は、記録時に、強パワーレベル37と
中パワーレベル36の2つの強度で発光する。各々の発
光強渡に対応してスピン再配列性膜20は第3図中のT
s 、Txの温度まで加熱される。いま、中パワーレベ
ル36のレーザ光23が光磁気記録媒体27に照射され
ると、第12図のように、その部分の磁性膜19の湿度
が上昇し。
The semiconductor laser 22 emits light at two intensities, a strong power level 37 and a medium power level 36, during recording. Corresponding to each light emission transient, the spin realignment film 20 is rotated at T in FIG.
s, heated to a temperature of Tx. Now, when the laser beam 23 of medium power level 36 is irradiated onto the magneto-optical recording medium 27, the humidity of the magnetic film 19 in that area increases as shown in FIG.

保磁力が低下するため、外部磁界33の方向に磁性膜の
正味の磁化が向く、シたがって磁化反転領域16が形成
される。このとき、スピン再配列性1!120の温度は
Tzまでしか上昇せず、磁化は面吐き向いたままである
ため、磁性膜19とスピン再配列性膜20との間には磁
気的結合力は作用しない。
Since the coercive force is reduced, the net magnetization of the magnetic film is directed in the direction of the external magnetic field 33, thus forming a magnetization reversal region 16. At this time, the temperature of the spin realignment property 1!120 rises only to Tz, and the magnetization remains in the plane-oriented direction, so there is no magnetic coupling force between the magnetic film 19 and the spin realignment film 20. Doesn't work.

一方強パワーレベル37のレーザ光23が光磁気媒体2
7に照射されると、第13図のように。
On the other hand, a laser beam 23 with a strong power level 37 is applied to the magneto-optical medium 2.
7, as shown in Figure 13.

その部分のスピン再配列性膜20は′工゛工の温度まで
上昇し、外部磁界33と同じ方向の磁化を発生する。こ
の磁化はもともとF a原子の磁気モーメントに由来す
るため、磁性膜19の遷移金属の副格子磁化34と磁気
的に結合する。このため磁性膜19の正味の磁化は下向
きとなり、外部磁界33の方向とは反対方向となる。こ
のようにして磁化反転領域16は消滅する。すなわち、
レーザ光23の強度レベルによって、情報をオーバライ
ドすることができる。
The spin reorienting film 20 in that part rises to the temperature of the process and generates magnetization in the same direction as the external magnetic field 33. Since this magnetization originally originates from the magnetic moment of F a atoms, it is magnetically coupled to the sublattice magnetization 34 of the transition metal of the magnetic film 19 . Therefore, the net magnetization of the magnetic film 19 is directed downward and in the opposite direction to the direction of the external magnetic field 33. In this way, the magnetization reversal region 16 disappears. That is,
Information can be overridden by the intensity level of the laser light 23.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スピン再配列性膜3が磁性膜4の磁化
反転を助けるため、小さな磁界で情報を記録できる。す
なわち、レーザ光の強度を変調するいわゆる光変調記録
においては、記録や消去時における印加磁界を小さくで
きるため、磁界を発生するための電磁コイルの巻き数や
駆動電流を低減したり、安価な永久磁石を使用したりで
きるため光磁気記録装置の小型化、単純化、低価格化に
寄与することができる。また磁界強度を変調するいわゆ
る磁界変調記録においては、変調に要する磁界強度を小
さくすることができるので、磁界印加手段として磁気ヘ
ッドを用いた場合には、光磁気記録媒体から充分な距離
だけ該磁気ヘッドを離して配置することができるため、
ヘッドと媒体との接触や衝突等を防ぐことができる。
According to the present invention, since the spin realignment film 3 helps the magnetization reversal of the magnetic film 4, information can be recorded with a small magnetic field. In other words, in so-called optical modulation recording, which modulates the intensity of laser light, it is possible to reduce the applied magnetic field during recording and erasing. Since magnets can be used, it can contribute to miniaturization, simplification, and cost reduction of magneto-optical recording devices. In addition, in so-called magnetic field modulation recording that modulates the magnetic field strength, the magnetic field strength required for modulation can be reduced, so when a magnetic head is used as the magnetic field application means, the magnetic field can be applied at a sufficient distance from the magneto-optical recording medium. Because the heads can be placed apart,
Contact and collision between the head and the medium can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第9図は本発明になる光磁気記録媒体の断面図
、第2図、第10図は1本発明になる光磁気記録媒体に
情報を記録する装置の概略構成を示す模式図、第3図は
スピン再配列性膜の温度。 磁化特性の説明図、第4図から第8図までおよび・第1
1図から第13図までは、本発明になる光磁気記録媒体
の記録、消去動作の説明図である。 1.34・・・基板、3,20・・・スピン再配列性膜
、4.19・・・磁性膜、6,27・・・光磁気記録媒
体、7・・・レーザ光源、10・・・情報信号、11・
・・電磁コイル、13・・・変調磁界、14.15・・
・磁化、16・・・磁化反転領域、22・・・半導体レ
ーザ、25・・・偏光ビームスプリッタ、26・・・絞
り込みレンズ。 32・・・永久磁石、34・・・遷移金属の元素、35
・・・亭 凹 亭 図 茅 国 ム 巻林、 入ピン再記y11今!膿 孟a膿 〔墳氏覚本い泉jト 茅4m 第 閃 茅 凹 基11腰 ス(ン#)llJ’l憔4臭 2″r 先盾λに刑小
1 and 9 are cross-sectional views of a magneto-optical recording medium according to the present invention, and FIGS. 2 and 10 are schematic diagrams showing a schematic configuration of an apparatus for recording information on a magneto-optical recording medium according to the present invention. , Figure 3 shows the temperature of the spin-reordering film. Explanatory diagrams of magnetization characteristics, Figures 4 to 8 and 1
1 to 13 are explanatory diagrams of recording and erasing operations of the magneto-optical recording medium according to the present invention. 1.34...Substrate, 3,20...Spin realignment film, 4.19...Magnetic film, 6,27...Magneto-optical recording medium, 7...Laser light source, 10...・Information signal, 11・
...Electromagnetic coil, 13...Modulated magnetic field, 14.15...
- Magnetization, 16... Magnetization reversal region, 22... Semiconductor laser, 25... Polarizing beam splitter, 26... Stopping lens. 32... Permanent magnet, 34... Transition metal element, 35
...Tei-Ko-tei-zu Kayakuni Makirin, re-recorded the pin y11 now! pus meng a pus [funji kakumoto iizumi j tomo 4 m 1st flashing concave base 11 waist (n#)ll J'l 4 odor 2″r vanguard λ and punishment

