JPH11142609A - Production of diffusion plate and diffusion plate as well as production of microlens array and microlens array - Google Patents

Production of diffusion plate and diffusion plate as well as production of microlens array and microlens array

Info

Publication number
JPH11142609A
JPH11142609A JP9314068A JP31406897A JPH11142609A JP H11142609 A JPH11142609 A JP H11142609A JP 9314068 A JP9314068 A JP 9314068A JP 31406897 A JP31406897 A JP 31406897A JP H11142609 A JPH11142609 A JP H11142609A
Authority
JP
Japan
Prior art keywords
indenter
indentations
indentation
row
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9314068A
Other languages
Japanese (ja)
Other versions
JP4243779B2 (en
Inventor
Masaaki Yamazaki
正明 山崎
Yasuhisa Tomita
泰央 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP31406897A priority Critical patent/JP4243779B2/en
Publication of JPH11142609A publication Critical patent/JPH11142609A/en
Application granted granted Critical
Publication of JP4243779B2 publication Critical patent/JP4243779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a diffusion plate or microlens array which is free from unevenness of the individual indentation positions to be formed in spite of the random arrangements formed by machining and has good diffusivity without specifically controlling a machine tool and a process for producing the same. SOLUTION: The formation of the indentations of the same size adjacent to each other is averted in the process for producing the diffusion plate produced by forming the indentations on a workpiece by an indentation using (n) kinds of pressers varying in sizes or the microlens array produced by forming the indentations on a metal mold base material by the indentation method and using such metal mold.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学機器のスクリ
ーンや一眼レフカメラなどに用いられる拡散板やマイク
ロレンズアレイに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffuser plate and a microlens array used for a screen of an optical apparatus or a single-lens reflex camera.

【0002】[0002]

【従来の技術】従来より光学機器のスクリーンや拡散板
などに多数のマイクロレンズを配列したもの(以下、マ
イクロレンズアレイという)を設けることが知られてい
る。マイクロレンズアレイのスクリーンは、金型の砂掛
け面から微細凹凸を転写したスクリーンに比べてザラツ
キ感がなく、見えが明るいという利点があるが、マイク
ロレンズを周期的に配列した場合には、回折光の方向が
特定方向に限定されてボケ味が不自然になったり、フレ
ネルレンズと併用した時にフレネルレンズの輪帯構造と
の干渉を引き起こしてモアレ縞が発生したりするといっ
た欠点もある。
2. Description of the Related Art It is conventionally known to provide a screen or a diffuser plate of an optical device in which a number of microlenses are arranged (hereinafter referred to as a microlens array). The screen of the microlens array has the advantage that there is less roughness and the appearance is brighter than the screen in which fine irregularities are transferred from the sanding surface of the mold, but if the microlenses are arranged periodically, diffraction will occur. There are drawbacks such that the direction of light is limited to a specific direction and the bokeh becomes unnatural, and when used in combination with a Fresnel lens, interference with the annular structure of the Fresnel lens causes moire fringes.

【0003】また、金属板に微小の凹部を形成して、ス
クリーン全体に均一に光を拡散させる拡散板にしても、
同様な現象が発生してしまいスクリーンに映し出された
像を見えにくくしてしまっている。ところで、この様な
マイクロレンズアレイおよび拡散板を製造する際に用い
られる金型や被加工物に凹部を形成する方法として、圧
痕法という方法がある。この方法は、マイクロレンズア
レイを形成する金型表面または拡散板となる金属板の表
面に圧子を押しつけ、圧痕を形成する方法である。これ
を実現するためには、マシニングセンタを用いて、XY
軸方向に移動可能に設けられたテーブルに金型や金属板
を固定し、油圧シリンダやムービングコイルによりZ方
向に移動可能に設けられた圧子を押し当てて、圧痕を形
成している。
[0003] In addition, even if a minute concave portion is formed in a metal plate to form a diffusing plate for uniformly diffusing light throughout the screen,
A similar phenomenon occurs, making the image projected on the screen difficult to see. By the way, there is a method called an indentation method as a method of forming a concave portion in a mold or a workpiece used when manufacturing such a microlens array and a diffusion plate. This method is a method in which an indenter is pressed against the surface of a mold forming a microlens array or the surface of a metal plate serving as a diffusion plate to form an indentation. To achieve this, a machining center is used to
A mold or a metal plate is fixed to a table movably provided in the axial direction, and an indenter movably provided in the Z direction is pressed by a hydraulic cylinder or a moving coil to form an impression.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述の用途
に用いられるマイクロレンズアレイや拡散板は、マイク
ロレンズや微小の凹部の配列をランダムにすることで、
上述した問題を解消することができる。そのため、規則
性が無くなる様に圧痕を形成する必要がある。ところ
で、複数の径が異なる圧子を利用して、大小異なる圧痕
を規則性無く形成する場合には、例えば、圧痕形成をコ
ンピュータ制御で行える機械である場合には、機械全体
の制御を司るマシニングセンタに各々個々に圧痕位置を
入力しなくてはならず、制御するためのソフトウェアー
を作成するのに多大な費用と時間を費やすことになって
しまう。また、この様にコンピュータ制御で行えない機
械で圧痕形成を行う場合は、人間が目視で一つ一つ位置
を確かめながら、圧痕形成を行わなければならない。こ
の様にどちらにしても、作業者に多大な労力と時間が割
かれてしまう。
By the way, the microlens array and the diffusion plate used for the above-mentioned applications are arranged by randomly arranging the microlenses and minute concave portions.
The above-mentioned problem can be solved. Therefore, it is necessary to form an indentation so that the regularity is lost. By the way, when a plurality of indenters having different diameters are used to form indentations of different sizes without regularity, for example, in the case of a machine that can perform indentation formation by computer control, a machining center that controls the entire machine is used. The indentation position must be entered for each individual, which requires a great deal of cost and time to create software for control. In addition, when the indentation is formed by a machine that cannot be controlled by a computer, the indentation must be formed while a person visually confirms the position of each one. In either case, a great deal of labor and time is required for the operator.

【0005】そこで本発明は、形成される個々の圧痕の
位置を入力若しくは人間がその位置を確かめながら、工
作機械を制御させること無しに、機械加工で形成される
配列がランダムであってもムラがなく、拡散性のよい拡
散板またはマイクロレンズアレイ及びそれらの製造方法
を提供することを目的とする。
Accordingly, the present invention provides a method for inputting the positions of individual indentations to be formed or checking the positions by a human, without controlling a machine tool, even if the arrangement formed by machining is random. It is an object of the present invention to provide a diffusion plate or a microlens array having no diffusion and having good diffusivity, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】したがって、上記の課題
を解決するために、本発明では、それぞれ径の違う複数
の圧子をもって、表面に凹凸形状を有した拡散板、また
は複数のレンズ形状を有したマイクロレンズアレイを製
造する方法で、複数の径の異なる圧子を用いて製造する
次の方法を提供する。
Therefore, in order to solve the above-mentioned problems, the present invention has a plurality of indenters having different diameters, a diffuser plate having an uneven shape on the surface, or a plurality of lens shapes. The present invention provides the following method for producing a microlens array using a plurality of indenters having different diameters.

【0007】最初に、拡散板の基板やマイクロレンズア
レイを成形する金型などの被加工物に、第1の圧子でも
って圧痕を形成する際には、第1列目の第1の開始位置
から所定方向に等間隔で被加工物に圧痕を形成する。第
1の圧子でもって形成されるべき圧痕が第1列目に全て
形成されたら、次に第1列目の隣の第2列目において、
第1の開始位置に存在する圧痕と隣合わない位置から圧
痕形成を開始し、所定の方向に第1列目で形成された圧
痕の間隔と同じ間隔で圧痕を形成させる。
First, when an indentation is formed on a workpiece such as a substrate of a diffusion plate or a mold for forming a microlens array by using a first indenter, a first starting position of a first row. Are formed on the workpiece at equal intervals in a predetermined direction. When all the indentations to be formed by the first indenter are formed in the first row, then in the second row next to the first row,
The indentation is started from a position that is not adjacent to the indentation present at the first start position, and the indentations are formed in a predetermined direction at the same intervals as the indentations formed in the first row.

【0008】この様な動作を繰り返し、被加工物に第1
の圧子で形成する圧痕を形成する。次に、第1の圧子と
は異なる径の第2の圧子でもって圧痕を被加工物に形成
する際には、前記第1列目上で既に圧痕が形成されてい
ない第2の開始位置から、所定方向でかつ前記第1の圧
子でもって形成された圧痕の間隔と同じ間隔で圧痕を形
成する。
The above operation is repeated, and the first
The indenter is formed by the indenter. Next, when forming an indentation on the workpiece using the second indenter having a diameter different from that of the first indenter, the second indentation is not formed on the first row from the second starting position. The indentations are formed in a predetermined direction and at the same interval as the indentations formed by the first indenter.

【0009】そして、第2の圧子でもって形成されるべ
き圧痕が第1列目に全て形成されたら、次に第2列目で
は、前記第1列目での第1の圧子による圧痕と第2の圧
子による圧痕との位置関係とは異なる位置関係になる位
置から開始し、所定の方向にかつ前記第1の圧子でもっ
て形成された圧痕の間隔と同じ間隔で、第2の圧子によ
る圧痕を形成させる。
Then, when all the indentations to be formed by the second indenter are formed in the first row, then, in the second row, the indentations by the first indenter in the first row and the second indentation are formed. Starting from a position having a positional relationship different from the positional relationship with the indentation by the second indenter, the indentation by the second indenter is performed in a predetermined direction and at the same interval as the interval between the indentations formed by the first indenter. Is formed.

【0010】更に、そのほかの圧子でもって圧痕を形成
する際には、各列における圧痕形成の開始位置を任意に
決定して、圧痕形成を開始し、所定の方向にかつ第1の
圧子でもって形成された圧痕の間隔と同じ間隔で圧痕を
形成させ、被加工物に圧痕を形成することとした。更に
本発明の第2の態様では、圧痕の間隔は、前記被加工物
への圧痕形成で用いられる圧子の径を全ての種類足し合
わせた長さよりも短いこととし、圧痕が形成されていな
い部分を極力少なくするようにした。
Further, when an indent is formed by another indenter, the starting position of the indentation in each row is arbitrarily determined, the indentation is started, and the indentation is started in a predetermined direction with the first indenter. Indentations were formed at the same intervals as the indentations formed, and indentations were formed on the workpiece. Further, in the second aspect of the present invention, the interval between the indentations is set such that the diameter of the indenter used for forming the indentations on the workpiece is shorter than the length obtained by adding all types of indenters, and the portion where the indentations are not formed is formed. Was reduced as much as possible.

【0011】また、本発明の第3の態様では、径または
深さの異なる複数種類の凹部、または径または高さの異
なる複数種類のレンズを二次元方向に配置してなる拡散
板またはマイクロレンズアレイにおいて、径及び深さの
等しい凹部同士の配列間隔が一方向において等間隔で、
一方向と垂直な方向には、径及び高さの等しい凹部同士
が隣り合わないように形成することとした。この様にす
ることで周期的な圧痕の配列を極力すくなすることがで
き、かつマシングセンターに入力するデータを少なくす
ることが出来るようになる。
According to a third aspect of the present invention, there is provided a diffusing plate or microlens in which a plurality of types of concave portions having different diameters or depths or a plurality of types of lenses having different diameters or heights are arranged in a two-dimensional direction. In the array, the arrangement interval between concave portions having the same diameter and depth is equal in one direction,
In the direction perpendicular to one direction, the recesses having the same diameter and height are formed so as not to be adjacent to each other. By doing so, the arrangement of the periodic indentations can be reduced as much as possible, and the data input to the machining center can be reduced.

【0012】[0012]

【発明の実施の形態】次に、本発明について実施の形態
を例示しながら詳細に説明する。ところで、本発明に係
る実施の形態では、拡散板の凹部形状やマイクロレンズ
アレイのレンズの形状は全て圧痕法によって形成されて
いる。この圧痕法とは、金型や拡散板の基板に対して圧
子を所定の荷重で押圧して圧痕を所定の間隔で多数形成
し、圧子の圧痕を形成する方法である。そして、マイク
ロレンズアレイを作製する場合には、圧痕が形成された
金型を用いて射出成形、圧縮成型、注型成形等によりマ
イクロレンズアレイが形成される。次に、本発明の第1
の実施の形態として、本発明に係るマイクロレンズアレ
イを挙げて、説明することにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to embodiments. By the way, in the embodiment according to the present invention, the concave shape of the diffusion plate and the lens shape of the microlens array are all formed by the indentation method. The indentation method is a method in which an indenter is pressed against a substrate of a mold or a diffusion plate with a predetermined load to form a large number of indentations at predetermined intervals, thereby forming indentations of the indenter. When a microlens array is manufactured, the microlens array is formed by injection molding, compression molding, casting, or the like using a mold on which an indentation is formed. Next, the first of the present invention
The embodiment will be described with reference to a microlens array according to the present invention.

【0013】本発明に係るマイクロレンズアレイは、図
2に示した装置構成でもって製作される。なお、図2
は、本発明に係る焦点板を製作するための圧子押圧装置
の概略図である。圧痕法により圧痕が形成されら金型母
材5は、機械式あるいは接着等の固定方法によりXYス
テージ6上に載置される。このXYステージは、X方向
駆動用ステージモータ7Xと、Y方向駆動用ステージモ
ータ7Yにより、2次元的に金型母材5を移動可能とし
ている。なお、ステージ移動用モータ7X、7Yは、ス
テージ駆動回路20により制御される。また、X方向用
デジタルマイクロメータ8Xと、Y方向用デジタルマイ
クロメータ8Yによって、XYステージ6の位置を検出
することができるようになっている。なお、デジタルマ
イクロメータ8X,8Yから得られる出力信号は、ステ
ージ移動量検知回路21に入力され、ステージ移動量検
出回路21でステージ移動用モータ7X、7Yの駆動量
をモニターすることができる。
The microlens array according to the present invention is manufactured with the device configuration shown in FIG. Note that FIG.
1 is a schematic view of an indenter pressing device for manufacturing a reticle according to the present invention. After the indentation is formed by the indentation method, the mold base material 5 is mounted on the XY stage 6 by a mechanical method or a fixing method such as bonding. In the XY stage, the mold base material 5 can be two-dimensionally moved by an X-direction driving stage motor 7X and a Y-direction driving stage motor 7Y. The stage movement motors 7X and 7Y are controlled by the stage drive circuit 20. The position of the XY stage 6 can be detected by the digital micrometer 8X for the X direction and the digital micrometer 8Y for the Y direction. The output signals obtained from the digital micrometers 8X and 8Y are input to the stage movement amount detection circuit 21, and the stage movement amount detection circuit 21 can monitor the drive amounts of the stage movement motors 7X and 7Y.

【0014】次に、図2に示めされたムービングコイル
装置2は、圧子押圧装置の臥体4に固定され、金型母材
5に押圧するための力を圧子1に与えている。ところ
で、ムービングコイル装置2は図3に示す構造を有して
いる。ムービングコイル装置2には、図3に示されてい
るようにシャフト11が取り付けられ、そのシャフト1
1に圧子1が取り付けられている。そして、ムービング
コイル装置2は、圧子1が取り付けられたシャフト11
を回転するためのモータ3を備えている。このモータ3
はステッピングモータであり、図2に示すように、回転
角割り出し回路23からのパルス数により回転角が制御
される。なお、ムービングコイル駆動回路22はムービ
ングコイル装置2のシャフトを上下方向に駆動するため
の回路であり、コンピュータ24からの出力信号により
制御される。また、他のステージ駆動回路20,移動量
検知回路21,回転角割り出し回路23に対しても同様
に、制御するための信号を出力している。また、コンピ
ュータ24には図示されていない入力装置が備えられて
いるので、この入力装置により作業条件を入力すること
ができる。なお、この入力装置には、キーボードや記録
媒体読み取り装置など挙げられる。
Next, the moving coil device 2 shown in FIG. 2 is fixed to the lying body 4 of the indenter pressing device, and applies a force to the indenter 1 to press the mold base material 5. By the way, the moving coil device 2 has a structure shown in FIG. A shaft 11 is attached to the moving coil device 2 as shown in FIG.
The indenter 1 is attached to 1. The moving coil device 2 includes a shaft 11 to which the indenter 1 is attached.
Is provided with a motor 3 for rotating. This motor 3
Is a stepping motor whose rotation angle is controlled by the number of pulses from the rotation angle determination circuit 23 as shown in FIG. The moving coil drive circuit 22 is a circuit for driving the shaft of the moving coil device 2 in the vertical direction, and is controlled by an output signal from the computer 24. Similarly, a signal for control is output to the other stage drive circuit 20, movement amount detection circuit 21, and rotation angle determination circuit 23. Further, since the computer 24 is provided with an input device (not shown), it is possible to input work conditions with the input device. The input device includes a keyboard, a recording medium reading device, and the like.

【0015】ところで、ムービングコイル駆動装置2の
構造を図3を用いて説明する。このムービングコイル駆
動装置2には、円筒状の永久磁石12が備えられてお
り、シャフト11に外挿するように設けられ、かつベー
ス板10cに固定されている。そして、コイル支持枠1
3が永久磁石に外挿するようにシャフト11に取り付け
られおり、コイル14がこのコイル支持枠13に環状に
巻き付けられている。また、コイル14に外挿するよう
に環状の永久磁石15が設けられ、この永久磁石15は
ベース板10aに固定されている。
The structure of the moving coil driving device 2 will be described with reference to FIG. The moving coil driving device 2 is provided with a cylindrical permanent magnet 12, provided so as to be extrapolated to the shaft 11, and fixed to the base plate 10 c. And the coil support frame 1
3 is attached to the shaft 11 so as to be extrapolated to the permanent magnet, and the coil 14 is wound around the coil support frame 13 in an annular shape. An annular permanent magnet 15 is provided so as to be extrapolated to the coil 14, and the permanent magnet 15 is fixed to the base plate 10a.

【0016】また、ムービングコイル駆動装置2には、
板バネ9a,9bが備えられ、板バネ9aの基端は、ベ
ース板10cに固定されたブロック17に押さえ板17
aとボルトにより固定されている。そして、板バネ9a
の先端は、ピン18aによりシャフト11と一体となっ
ている連結リング18とともに押さえ板16aとブロッ
ク16とで挟み込むことによりシャフト11と連結され
ている。一方、板バネ9bの基端は、ベース板10aに
固定されたブロック17に押さえ板17aとボルトによ
り固定されている。そして、板バネ9bの先端は、連結
リング18とともに押さえ板13aと支持枠13とで挟
み込むことにより、シャフト11と連結されている。
The moving coil driving device 2 includes:
Leaf springs 9a and 9b are provided, and a base end of the leaf spring 9a is attached to a block 17 fixed to a base plate 10c by a pressing plate 17a.
a and bolts. And leaf spring 9a
Is connected to the shaft 11 by being sandwiched between the holding plate 16a and the block 16 together with the connecting ring 18 integrated with the shaft 11 by the pin 18a. On the other hand, the base end of the leaf spring 9b is fixed to the block 17 fixed to the base plate 10a by a holding plate 17a and a bolt. The distal end of the leaf spring 9b is connected to the shaft 11 by being sandwiched between the holding plate 13a and the support frame 13 together with the connection ring 18.

【0017】したがって、シャフト11は板バネ9a,
9bによって鉛直線上を往復移動可能に弾性支持されて
いるが、シャフト11自体は回転できるようになってい
る。シャフト11の上端にはジョイント19を介して圧
子回転用モータ3に接続されている。ジョイント19は
回転(ラジアル)方向に対して剛性をもち、上下(スラ
スト)方向に関してはフレキシブルな構造になっている
ため、モータ3の回転はシャフト11に伝わるが、シャ
フト11の上下方向の動きはモータ3に伝わることはな
い。
Therefore, the shaft 11 is provided with the leaf springs 9a,
The shaft 11 is elastically supported so as to reciprocate on a vertical line by 9b, but the shaft 11 itself can rotate. The upper end of the shaft 11 is connected to the indenter rotation motor 3 via a joint 19. Since the joint 19 has rigidity in the rotational (radial) direction and has a flexible structure in the vertical (thrust) direction, the rotation of the motor 3 is transmitted to the shaft 11, but the vertical movement of the shaft 11 is There is no transmission to the motor 3.

【0018】次に、図4を用いてムービングコイル装置
2のシャフト駆動部の詳細を説明する。図4に示すよう
に、永久磁石15は下部がS極、上部がN極に、一方、
永久磁石12は下部がN極、上部がS極に着磁されてお
り、シャフト11の中心軸では矢印Bで示すように磁力
線の向きは鉛直下方である。ここで、コイル14で発生
する磁力線がシャフト11の中心軸で矢印Bのように鉛
直下向きとなるように電流を与えると、コイル14に対
して鉛直下向きの力が働いてシャフト11が鉛直下方へ
移動する。一方、逆向きの電流をコイル14に与える
と、鉛直上方の力が働いてシャフト11が鉛直上方へ移
動する。ムービングコイル駆動回路22は図示されてい
ない可変パルス電流発生器を有しており、周期的に極性
が変化するパルス波形状の電流をコイル14へ出力する
ことにより圧子1を高速で上下動させることができる。
この上下動の周期は0.1〜50Hzにすることができ
る。なお、上下のストロークは50μm程度である。ま
た、コイル14に供給する電流の大きさを変えることに
より、圧子1の押し付け力を変えることができる。
Next, the details of the shaft driving section of the moving coil device 2 will be described with reference to FIG. As shown in FIG. 4, the lower portion of the permanent magnet 15 has an S pole, and the upper portion has an N pole.
The lower part of the permanent magnet 12 is magnetized to the N pole, and the upper part is magnetized to the S pole, and the direction of the magnetic force line is vertically downward on the center axis of the shaft 11 as shown by the arrow B. Here, when a current is applied so that the magnetic lines of force generated by the coil 14 are directed vertically downward as indicated by an arrow B at the center axis of the shaft 11, a vertically downward force acts on the coil 14 to move the shaft 11 vertically downward. Moving. On the other hand, when a current in the opposite direction is applied to the coil 14, a vertically upward force acts to move the shaft 11 vertically upward. The moving coil drive circuit 22 has a variable pulse current generator (not shown), and moves the indenter 1 up and down at a high speed by outputting a pulse wave-shaped current whose polarity changes periodically to the coil 14. Can be.
The cycle of this vertical movement can be set to 0.1 to 50 Hz. The upper and lower strokes are about 50 μm. The pressing force of the indenter 1 can be changed by changing the magnitude of the current supplied to the coil 14.

【0019】この様にして圧子1を金型母材5に押し付
け、金型母材5に圧痕を形成することができる。なお、
本発明では、圧痕が形成される度にXYステージを移動
させ、金型母材が所定量で所定の方向移動させてから、
次の圧痕を形成するようにしている。次に、金型母材5
に圧痕を形成する方法について説明する。
In this manner, the indenter 1 is pressed against the mold base material 5 to form an indent on the mold base material 5. In addition,
In the present invention, the XY stage is moved every time an impression is formed, and after the mold base material is moved in a predetermined direction by a predetermined amount,
The next indentation is formed. Next, the mold base material 5
Next, a method of forming an indentation will be described.

【0020】本発明に係るマイクロレンズアレイは、モ
アレ縞などの現象が起こらない程度に、マイクロレンズ
の配列がランダムでかつ拡散する光にムラが出ないよう
にするため、次のようにして製造される。まず、最初に
本発明のマイクロレンズアレイ30を形成するために、
金型基材5の圧痕形成面を金属研磨により鏡面状態に仕
上げる。なお、金型基材の材料としては、結晶質の材料
であるマルテンサイト系ステンレス鋼が適している。ま
た、光学設計により決定されたマイクロレンズアレイを
得るために、予め金型に用いる材料と同じ材質のテスト
ピースを使って試し打ちを行い、所定の押し込み深さを
得るのに必要なコイルへの供給電圧値を確認しておく。
なお、本発明の実施の形態であるマイクロレンズアレイ
には、拡散する光にムラが無く、モアレ縞などが発生し
ないようにするため、複数種類の圧痕を形成することが
必要となる。したがって、圧痕を形成する種類毎に応じ
て、コイルへの供給電圧値を確認しておくことが必要で
ある。
The microlens array according to the present invention is manufactured as follows in order to prevent irregularities in the arrangement of the microlenses and uneven light to such an extent that a phenomenon such as moire fringes does not occur. Is done. First, in order to first form the microlens array 30 of the present invention,
The indentation forming surface of the mold base material 5 is mirror-finished by metal polishing. As a material of the mold base material, a martensitic stainless steel which is a crystalline material is suitable. In addition, in order to obtain a microlens array determined by the optical design, test hitting is performed using a test piece of the same material as the material used for the mold in advance, and a coil necessary to obtain a predetermined pushing depth is obtained. Check the supply voltage value.
In the microlens array according to the embodiment of the present invention, it is necessary to form a plurality of types of indentations so that diffused light has no unevenness and moire fringes do not occur. Therefore, it is necessary to check the supply voltage value to the coil in accordance with each type of indentation.

【0021】次に、入力装置を用いてコンピュータ24
に、各圧子毎における各列で最初に圧痕を形成する位置
と、同じ圧子で形成される圧痕の間隔を入力する。ま
た、同じ圧子を用いて各列における最初に圧痕を形成す
る位置は、ある列で最初に形成される圧痕と、ある列と
隣合う列で最初に形成される圧痕とが極力隣り合わない
ようにすればよい。しかしながら、同じ圧痕が全て隣合
わないようにしなくとも、それで製造されるマイクロレ
ンズアレイの必要な性能が確保される場合が多い。
Next, the computer 24 is operated using the input device.
Then, the position where the indentation is first formed in each row of each indenter and the interval between the indentations formed by the same indenter are input. In addition, the position where the first indentation is formed in each row using the same indenter is such that the first indentation formed in a certain row and the first indentation formed in a row adjacent to a certain row are as small as possible. What should I do? However, it is often the case that the required performance of the microlens array manufactured therefrom is ensured even if the same indentations are not all adjacent.

【0022】そこで、本発明の第1の実施の形態では、
最初の用いられる一番大きな圧子で形成される圧痕A1
同士が隣合わないように圧痕A1の形成開始位置を設定
し、かつ2番目に大きな圧子で形成される圧痕A2と一
番大きな圧子で形成される圧痕A1の位置関係がそれぞ
れ隣合う列で異なるように、圧痕A2の形成開始位置を
設定する。
Therefore, in the first embodiment of the present invention,
Indentation A1 formed by the first largest indenter used
The formation start position of the indentation A1 is set so that they are not adjacent to each other, and the positional relationship between the indentation A2 formed by the second largest indenter and the indentation A1 formed by the largest indenter is different in each adjacent row. Thus, the formation start position of the indentation A2 is set.

【0023】ちなみに、図1は本発明の第1の実施の形
態で金型母材5に圧痕が形成された様子を示している
が、形成された圧痕は図1を見てもわかるように、X軸
と平行に列んでいる。この様に同一直線上に列んでいる
一つの並びを「列」と言い表している。なお、マイクロ
レンズアレイの形成方法では、同じ圧子で形成される圧
痕の間隔は、それぞれ同じとしている。また、各列にお
けるそれぞれの圧子の最初に圧痕を形成する位置は、同
じ列の隣合う圧痕と少なくとも一部が重なり合うように
設定している。この様に、圧痕が形成されていない領域
を極力少なくすることで、拡散性の良いマイクロレンズ
アレイが作製出来るためである。そして、列と列との間
隔も、同様な理由で圧痕同士が一部重なり合うように設
定する。
FIG. 1 shows a state in which indentations are formed in the mold base material 5 according to the first embodiment of the present invention. , Parallel to the X axis. Thus, one arrangement on the same straight line is referred to as a “column”. In the method of forming a microlens array, the intervals between indentations formed by the same indenter are the same. The position where the indentation is formed at the beginning of each indenter in each row is set so that at least a part of the indentation overlaps the adjacent indentation in the same row. This is because a microlens array with good diffusibility can be manufactured by minimizing the area where no indentation is formed. The intervals between the rows are set so that the indents partially overlap each other for the same reason.

【0024】ところで、本発明の実施の形態では、4種
類の圧子を用いて、圧痕を形成するので、各列毎に、最
初に圧痕形成する位置をそれぞれの圧子毎に入力し、そ
して、更に同じ圧子で形成される圧痕の間隔を入力して
いる。具体的には、図1に示すとおり、まず、コンピュ
ータ24にムービングコイル装置2への供給電圧値V1
(圧痕A1加工用),V2(圧痕A2加工用),・・
・,Vn(圧痕An加工用)、X方向への移動距離Pμ
m(一定)、圧痕A1の一列目の開始位置の座標(x1
1,y1)、圧痕A1の二列目の開始位置の座標(x12,
y2)、・・・、圧痕A1のm列目の開始位置の座標
(x1m,ym)、つづいて圧痕A2の一列目の開始位置
の座標(x21,y1)、圧痕A2の二列目の開始位置の
座標(x22,y2)、・・・、圧痕A2のm列目の開始
位置の座標(x2m,ym)、・・・、圧痕Anの一列目
の開始位置の座標(xn1,y1)、圧痕Anの二列目の
開始位置の座標(xn2,y2)、・・・、圧痕Anのm
列目の開始位置の座標(xnm,ym)を入力する。な
お、本発明の第1の実施の形態では、圧子の種類が4種
類なので、n=4となる。そして、X方向への移動距離
Pμmという距離は、圧痕A1、A2、〜Anまでの全
ての圧痕の大きさの総和よりも、短めに設定している。
なぜなら、それぞれ同じ列で隣り合った圧痕は、一部が
重なり合うように形成するためである。また、開始位置
の決定には、本発明の第1の実施の形態では、圧痕A1
の場合のみ、隣の列の同じ圧痕と隣合わないように設定
した。他の圧痕については、少なくともX軸方向と平行
に、またはY軸方向と平行に同じ圧痕同士が並ばないよ
うにしている。
In the embodiment of the present invention, indentations are formed by using four types of indenters. Therefore, for each row, a position where an indentation is first formed is input for each indenter, and furthermore, The interval between indentations formed by the same indenter is input. Specifically, as shown in FIG. 1, first, the supply voltage value V1 to the moving coil device 2 is supplied to the computer 24.
(For processing indentation A1), V2 (for processing indentation A2), ...
.., Vn (for indentation An processing), moving distance Pμ in the X direction
m (constant), the coordinates (x1
1, y1), the coordinates (x12,
y2),..., the coordinates (x1m, ym) of the start position of the mth column of the indentation A1, the coordinates (x21, y1) of the start position of the first column of the indentation A2, and the start of the second column of the indentation A2 Position coordinates (x22, y2), ..., coordinates (x2m, ym) of the start position of the mth column of the indentation A2, ..., coordinates (xn1, y1) of the start position of the first column of the indentation An, Coordinates (xn2, y2) of the starting position of the second row of the indent An, m of the indent An
The coordinates (xnm, ym) of the start position of the column are input. In the first embodiment of the present invention, since there are four types of indenters, n = 4. The distance Pm in the X direction is set to be shorter than the sum of the sizes of all the indentations A1, A2, to An.
This is because indentations adjacent to each other in the same row are formed so as to partially overlap each other. In the first embodiment of the present invention, the start position is determined by the indentation A1.
Only in the case of, it was set not to be adjacent to the same indentation in the adjacent row. Regarding other indentations, the same indentations are not arranged at least in parallel to the X-axis direction or parallel to the Y-axis direction.

【0025】また同時に、金型母材5に圧痕を形成する
範囲も、コンピュータ24に入力する。次に、金型母材
5をXYステージ6上の所定の位置に載置し、スタート
をかける。そして、金型母材5上における原点出しを行
った後に、圧痕A1の一列目の開始位置の座標(x11,
y1)上に圧子1が位置するように移動する。移動が完
了したら、ムービングコイル装置2に電圧V1が供給さ
れ、圧子1によって金型母材5の鏡面に圧痕A1が形成
される。XYステージ6により金型母材5をX方向にP
マイクロメートル(μm)移動する。金型母材5が所定
の範囲内にあれば、再びムービングコイル装置2に電圧
V1が供給され、圧子1によって金型母材5の鏡面に圧
痕A1が形成される。この様にしてX方向への移動が圧
痕を形成する範囲内であれば前述した動作を繰り返す
が、その範囲を越えるとXYステージ6は圧痕A1の二
列目(図1のY軸上では、y2)の開始位置の座標(x
12,y2)上に圧子1が位置するように移動する。
At the same time, the range in which indentations are formed on the mold base material 5 is also input to the computer 24. Next, the mold base material 5 is placed at a predetermined position on the XY stage 6, and the start is started. Then, after the origin is found on the mold base material 5, the coordinates (x11,
y1) The indenter 1 is moved so as to be positioned thereon. When the movement is completed, the voltage V1 is supplied to the moving coil device 2, and the indenter 1 forms an impression A1 on the mirror surface of the mold base material 5. The XY stage 6 moves the mold base material 5 in the X direction.
Move micrometer (μm). If the mold base material 5 is within the predetermined range, the voltage V1 is supplied to the moving coil device 2 again, and the indenter 1 forms an indentation A1 on the mirror surface of the mold base material 5. In this way, if the movement in the X direction is within the range where the indentation is formed, the above-described operation is repeated. However, when the movement exceeds the range, the XY stage 6 moves to the second row of the indentation A1 (on the Y axis in FIG. y2) start position coordinates (x
(12, y2) The indenter 1 is moved so as to be positioned above.

【0026】そして、ムービングコイル装置2に電圧V
1が供給され、圧子1によって金型母材5の鏡面に圧痕
A1が形成される。XYステージ6により金型母材5を
X方向にPμm移動する。そして、圧痕を形成する範囲
か否かを判定し、その範囲を越えるような場合は、更に
隣の列に移動の開始位置に移動させる。以上の動作をm
列まで繰り返して圧痕A1が金型母材表面の所望の範囲
に形成される。
The voltage V is applied to the moving coil device 2.
1 is supplied, and the indenter 1 forms an impression A1 on the mirror surface of the mold base material 5. The XY stage 6 moves the mold base material 5 by P μm in the X direction. Then, it is determined whether or not the area is within the range where the indentation is formed. If the area exceeds the range, the area is moved further to the next row to the movement start position. Perform the above operation m
Indentations A1 are formed in a desired range on the surface of the mold base material by repeating the process up to the row.

【0027】次に、圧痕A2を形成する圧子に変えて、
ムービングコイル装置2にその圧子を装着する。そし
て、XYステージ6は圧痕A2の一列目の開始位置の座
標(x21,y1)上に圧子1が位置するように移動す
る。ムービングコイル装置2に電圧V2が供給され、圧
子1によって金型母材5の鏡面に圧痕A2が形成され
る。次に、XYステージ6により金型母材5をX方向に
Pマイクロメートル(μm)移動する。そして、金型母
材5が所定の範囲内にあれば、再びムービングコイル装
置に電圧V2が供給され、圧子1によって金型母材5の
鏡面に圧痕A2が形成される。この様にしてX方向への
移動が圧痕を形成する範囲内であれば前述した動作を繰
り返すが、その範囲を越えるとXYステージ6は圧痕A
2の二列目(図1のY軸上では、y2)の開始位置の座
標(x22,y2)上に圧子1が位置するように移動す
る。その後、ムービングコイル装置2に電圧V2が供給
され、圧子1によって金型母材5の鏡面に圧痕A2が形
成される。そして、XYステージ6により金型母材5を
X方向にPμm移動する。
Next, instead of the indenter forming the indentation A2,
The indenter is mounted on the moving coil device 2. Then, the XY stage 6 moves so that the indenter 1 is positioned on the coordinates (x21, y1) of the start position of the first row of the indentation A2. The voltage V2 is supplied to the moving coil device 2, and the indenter 1 forms an indentation A2 on the mirror surface of the mold base material 5. Next, the XY stage 6 moves the mold base material 5 by P micrometers (μm) in the X direction. If the mold base material 5 is within the predetermined range, the voltage V2 is supplied to the moving coil device again, and the indenter 1 forms an indentation A2 on the mirror surface of the mold base material 5. In this way, if the movement in the X direction is within the range where the indentation is formed, the above-described operation is repeated.
The indenter 1 moves so as to be located on the coordinates (x22, y2) of the start position of the second row of the second row (y2 on the Y axis in FIG. 1). Thereafter, the voltage V2 is supplied to the moving coil device 2, and the indenter 1 forms an impression A2 on the mirror surface of the mold base material 5. Then, the mold base material 5 is moved by P μm in the X direction by the XY stage 6.

【0028】以下同様にして圧痕Anまでが金型母材表
面の所望の範囲に形成される。この様にして圧痕が形成
された金型母材5は、図1に示す形状を有する。次に、
金型母材5を金型の一部として用い、金型を形成する。
そして、形成された金型にアクリル樹脂を封入し圧縮成
形することで、マイクロレンズアレイが製造される。
In the same manner, up to the indentation An is formed in a desired range on the surface of the mold base material. The mold base material 5 on which the indentations are formed in this manner has the shape shown in FIG. next,
The mold is formed by using the mold base material 5 as a part of the mold.
Then, a microlens array is manufactured by enclosing an acrylic resin in the formed mold and performing compression molding.

【0029】ところで、入射光を反射しつつ拡散させる
拡散板の製造方法は、金型の代わりに、拡散板を構成す
る金属を用い、圧痕が拡散板の所定の面に形成されるま
で、マイクロレンズアレイの製造方法と同様な工程を行
えばよい。この様にして作製された拡散板は、図1と同
形状を有する。なお、圧痕形成位置の座標入力は光学設
計で得られたCADデータをそのままコンピュータ24
に入力することにより簡略化できる。なお、この様な場
合でも、コンピュータ24に入力されるデータ数が、従
来のものと比較して格段に少ないので、転送時間が短縮
化することができる。
By the way, a method of manufacturing a diffusion plate that diffuses incident light while reflecting it is to use a metal that constitutes the diffusion plate instead of a metal mold and to use a metal until a dent is formed on a predetermined surface of the diffusion plate. What is necessary is just to perform the same process as the manufacturing method of a lens array. The diffusion plate manufactured in this manner has the same shape as that of FIG. Note that the coordinates of the indentation position are input directly to the computer 24 using CAD data obtained by optical design.
Can be simplified. Even in such a case, since the number of data input to the computer 24 is much smaller than that of the conventional one, the transfer time can be reduced.

【0030】また、圧痕A1〜Anの加工を連続して行
わず、圧痕A1が終了したら形成状態を確認し、再度ス
タートをかけて圧痕A2の加工を始めるというような断
続的運転を行うこともできる。また、本発明において
は、各列毎に一種類の圧痕が形成し終わったら、圧子を
替えて、一列毎に圧痕を形成しても構わない。しかし、
この様に圧痕を形成する場合は、圧子を替える回数が増
加してしまうという欠点があるが、各列毎に位置補正を
行う場合には、この様な方法でも構わない。
It is also possible to perform an intermittent operation in which the processing of the indentations A1 to An is not performed continuously, the state of formation is confirmed when the indentation A1 is completed, the processing is started again, and the processing of the indentation A2 is started. it can. Further, in the present invention, when one type of indentation is formed in each row, the indenter may be replaced and the indentation may be formed in each row. But,
When the indentation is formed in this way, there is a disadvantage that the number of times of changing the indenter increases. However, when the position is corrected for each row, such a method may be used.

【0031】[0031]

【実施例】次に、実施例を挙げて本発明を説明する。図
5は本発明に係るマイクロレンズの一実施例の平面図で
ある。金型の圧痕加工には、先端が曲率30μmの半球
状をしたダイヤモンド圧子を用いている。この圧子によ
り、圧痕A1大きさφ22μm,深さ2.1μm、圧痕
A2大きさφ20μm,深さ1.7μm、圧痕A3大き
さφ18μm,深さ1.4μm、圧痕A4大きさφ16
μm,深さ1.1μmの4種類の圧痕をそれぞれX方向
のピッチ68μmで縦27mm,横44mmの範囲で金
型表面に形成している。この金型を用いてアクリル樹脂
を圧縮成形することにより、L1,L2,L3,L4の
4種類のマイクロレンズによって構成されるマイクロレ
ンズアレイ30を製作した。
Next, the present invention will be described with reference to examples. FIG. 5 is a plan view of one embodiment of the microlens according to the present invention. For indenting the mold, a diamond indenter having a hemispherical tip with a curvature of 30 μm is used. With this indenter, indentation A1 size φ22 μm, depth 2.1 μm, indentation A2 size φ20 μm, depth 1.7 μm, indentation A3 size φ18 μm, depth 1.4 μm, indentation A4 size φ16
Four types of indentations having a thickness of 1.1 μm and a depth of 1.1 μm are formed on the die surface in a range of 27 mm long and 44 mm wide at a pitch of 68 μm in the X direction. A microlens array 30 composed of four types of microlenses L1, L2, L3, and L4 was manufactured by compression molding an acrylic resin using this mold.

【0032】[0032]

【発明の効果】以上のように本発明によれば、ムラがな
く拡散性のよいマイクロレンズアレイを簡単な方法で製
作することができる。
As described above, according to the present invention, it is possible to manufacture a microlens array having no unevenness and excellent diffusibility by a simple method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるマイクロレンズアレイを製造する
のに用いた金型の平面図である。
FIG. 1 is a plan view of a mold used to manufacture a microlens array according to the present invention.

【図2】圧子押圧装置の概略を示す斜視図である。FIG. 2 is a perspective view schematically showing an indenter pressing device.

【図3】ムービングコイル装置2の詳細を示す断面図で
ある。
FIG. 3 is a sectional view showing details of a moving coil device 2;

【図4】ムービングコイル装置2の動作を説明する図で
ある。
FIG. 4 is a diagram illustrating the operation of the moving coil device 2.

【図5】本発明によるマイクロレンズアレイの一実施例
の平面図である。
FIG. 5 is a plan view of one embodiment of a microlens array according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・圧子 2・・・ムービングコイル装置 3・・・モータ 5・・・金型母材,金型 6・・・XYステージ 20・・・ステージ駆動回路 21・・・ステージ移動量検知回路 22・・・ムービングコイル駆動回路 23・・・回転角割出し回路 24・・・コンピュータ 30・・・マイクロレンズアレイ DESCRIPTION OF SYMBOLS 1 ... Indenter 2 ... Moving coil device 3 ... Motor 5 ... Die base material, Die 6 ... XY stage 20 ... Stage drive circuit 21 ... Stage movement amount detection circuit 22: Moving coil drive circuit 23: Rotation angle indexing circuit 24: Computer 30: Micro lens array

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 径の異なる3種類以上の圧子を用い、圧
痕法により被加工物に圧痕を形成することで製造される
拡散板の製造方法において、 第1の圧子でもって圧痕を前記被加工物に形成する際に
は、第1列目の第1の開始位置から、所定方向に等間隔
で前記被加工物に圧痕を形成し、 前記第1の圧子でもって形成されるべき圧痕が前記第1
列目に全て形成されたら、次に前記第1列目と隣り合う
第2列目において、前記第1の開始位置に存在する圧痕
と隣合わない位置から圧痕形成を開始し、前記所定の方
向に第1列目で形成された圧痕の間隔と同じ間隔で圧痕
を形成させ、 次に、前記第1の圧子とは異なる径の第2の圧子でもっ
て圧痕を前記被加工物に形成する際には、前記第1列目
上で既に圧痕が形成されていない第2の開始位置から、
前記所定方向でかつ前記第1の圧子でもって形成された
圧痕の間隔と同じ間隔で圧痕を形成し、 前記第2の圧子でもって形成されるべき圧痕が前記第1
列目に全て形成されたら、次に前記第2列目では、前記
第1列目での第1の圧子による圧痕と第2の圧子による
圧痕との位置関係とは異なる位置関係になる位置から圧
痕形成を開始し、前記所定の方向にかつ前記第1の圧子
でもって形成された圧痕の間隔と同じ間隔で、前記第2
の圧子による圧痕を形成させ、 更に、前記第1の圧子および前記第2の圧子とは圧痕の
径が異なるそのほかの圧子を用いて圧痕を形成する際に
は、各列における圧痕形成の開始位置を任意に決定し
て、圧痕形成を開始し、前記所定の方向にかつ前記第1
の圧子でもって形成された圧痕の間隔と同じ間隔で圧痕
を形成させ、前記被加工物に圧痕を形成することを特徴
とする拡散板の製造方法
1. A method for manufacturing a diffusion plate manufactured by forming indentations on a workpiece by using an indentation method by using three or more types of indenters having different diameters, wherein the indentations are formed by a first indenter. When forming on the object, indentations are formed on the workpiece at equal intervals in a predetermined direction from the first start position of the first row, and the indentations to be formed by the first indenter are First
When all of the indentations are formed in the row, then in the second row adjacent to the first row, indentation is started from a position not adjacent to the indentation at the first start position, and Then, indentations are formed at the same intervals as the indentations formed in the first row. Next, when forming indentations on the workpiece using a second indenter having a diameter different from that of the first indenter From the second starting position where no indentations are already formed on the first row,
Indentations are formed in the predetermined direction and at the same intervals as the indentations formed by the first indenter, and the indentations to be formed by the second indenter are formed by the first indenter.
When all of the indentations are formed in the second row, in the second row, a position different from the positional relation between the indentation by the first indenter and the indentation by the second indenter in the first row is obtained. Indentation formation is started, and the second indentation is formed in the predetermined direction at the same interval as the interval between the indentations formed by the first indenter.
When forming an indentation using another indenter having a diameter different from that of the first indenter and the second indenter, the indentation starting position in each row is formed. Arbitrarily determined to start indentation, and in the predetermined direction and the first direction.
Forming an indent at the same interval as the interval between the indents formed by the indenter, and forming an indent on the workpiece.
【請求項2】 前記圧痕の間隔は、前記被加工物への圧
痕形成で用いられる圧子の径を全ての種類足し合わせた
長さよりも、短いことを特徴とする請求項1記載の拡散
板の製造方法
2. The diffusion plate according to claim 1, wherein the interval between the indentations is shorter than a length obtained by adding all kinds of diameters of an indenter used for forming an indentation on the workpiece. Production method
【請求項3】 前記所定の方向と平行な方向をX軸、前
記被加工物面上で前記所定の方向とは垂直な方向にY軸
とした座標上で、前記被加工物上に形成される圧痕の種
類をn個とした場合、前記第1列目から第n列目までの
前記そのほかの圧子で形成される圧痕の位置のX座標成
分は、各々異なるように形成されていることを特徴とす
る請求項1記載の拡散板の製造方法
3. The method according to claim 1, wherein the X-axis is a direction parallel to the predetermined direction, and the Y-axis is a direction perpendicular to the predetermined direction on the surface of the workpiece. When the number of types of indentations is n, the X coordinate components of the positions of the indentations formed by the other indenters in the first to n-th columns are formed differently. A method for manufacturing a diffusion plate according to claim 1, wherein
【請求項4】 径の異なる3種類以上の圧子を用い、圧
痕法により金型基材に圧痕を形成し、前記金型基材を用
いてマイクレンズアレイを製造する方法において、 第1の圧子でもって圧痕を前記金型基材に形成する際に
は、第1列目の第1の開始位置から、所定方向に等間隔
で前記金型基材に圧痕を形成し、 前記第1の圧子でもって形成されるべき圧痕が前記第1
列目に全て形成されたら、次に前記第1列目と隣り合う
第2列目において、前記第1の開始位置と隣合わない位
置から圧痕形成を開始し、前記所定の方向に前記第1列
目で形成された圧痕の間隔と同じ間隔で圧痕を形成さ
せ、 次に、前記第1の圧子とは異なる径の第2の圧子でもっ
て圧痕を前記被加工物に形成する際には、前記第1列目
上の既に圧痕が形成されていない第2の開始位置から、
前記所定方向でかつ前記第1の圧子でもって形成された
圧痕の間隔と同じ間隔で前記第2の圧子による圧痕を形
成し、 前記第1列目に前記第2の圧子でもって形成されるべき
圧痕が全て形成されたら、次に前記第2列目では、前記
第1列目での第1の圧子による圧痕と第2の圧子による
圧痕との位置関係とは異なる位置関係になる位置から圧
痕形成を開始し、前記所定の方向にかつ前記第1の圧子
でもって形成された圧痕の間隔と同じ間隔で前記第2の
圧子による圧痕を形成させ、 更に、前記第1の圧子及び前記第2の圧子の径とは異な
る径を有するそのほかの圧子でもって圧痕を形成する際
には、各列における圧痕形成の開始位置を任意に決定し
て、圧痕形成を開始し、前記所定の方向にかつ前記第1
の圧子でもって形成された圧痕の間隔と同じ間隔で圧痕
を形成させ、前記金型基材に圧痕を形成することを特徴
とするマイクロレンズアレイの製造方法
4. A method for manufacturing a microphone lens array using three or more types of indenters having different diameters, forming indentations on a mold base by an indentation method, and using the mold bases, wherein the first indenter When forming indentations on the mold base material, indentations are formed on the mold base material at equal intervals in a predetermined direction from a first start position in the first row, and the first indenter is formed. The indentation to be formed by the first
When all the rows are formed, the second row adjacent to the first row starts indentation formation from a position not adjacent to the first start position, and the first row is formed in the predetermined direction. Indentations are formed at the same intervals as the intervals of the indentations formed in the rows. Next, when forming indentations on the workpiece using a second indenter having a diameter different from that of the first indenter, From the second starting position on the first row where no indentations have already been formed,
Indentations are formed by the second indenter in the predetermined direction and at the same intervals as the intervals of the indentations formed by the first indenter, and should be formed by the second indenter in the first row. After all of the indentations are formed, the second row starts from the position where the positional relationship between the indentation by the first indenter and the indentation by the second indenter in the first row is different. Starting the formation, forming indentations by the second indenter in the predetermined direction and at the same interval as the interval of the indentations formed by the first indenter, further comprising: the first indenter and the second indenter; When forming an indentation with another indenter having a diameter different from the diameter of the indenter, the start position of the indentation formation in each row is arbitrarily determined, indentation formation is started, and in the predetermined direction and The first
Forming an indent at the same interval as the indent formed by the indenter, and forming an indent on the mold base material.
【請求項5】 前記第1の圧子でもって形成される圧痕
の間隔は、前記被加工物への圧痕形成で用いられる圧子
の径を全ての種類足し合わせた長さと同じであることを
特徴とする請求項4記載のマイクロレンズアレイの製造
方法
5. An interval between indentations formed by the first indenter is equal to a length obtained by adding all kinds of diameters of an indenter used for forming an indentation on the workpiece. The method of manufacturing a microlens array according to claim 4.
【請求項6】 前記所定の方向と平行な方向にX軸を、
前記金型基材上で前記所定の方向とは垂直な方向にY軸
とした座標上で、前記金型基材上に形成される圧痕の種
類をn個とした場合、第1列目から第n列目までの前記
そのほかの圧子が形成されている位置のX座標成分は、
各々異なるように形成されていることを特徴とする請求
項4記載のマイクロレンズアレイの製造方法
6. An X-axis in a direction parallel to the predetermined direction,
When the number of types of indentations formed on the mold base material is n on a coordinate set on the mold base material as a Y axis in a direction perpendicular to the predetermined direction, from the first column The X coordinate component of the position where the other indenter is formed up to the n-th column is
5. The method of manufacturing a microlens array according to claim 4, wherein the microlens arrays are formed differently.
【請求項7】 径または深さの異なるn種類の凹部を二
次元方向に配置してなる拡散板において、 径及び深さの等しい凹部同士の配列間隔が一方向におい
て等間隔で、前記一方向と垂直な方向には、径及び高さ
の等しい凹部同士が隣り合わないように形成されたこと
を特徴とする拡散板
7. A diffusion plate in which n types of recesses having different diameters or depths are arranged in a two-dimensional direction, wherein the arrangement intervals of the recesses having the same diameter and depth are equal in one direction, and are in the one direction. Characterized in that the recesses having the same diameter and height are formed so as not to be adjacent to each other in a direction perpendicular to the diffusion plate.
【請求項8】 径または高さの異なるn種類のマイクロ
レンズを二次元方向に配置してなるマイクロレンズアレ
イにおいて、 径及び高さの等しいマイクロレンズ同士の配列間隔が一
方向において等間隔で、前記一方向と垂直な方向には、
径及高さの等しいマイクロレンズ同士が隣り合わないよ
うに形成されたことを特徴とするマイクロレンズアレイ
8. In a microlens array in which n types of microlenses having different diameters or heights are arranged in a two-dimensional direction, microlenses having the same diameter and height are arranged at equal intervals in one direction. In a direction perpendicular to the one direction,
A microlens array wherein microlenses having the same diameter and height are formed so as not to be adjacent to each other.
JP31406897A 1997-11-14 1997-11-14 Diffusion plate manufacturing method, diffusion plate, microlens array manufacturing method, and microlens array Expired - Lifetime JP4243779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31406897A JP4243779B2 (en) 1997-11-14 1997-11-14 Diffusion plate manufacturing method, diffusion plate, microlens array manufacturing method, and microlens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31406897A JP4243779B2 (en) 1997-11-14 1997-11-14 Diffusion plate manufacturing method, diffusion plate, microlens array manufacturing method, and microlens array

Publications (2)

Publication Number Publication Date
JPH11142609A true JPH11142609A (en) 1999-05-28
JP4243779B2 JP4243779B2 (en) 2009-03-25

Family

ID=18048849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31406897A Expired - Lifetime JP4243779B2 (en) 1997-11-14 1997-11-14 Diffusion plate manufacturing method, diffusion plate, microlens array manufacturing method, and microlens array

Country Status (1)

Country Link
JP (1) JP4243779B2 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326230A (en) * 2001-05-07 2002-11-12 Ricoh Co Ltd Method and apparatus for manufacturing mold, and mold and molding
JP2004145328A (en) * 2002-10-04 2004-05-20 Keiwa Inc Optical sheet and back light unit using the same
US6835535B2 (en) 2000-07-31 2004-12-28 Corning Incorporated Microlens arrays having high focusing efficiency
JP2005148427A (en) * 2003-11-17 2005-06-09 Olympus Corp Focus plate original plate and its manufacturing method
JP2005221516A (en) * 2004-02-03 2005-08-18 Olympus Corp Diffusion plate and optical device equipped with the same diffusion plate
EP1305656A4 (en) * 2000-07-31 2006-03-08 Rochester Photonics Corp Structure screens for controlled spreading of light
US7092165B2 (en) 2000-07-31 2006-08-15 Corning Incorporated Microlens arrays having high focusing efficiency
JP2008213348A (en) * 2007-03-06 2008-09-18 Ricoh Co Ltd Method and device for producing fine shaped form, and die and optical element
US7645057B2 (en) 2005-04-21 2010-01-12 Miraenanotech Co., Ltd. Optical sheet and backlight assembly of liquid crystal display with the same
JP2010151902A (en) * 2008-12-24 2010-07-08 Seiko Epson Corp Screen
JP2010262264A (en) * 2009-04-10 2010-11-18 Seiko Epson Corp Reflective screen, projection system, front projection television, and method for manufacturing reflective screen
US8088325B2 (en) 2007-11-19 2012-01-03 3M Innovative Properties Company Articles and methods of making articles having a concavity or convexity
JP2013522681A (en) * 2010-03-17 2013-06-13 ペリカン イメージング コーポレーション Method for producing master of imaging lens array
JP5323811B2 (en) * 2008-03-21 2013-10-23 株式会社きもと Light control film, backlight device using the same, and method for producing uneven pattern forming mold
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US11186512B2 (en) 2017-08-11 2021-11-30 Nalux Co., Ltd. Mold manufacturing method
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033736B2 (en) 2000-07-31 2006-04-25 Corning Incorporated Structured screens for controlled spreading of light
US6835535B2 (en) 2000-07-31 2004-12-28 Corning Incorporated Microlens arrays having high focusing efficiency
US7092165B2 (en) 2000-07-31 2006-08-15 Corning Incorporated Microlens arrays having high focusing efficiency
EP1305656A4 (en) * 2000-07-31 2006-03-08 Rochester Photonics Corp Structure screens for controlled spreading of light
JP2002326230A (en) * 2001-05-07 2002-11-12 Ricoh Co Ltd Method and apparatus for manufacturing mold, and mold and molding
JP2004145328A (en) * 2002-10-04 2004-05-20 Keiwa Inc Optical sheet and back light unit using the same
JP2005148427A (en) * 2003-11-17 2005-06-09 Olympus Corp Focus plate original plate and its manufacturing method
JP4527967B2 (en) * 2003-11-17 2010-08-18 オリンパス株式会社 Focusing plate master and manufacturing method thereof
JP2005221516A (en) * 2004-02-03 2005-08-18 Olympus Corp Diffusion plate and optical device equipped with the same diffusion plate
US7645057B2 (en) 2005-04-21 2010-01-12 Miraenanotech Co., Ltd. Optical sheet and backlight assembly of liquid crystal display with the same
JP2008213348A (en) * 2007-03-06 2008-09-18 Ricoh Co Ltd Method and device for producing fine shaped form, and die and optical element
US8088325B2 (en) 2007-11-19 2012-01-03 3M Innovative Properties Company Articles and methods of making articles having a concavity or convexity
JP5323811B2 (en) * 2008-03-21 2013-10-23 株式会社きもと Light control film, backlight device using the same, and method for producing uneven pattern forming mold
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9049390B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of images captured by arrays including polychromatic cameras
US9055213B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera
US9060121B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma
US9077893B2 (en) 2008-05-20 2015-07-07 Pelican Imaging Corporation Capturing and processing of images captured by non-grid camera arrays
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9235898B2 (en) 2008-05-20 2016-01-12 Pelican Imaging Corporation Systems and methods for generating depth maps using light focused on an image sensor by a lens element array
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
JP2010151902A (en) * 2008-12-24 2010-07-08 Seiko Epson Corp Screen
JP2010262264A (en) * 2009-04-10 2010-11-18 Seiko Epson Corp Reflective screen, projection system, front projection television, and method for manufacturing reflective screen
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
JP2013522681A (en) * 2010-03-17 2013-06-13 ペリカン イメージング コーポレーション Method for producing master of imaging lens array
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US11186512B2 (en) 2017-08-11 2021-11-30 Nalux Co., Ltd. Mold manufacturing method
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Also Published As

Publication number Publication date
JP4243779B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4243779B2 (en) Diffusion plate manufacturing method, diffusion plate, microlens array manufacturing method, and microlens array
US11931825B2 (en) System and methods for fabricating a component with laser array
US6835535B2 (en) Microlens arrays having high focusing efficiency
EP2267534A1 (en) Illumination system
US20140272329A1 (en) Laser micromachining optical elements in a substrate
US20120187103A1 (en) Pulse laser machining apparatus and pulse laser machining method
JP2007098520A (en) Machining device
JPH08264511A (en) Method and device for fine machining
JPH0862446A (en) Fine driving member
TWI526720B (en) Diffusing plate
JPH09327860A (en) Manufacture of micro lens array and indenter pushing device
JP2000343531A (en) Production diffusion plate
CN1223906C (en) Method for making three-dimension microstructure and its exposure device
JP3767016B2 (en) Microlens array manufacturing method and indenter pressing device
JP2010214696A (en) Method for machining fly-eye lens molding die, fly-eye lens molding die and fly-eye lens
KR20220084371A (en) Roll mold manufacturing method, roll mold manufacturing apparatus, program and micro lens array
TWI247934B (en) Manufacturing method of a reflector and manufacturing method of liquid crystal display having the reflector
JPH11348117A (en) Manufacture of mold, and optical element manufactured thereby
JPH081387A (en) Division graduating device for optical parts or die for optical parts
JPH11300757A (en) Method and apparatus for molding toric recessed shape
JP5266112B2 (en) Manufacturing method of lens array for three-dimensional image
JPH11216761A (en) Manufacture of micro lens array, roll mold and indenter pressing device
JPH03136834A (en) Three-dimensional structure and preparation thereof
CN211516384U (en) Laser processing device for inner side wall coating
JP2023003795A (en) Roll manufacturing method, roll manufacturing device, roll and transfer object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term