Claims (1)

【特許請求の範囲】 1、透明基板上に、垂直磁気異方性を有する磁性膜と、
スピン再配列性膜とが設けられていることを特徴とする
光磁気記録媒体。 2、垂直磁気異方性を有する磁性膜が、希土類と遷移金
属とからなることを特徴とする、特許請求の範囲第1項
記載の光磁気記録媒体。 3、スピン再配列性膜の磁化方向が90°回転すること
を特徴とする、特許請求の範囲第1項あるいは第2項記
載の光磁気記録媒体。 4、垂直磁気異方性を有する磁性膜とスピン再配列性膜
とが設けられた光磁気記録媒体に一定強度のレーザ光を
印加しつつ、極性が変調された磁界を印加することによ
り記録を行なうことを特徴とする光磁気記録方式。 5、垂直磁気異方性を有する磁性膜とスピン再配列性膜
とが設けられた光磁気記録媒体に一定強度の磁界を印加
しつつ、強度が変調されたレーザ光を印加することによ
り記録を行なうことを特徴とする光磁気記録方式。
[Claims] 1. A magnetic film having perpendicular magnetic anisotropy on a transparent substrate;
1. A magneto-optical recording medium characterized by comprising a spin realignment film. 2. The magneto-optical recording medium according to claim 1, wherein the magnetic film having perpendicular magnetic anisotropy is made of a rare earth element and a transition metal. 3. The magneto-optical recording medium according to claim 1 or 2, wherein the magnetization direction of the spin realigning film is rotated by 90 degrees. 4. Recording is performed by applying a magnetic field whose polarity is modulated while applying laser light of a constant intensity to a magneto-optical recording medium provided with a magnetic film having perpendicular magnetic anisotropy and a spin realignment film. A magneto-optical recording method characterized by: 5. Recording is performed by applying a laser beam whose intensity is modulated while applying a magnetic field of a constant intensity to a magneto-optical recording medium provided with a magnetic film having perpendicular magnetic anisotropy and a spin realignment film. A magneto-optical recording method characterized by:
JP1063650A 1989-03-17 1989-03-17 Magneto-optical recording method and magneto-optical recording device Expired - Fee Related JP2875276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1063650A JP2875276B2 (en) 1989-03-17 1989-03-17 Magneto-optical recording method and magneto-optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1063650A JP2875276B2 (en) 1989-03-17 1989-03-17 Magneto-optical recording method and magneto-optical recording device

Publications (2)

Publication Number Publication Date
JPH02244441A true JPH02244441A (en) 1990-09-28
JP2875276B2 JP2875276B2 (en) 1999-03-31

Family

ID=13235438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1063650A Expired - Fee Related JP2875276B2 (en) 1989-03-17 1989-03-17 Magneto-optical recording method and magneto-optical recording device

Country Status (1)

Country Link
JP (1) JP2875276B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395741A (en) * 1989-09-08 1991-04-22 Hitachi Maxell Ltd Magneto-optical recording medium
WO1997036294A1 (en) * 1996-03-25 1997-10-02 Philip Patalano Compositions comprising cystalline-like transition metal material and methods of use thereof
WO2000048180A1 (en) * 1998-01-08 2000-08-17 Japan Science And Technology Corporation Magneto-optical recording medium and magneto-optical recording device
WO2002065465A1 (en) * 2001-02-14 2002-08-22 Fujitsu Limited Magnetooptic recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158938A (en) * 1988-12-13 1990-06-19 Canon Inc Magneto-optical recording medium and recording method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158938A (en) * 1988-12-13 1990-06-19 Canon Inc Magneto-optical recording medium and recording method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395741A (en) * 1989-09-08 1991-04-22 Hitachi Maxell Ltd Magneto-optical recording medium
WO1997036294A1 (en) * 1996-03-25 1997-10-02 Philip Patalano Compositions comprising cystalline-like transition metal material and methods of use thereof
WO2000048180A1 (en) * 1998-01-08 2000-08-17 Japan Science And Technology Corporation Magneto-optical recording medium and magneto-optical recording device
WO2002065465A1 (en) * 2001-02-14 2002-08-22 Fujitsu Limited Magnetooptic recording medium
US6844083B2 (en) 2001-02-14 2005-01-18 Fujitsu Limited Magneto-optical recording medium possessing a magnetic assist layer

Also Published As

Publication number Publication date
JP2875276B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
US4862437A (en) Magneto-optical recording reproducing, and erasing apparatus having two independent magnetic field applying devices
JPS60170048A (en) Photomagnetic memory device
EP0475446B1 (en) Overwrite-capable magnetooptical recording medium allowing enlarged margin of high level beam intensity
US5164926A (en) Over-write capable magnetooptical recording medium with four magnetic layered structure dispensing with external initializing field
KR930009225B1 (en) Optical materials and method of optical materials
US4497006A (en) Magneto-optic recording/playback head assembly
JPS61192048A (en) System and device for optical/magnetic recording, reproducing and erasing
JPH02244441A (en) Magneto-optical recording medium and magneto-optical recording system
US5343449A (en) Over-write capable magnetooptical recording medium having reading layer
US5339298A (en) Over-write capable magnetooptical recording method with widened power margin, and magnetooptical recording apparatus used in this method
EP0241222A1 (en) Opto-magnetic recording apparatus for sequentially driving optical head drive means and biasing magnetic field generation means
JPS63179435A (en) Thin film magnetic recording medium
JPS6364651A (en) Overwritable magneto-optical recording method, magneto-optical recording medium used by same and magneto-optical reproducing method
JP2517559B2 (en) Magneto-optical information recording device
JPH02156450A (en) Magneto-optical recorder
JPH0568763B2 (en)
JPS63304448A (en) Magneto-optical recording medium
JP2834879B2 (en) Magneto-optical recording device
JP3126459B2 (en) Magneto-optical recording method and magneto-optical recording device
JP2744776B2 (en) Magneto-optical recording / reproducing device
JPS63308755A (en) Magneto-optical degaussing method
JP2705598B2 (en) Magneto-optical storage method and apparatus
JP3146614B2 (en) Recording method and recording apparatus for magneto-optical recording medium
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPH03152781A (en) Cartridge for magneto-optical disk capable of performing overwrite

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees