JPH11142609A - Production of diffusion plate and diffusion plate as well as production of microlens array and microlens array - Google Patents

Production of diffusion plate and diffusion plate as well as production of microlens array and microlens array

Info

Publication number
JPH11142609A
JPH11142609A JP9314068A JP31406897A JPH11142609A JP H11142609 A JPH11142609 A JP H11142609A JP 9314068 A JP9314068 A JP 9314068A JP 31406897 A JP31406897 A JP 31406897A JP H11142609 A JPH11142609 A JP H11142609A
Authority
JP
Japan
Prior art keywords
indentation
formed
indenter
indentations
direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9314068A
Other languages
Japanese (ja)
Other versions
JP4243779B2 (en
Inventor
Yasuhisa Tomita
Masaaki Yamazaki
泰央 冨田
正明 山崎
Original Assignee
Nikon Corp
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, 株式会社ニコン filed Critical Nikon Corp
Priority to JP31406897A priority Critical patent/JP4243779B2/en
Publication of JPH11142609A publication Critical patent/JPH11142609A/en
Application granted granted Critical
Publication of JP4243779B2 publication Critical patent/JP4243779B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a diffusion plate or microlens array which is free from unevenness of the individual indentation positions to be formed in spite of the random arrangements formed by machining and has good diffusivity without specifically controlling a machine tool and a process for producing the same.
SOLUTION: The formation of the indentations of the same size adjacent to each other is averted in the process for producing the diffusion plate produced by forming the indentations on a workpiece by an indentation using (n) kinds of pressers varying in sizes or the microlens array produced by forming the indentations on a metal mold base material by the indentation method and using such metal mold.
COPYRIGHT: (C)1999,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、光学機器のスクリーンや一眼レフカメラなどに用いられる拡散板やマイクロレンズアレイに関するものである。 The present invention relates to relates to a diffuser or micro-lens array used like an optical apparatus of the screen and single-lens reflex camera.

【0002】 [0002]

【従来の技術】従来より光学機器のスクリーンや拡散板などに多数のマイクロレンズを配列したもの(以下、マイクロレンズアレイという)を設けることが知られている。 BACKGROUND ART those arranged a large number of microlenses in such conventionally of optics screen or diffuser plate (hereinafter, referred to as a microlens array) has been known to provide a. マイクロレンズアレイのスクリーンは、金型の砂掛け面から微細凹凸を転写したスクリーンに比べてザラツキ感がなく、見えが明るいという利点があるが、マイクロレンズを周期的に配列した場合には、回折光の方向が特定方向に限定されてボケ味が不自然になったり、フレネルレンズと併用した時にフレネルレンズの輪帯構造との干渉を引き起こしてモアレ縞が発生したりするといった欠点もある。 Screen of the microlens array has no graininess than the sanding surface of the mold to the screen transferring the fine unevenness, but there is an advantage that appearance is bright, if an array of micro-lenses periodically, the diffraction or direction becomes unnatural limited by blurring in a specific direction of the light, there is also a disadvantage causing interference with ring-shaped structure of the Fresnel lens moire fringes or generated when used in combination with a Fresnel lens.

【0003】また、金属板に微小の凹部を形成して、スクリーン全体に均一に光を拡散させる拡散板にしても、 [0003] Further, by forming a recess in the small metal plate, even if the diffusion plate to diffuse uniformly light the entire screen,
同様な現象が発生してしまいスクリーンに映し出された像を見えにくくしてしまっている。 It is similar phenomenon is accidentally difficult to see the image projected on the screen will be generated. ところで、この様なマイクロレンズアレイおよび拡散板を製造する際に用いられる金型や被加工物に凹部を形成する方法として、圧痕法という方法がある。 As a method of forming a recess in the mold and the workpiece to be used in making such a microlens array and the diffusion plate, there is a method of indentation method. この方法は、マイクロレンズアレイを形成する金型表面または拡散板となる金属板の表面に圧子を押しつけ、圧痕を形成する方法である。 This method, pressing the indenter on the surface of a metal plate with a mold surface or diffusion plate forming a microlens array, a method of forming an indentation. これを実現するためには、マシニングセンタを用いて、XY To achieve this, using a machining center, XY
軸方向に移動可能に設けられたテーブルに金型や金属板を固定し、油圧シリンダやムービングコイルによりZ方向に移動可能に設けられた圧子を押し当てて、圧痕を形成している。 The mold and the metal plate is fixed to the movable in the axial direction table, by pressing an indenter which is movable in the Z direction by a hydraulic cylinder or a moving coil, to form an impression.

【0004】 [0004]

【発明が解決しようとする課題】ところで、上述の用途に用いられるマイクロレンズアレイや拡散板は、マイクロレンズや微小の凹部の配列をランダムにすることで、 [SUMMARY OF THE INVENTION Incidentally, the microlens array or a diffusion plate used in the applications mentioned above, by randomly an array of recesses of the micro lenses and micro,
上述した問題を解消することができる。 It is possible to eliminate the above problem. そのため、規則性が無くなる様に圧痕を形成する必要がある。 Therefore, it is necessary to form the indentations as regularity disappears. ところで、複数の径が異なる圧子を利用して、大小異なる圧痕を規則性無く形成する場合には、例えば、圧痕形成をコンピュータ制御で行える機械である場合には、機械全体の制御を司るマシニングセンタに各々個々に圧痕位置を入力しなくてはならず、制御するためのソフトウェアーを作成するのに多大な費用と時間を費やすことになってしまう。 Meanwhile, by using a plurality of different diameters indenter, when a magnitude different indentations forming regularity rather, for example, if a machine capable of performing indentation formed in the computer control, the machining center that controls the entire machine each individually not have to enter the impression position, it becomes to spend a great deal of expense and time to create a software to control. また、この様にコンピュータ制御で行えない機械で圧痕形成を行う場合は、人間が目視で一つ一つ位置を確かめながら、圧痕形成を行わなければならない。 When performing the indentation formed in the machine can not be performed in such a computer-controlled, human making sure every single position visually must perform imprinted. この様にどちらにしても、作業者に多大な労力と時間が割かれてしまう。 Either in this manner, it will be devoted a great deal of effort and time to the operator.

【0005】そこで本発明は、形成される個々の圧痕の位置を入力若しくは人間がその位置を確かめながら、工作機械を制御させること無しに、機械加工で形成される配列がランダムであってもムラがなく、拡散性のよい拡散板またはマイクロレンズアレイ及びそれらの製造方法を提供することを目的とする。 [0005] The present invention, while checking the input or human that position the location of each indentation being formed, without thereby controlling a machine tool, unevenness be a random sequence formed by machining and an object thereof is without provide good diffusion plate or a microlens array and a method for their preparation diffusive.

【0006】 [0006]

【課題を解決するための手段】したがって、上記の課題を解決するために、本発明では、それぞれ径の違う複数の圧子をもって、表面に凹凸形状を有した拡散板、または複数のレンズ形状を有したマイクロレンズアレイを製造する方法で、複数の径の異なる圧子を用いて製造する次の方法を提供する。 Therefore SUMMARY OF THE INVENTION In order to solve the above problems, the present invention, chromatic with multiple indenter having different respective diameters, the diffusing plate having an uneven shape on the surface, or a plurality of lens shape in a method of manufacture a microlens array was to provide the following methods for producing and using different indenter of a plurality of diameters.

【0007】最初に、拡散板の基板やマイクロレンズアレイを成形する金型などの被加工物に、第1の圧子でもって圧痕を形成する際には、第1列目の第1の開始位置から所定方向に等間隔で被加工物に圧痕を形成する。 [0007] First, a workpiece, such as a mold for forming the substrate and the microlens array of the diffusion plate, when forming the indentation with a first indenter comprises a first start position of the first column forming an indentation on the workpiece at equal intervals in the predetermined direction from. 第1の圧子でもって形成されるべき圧痕が第1列目に全て形成されたら、次に第1列目の隣の第2列目において、 After indentation to be formed with a first indenter are all formed in the first column, then in the second column next to the first row,
第1の開始位置に存在する圧痕と隣合わない位置から圧痕形成を開始し、所定の方向に第1列目で形成された圧痕の間隔と同じ間隔で圧痕を形成させる。 The indentation formed starting from a position not Tonariawa and indentations present in the first start position to form the indentations at the same intervals as those of the indentation formed in the first row in a predetermined direction.

【0008】この様な動作を繰り返し、被加工物に第1 [0008] repeating this kind of operation, the first to the workpiece
の圧子で形成する圧痕を形成する。 To form an impression to be formed by the indenter. 次に、第1の圧子とは異なる径の第2の圧子でもって圧痕を被加工物に形成する際には、前記第1列目上で既に圧痕が形成されていない第2の開始位置から、所定方向でかつ前記第1の圧子でもって形成された圧痕の間隔と同じ間隔で圧痕を形成する。 Next, the first indenter with a second indenter of different diameters indentations in forming the workpiece, the second start position is not already formed indentations in the first column superiors to form the indentations at the same intervals as those of the indentation which is formed with a and in the first indenter predetermined direction.

【0009】そして、第2の圧子でもって形成されるべき圧痕が第1列目に全て形成されたら、次に第2列目では、前記第1列目での第1の圧子による圧痕と第2の圧子による圧痕との位置関係とは異なる位置関係になる位置から開始し、所定の方向にかつ前記第1の圧子でもって形成された圧痕の間隔と同じ間隔で、第2の圧子による圧痕を形成させる。 [0009] Then, when the indentation to be formed with the second indenter are all formed in the first column, then the second row, indentations and the according first indenter in the first column starting from the position where the different positional relationship with the position relationship between the indentation by 2 of the indenter, at the same intervals as those of the indentation which is formed with a predetermined direction and said first indenter, the indentation of the second indenter to form.

【0010】更に、そのほかの圧子でもって圧痕を形成する際には、各列における圧痕形成の開始位置を任意に決定して、圧痕形成を開始し、所定の方向にかつ第1の圧子でもって形成された圧痕の間隔と同じ間隔で圧痕を形成させ、被加工物に圧痕を形成することとした。 Furthermore, when forming the indentation with at other indenter is arbitrarily determine the starting position of the indentations formed in each row, and start the indentations formed, with a predetermined direction and at a first indenter to form indentations at the same intervals as the formation interval of the indentation, it was decided to form the indentation on the workpiece. 更に本発明の第2の態様では、圧痕の間隔は、前記被加工物への圧痕形成で用いられる圧子の径を全ての種類足し合わせた長さよりも短いこととし、圧痕が形成されていない部分を極力少なくするようにした。 In yet a second aspect of the present invention, the spacing of the indentations, said a shorter than the length obtained by adding up all kinds of diameter of the indenter used in the indentation formation on the workpiece, not formed indentation portion was to be reduced as much as possible.

【0011】また、本発明の第3の態様では、径または深さの異なる複数種類の凹部、または径または高さの異なる複数種類のレンズを二次元方向に配置してなる拡散板またはマイクロレンズアレイにおいて、径及び深さの等しい凹部同士の配列間隔が一方向において等間隔で、 [0011] The third in the embodiment, the diffusion plate or a microlens formed by arranging a diameter or plurality of recesses having different depths or sizes or types of lenses of different heights, the two-dimensional direction of the present invention in an array, the array interval of equal recesses between the diameter and depth at equal intervals in one direction,
一方向と垂直な方向には、径及び高さの等しい凹部同士が隣り合わないように形成することとした。 The unidirectional perpendicular direction to the forming so that not adjacent equal recesses between the diameter and height. この様にすることで周期的な圧痕の配列を極力すくなすることができ、かつマシングセンターに入力するデータを少なくすることが出来るようになる。 The sequence of periodic indentations by this way it is possible to minimize low and it becomes possible to reduce the data to be entered into the machine Gusenta.

【0012】 [0012]

【発明の実施の形態】次に、本発明について実施の形態を例示しながら詳細に説明する。 DETAILED DESCRIPTION OF THE INVENTION will be described in detail with examples of embodiments for the present invention. ところで、本発明に係る実施の形態では、拡散板の凹部形状やマイクロレンズアレイのレンズの形状は全て圧痕法によって形成されている。 Incidentally, in the embodiment according to the present invention, the shape of the recess shape of the microlens array lens of the diffusion plate is formed by all indentation method. この圧痕法とは、金型や拡散板の基板に対して圧子を所定の荷重で押圧して圧痕を所定の間隔で多数形成し、圧子の圧痕を形成する方法である。 The The indentation method, the indenter with respect to the substrate of the mold and the diffusion plate is pressed with a predetermined load to form a large number of impressions at a predetermined interval, a method for forming an impression of the indenter. そして、マイクロレンズアレイを作製する場合には、圧痕が形成された金型を用いて射出成形、圧縮成型、注型成形等によりマイクロレンズアレイが形成される。 Then, in the case of manufacturing a microlens array, injection molding using a mold indentations are formed, compression molding, the microlens array by cast molding or the like is formed. 次に、本発明の第1 Next, the first aspect of the present invention
の実施の形態として、本発明に係るマイクロレンズアレイを挙げて、説明することにする。 As embodiment, by taking a microlens array according to the present invention will now be described.

【0013】本発明に係るマイクロレンズアレイは、図2に示した装置構成でもって製作される。 The microlens array according to the present invention is manufactured with the apparatus structure shown in FIG. なお、図2 It should be noted that FIG. 2
は、本発明に係る焦点板を製作するための圧子押圧装置の概略図である。 Is a schematic view of an indenter pressing apparatus for making focusing screen according to the present invention. 圧痕法により圧痕が形成されら金型母材5は、機械式あるいは接着等の固定方法によりXYステージ6上に載置される。 Indentation is formed al mold base material by indentation method 5 is placed on the XY stage 6 by a fixing method of the mechanical or adhesive or the like. このXYステージは、X方向駆動用ステージモータ7Xと、Y方向駆動用ステージモータ7Yにより、2次元的に金型母材5を移動可能としている。 The XY stage includes an X-direction drive stage motor 7X, the Y direction drive stage motor 7Y, is movable two-dimensionally the mold base material 5. なお、ステージ移動用モータ7X、7Yは、ステージ駆動回路20により制御される。 Incidentally, the stage moving motor 7X, 7Y is controlled by a stage drive circuit 20. また、X方向用デジタルマイクロメータ8Xと、Y方向用デジタルマイクロメータ8Yによって、XYステージ6の位置を検出することができるようになっている。 Further, a digital micrometer 8X for the X direction, by a digital micrometer 8Y for the Y direction, thereby making it possible to detect the position of the XY stage 6. なお、デジタルマイクロメータ8X,8Yから得られる出力信号は、ステージ移動量検知回路21に入力され、ステージ移動量検出回路21でステージ移動用モータ7X、7Yの駆動量をモニターすることができる。 The digital micrometer 8X, the output signals obtained from 8Y is input to the stage movement amount detection circuit 21, a stage moving motor 7X stage movement amount detecting circuit 21, it is possible to monitor the driving amount of 7Y.

【0014】次に、図2に示めされたムービングコイル装置2は、圧子押圧装置の臥体4に固定され、金型母材5に押圧するための力を圧子1に与えている。 [0014] Next, moving coil device 2 fit shown in Figure 2 is fixed to the recumbent body 4 of the indenter pressing device, a force for pressing the mold base material 5 is applied to the indenter 1. ところで、ムービングコイル装置2は図3に示す構造を有している。 Incidentally, a moving coil device 2 has a structure shown in FIG. ムービングコイル装置2には、図3に示されているようにシャフト11が取り付けられ、そのシャフト1 The moving coil device 2, the shaft 11 is mounted as shown in Figure 3, the shaft 1
1に圧子1が取り付けられている。 Indenter 1 is attached to the 1. そして、ムービングコイル装置2は、圧子1が取り付けられたシャフト11 The moving coil device 2 includes a shaft 11 which indenter 1 is attached
を回転するためのモータ3を備えている。 And a motor 3 for rotating the. このモータ3 The motor 3
はステッピングモータであり、図2に示すように、回転角割り出し回路23からのパルス数により回転角が制御される。 Is a stepping motor, as shown in FIG. 2, the rotation angle is controlled by the number of pulses from the rotation angle indexing circuit 23. なお、ムービングコイル駆動回路22はムービングコイル装置2のシャフトを上下方向に駆動するための回路であり、コンピュータ24からの出力信号により制御される。 Incidentally, a moving coil drive circuit 22 is a circuit for driving the shaft moving coil device 2 in a vertical direction, it is controlled by the output signal from the computer 24. また、他のステージ駆動回路20,移動量検知回路21,回転角割り出し回路23に対しても同様に、制御するための信号を出力している。 Further, another stage drive circuit 20, the moving amount detection circuit 21, similarly with respect to the rotation angle indexing circuit 23, and outputs a signal for controlling. また、コンピュータ24には図示されていない入力装置が備えられているので、この入力装置により作業条件を入力することができる。 Further, the computer 24 so that the input device (not shown) is provided, it is possible to enter the working conditions by the input device. なお、この入力装置には、キーボードや記録媒体読み取り装置など挙げられる。 Note that this input device may include a keyboard and a recording medium reading device.

【0015】ところで、ムービングコイル駆動装置2の構造を図3を用いて説明する。 By the way, it will be described with reference to FIG. 3 the structure of the moving coil drive unit 2. このムービングコイル駆動装置2には、円筒状の永久磁石12が備えられており、シャフト11に外挿するように設けられ、かつベース板10cに固定されている。 This moving coil drive unit 2 is provided with a cylindrical permanent magnet 12 is provided in extrapolate to the shaft 11, and is fixed to the base plate 10c. そして、コイル支持枠1 The coil support frame 1
3が永久磁石に外挿するようにシャフト11に取り付けられおり、コイル14がこのコイル支持枠13に環状に巻き付けられている。 3 are attached to the shaft 11 to extrapolate to the permanent magnet, a coil 14 is wound annularly this coil support frame 13. また、コイル14に外挿するように環状の永久磁石15が設けられ、この永久磁石15はベース板10aに固定されている。 The annular permanent magnet 15 is provided in extrapolate the coil 14, the permanent magnet 15 is fixed to the base plate 10a.

【0016】また、ムービングコイル駆動装置2には、 [0016] In addition, the moving coil drive unit 2,
板バネ9a,9bが備えられ、板バネ9aの基端は、ベース板10cに固定されたブロック17に押さえ板17 Leaf springs 9a, 9b are provided, the plate proximal end of the spring 9a is kept to block 17 fixed to the base plate 10c plate 17
aとボルトにより固定されている。 It is fixed by a bolt. そして、板バネ9a Then, the leaf spring 9a
の先端は、ピン18aによりシャフト11と一体となっている連結リング18とともに押さえ板16aとブロック16とで挟み込むことによりシャフト11と連結されている。 The tip is connected to the shaft 11 by sandwiching with the pressing plate 16a and the block 16 with the connecting ring 18 which is integral with the shaft 11 by a pin 18a. 一方、板バネ9bの基端は、ベース板10aに固定されたブロック17に押さえ板17aとボルトにより固定されている。 On the other hand, the base end of the leaf spring 9b is fixed by the pressing plate 17a and bolts to the block 17 which is fixed to the base plate 10a. そして、板バネ9bの先端は、連結リング18とともに押さえ板13aと支持枠13とで挟み込むことにより、シャフト11と連結されている。 Then, the tip of the leaf spring 9b, by sandwiching between the presser plate 13a with the connecting ring 18 and the support frame 13, and is connected to the shaft 11.

【0017】したがって、シャフト11は板バネ9a, [0017] Thus, the shaft 11 is a plate spring 9a,
9bによって鉛直線上を往復移動可能に弾性支持されているが、シャフト11自体は回転できるようになっている。 Have been reciprocally movably elastically supporting the upper vertical line through 9b, the shaft 11 itself can be rotated. シャフト11の上端にはジョイント19を介して圧子回転用モータ3に接続されている。 The upper end of shaft 11 is connected to the indenter rotation motor 3 via a joint 19. ジョイント19は回転(ラジアル)方向に対して剛性をもち、上下(スラスト)方向に関してはフレキシブルな構造になっているため、モータ3の回転はシャフト11に伝わるが、シャフト11の上下方向の動きはモータ3に伝わることはない。 Joint 19 has rigidity against rotation (radial) direction, because respect to the vertical (thrust) direction has become flexible structure, the rotation of the motor 3 is transmitted to the shaft 11, the vertical movement of the shaft 11 not transmitted to the motor 3.

【0018】次に、図4を用いてムービングコイル装置2のシャフト駆動部の詳細を説明する。 [0018] Next, details of the shaft driving portion of the moving coil device 2 with reference to FIG. 図4に示すように、永久磁石15は下部がS極、上部がN極に、一方、 As shown in FIG. 4, the permanent magnet 15 is lower S pole, the upper N pole, whereas,
永久磁石12は下部がN極、上部がS極に着磁されており、シャフト11の中心軸では矢印Bで示すように磁力線の向きは鉛直下方である。 The permanent magnet 12 is lower N pole, and the upper part is magnetized to the S pole, the center axis of the shaft 11 direction of the magnetic field lines as indicated by the arrow B is vertically downward. ここで、コイル14で発生する磁力線がシャフト11の中心軸で矢印Bのように鉛直下向きとなるように電流を与えると、コイル14に対して鉛直下向きの力が働いてシャフト11が鉛直下方へ移動する。 Here, the lines of magnetic force generated by the coil 14 provides a current such that the vertically downward as indicated by the arrow B in the center axis of the shaft 11, worked in the vertical downward force to the coil 14 the shaft 11 to the vertically downward Moving. 一方、逆向きの電流をコイル14に与えると、鉛直上方の力が働いてシャフト11が鉛直上方へ移動する。 On the other hand, given a reverse current to the coil 14, the shaft 11 at work vertically upward force is moved vertically upward. ムービングコイル駆動回路22は図示されていない可変パルス電流発生器を有しており、周期的に極性が変化するパルス波形状の電流をコイル14へ出力することにより圧子1を高速で上下動させることができる。 Moving coil drive circuit 22 has a variable pulse current generator (not shown), thereby vertically moving the indenter at high speed by outputting periodically a pulse current wave shape changes polarity to the coil 14 can.
この上下動の周期は0.1〜50Hzにすることができる。 The period of this vertical movement can be 0.1~50Hz. なお、上下のストロークは50μm程度である。 Incidentally, the upper and lower stroke is about 50 [mu] m. また、コイル14に供給する電流の大きさを変えることにより、圧子1の押し付け力を変えることができる。 Further, by changing the magnitude of the current supplied to the coil 14, it is possible to change the pressing force of the indenter 1.

【0019】この様にして圧子1を金型母材5に押し付け、金型母材5に圧痕を形成することができる。 [0019] The indenter 1 in this way pressed against the mold base material 5, it is possible to form the indentation on the mold base material 5. なお、 It should be noted that,
本発明では、圧痕が形成される度にXYステージを移動させ、金型母材が所定量で所定の方向移動させてから、 From the present invention, indentation moves the XY stage each time a is formed by mold base material moves a predetermined direction at a predetermined amount,
次の圧痕を形成するようにしている。 And so as to form the next indentation. 次に、金型母材5 Then, the mold base material 5
に圧痕を形成する方法について説明する。 A method for forming an impression on.

【0020】本発明に係るマイクロレンズアレイは、モアレ縞などの現象が起こらない程度に、マイクロレンズの配列がランダムでかつ拡散する光にムラが出ないようにするため、次のようにして製造される。 The microlens array according to the present invention, to the extent that the phenomenon of moire fringes do not occur, because the array of microlenses to avoid being uneven-random and diffuse light, in the following preparation It is. まず、最初に本発明のマイクロレンズアレイ30を形成するために、 First, in order to form the microlens array 30 of the first present invention,
金型基材5の圧痕形成面を金属研磨により鏡面状態に仕上げる。 The imprinted surface of the mold base material 5 mirror-finished state by metal polishing. なお、金型基材の材料としては、結晶質の材料であるマルテンサイト系ステンレス鋼が適している。 As the material of the mold base material, martensitic stainless steel is suitable as a material of the crystalline. また、光学設計により決定されたマイクロレンズアレイを得るために、予め金型に用いる材料と同じ材質のテストピースを使って試し打ちを行い、所定の押し込み深さを得るのに必要なコイルへの供給電圧値を確認しておく。 Further, in order to obtain a microlens array which is determined by the optical design, previously used in the mold with the test pieces of the same material as the material performs the trial, to the required coil to obtain a predetermined indentation depth know the supply voltage value.
なお、本発明の実施の形態であるマイクロレンズアレイには、拡散する光にムラが無く、モアレ縞などが発生しないようにするため、複数種類の圧痕を形成することが必要となる。 Note that the microlens array according to the embodiment of the present invention, no unevenness in light diffused, so that moire fringe is not generated, it is necessary to form a plurality of types of indentations. したがって、圧痕を形成する種類毎に応じて、コイルへの供給電圧値を確認しておくことが必要である。 Therefore, depending on each type of forming the indentations, it is necessary to know the supply voltage to the coil.

【0021】次に、入力装置を用いてコンピュータ24 [0021] Next, the computer 24 using an input device
に、各圧子毎における各列で最初に圧痕を形成する位置と、同じ圧子で形成される圧痕の間隔を入力する。 To the position initially forming the indentations in each row in each indenter, to enter the interval of the indentation formed in the same indenter. また、同じ圧子を用いて各列における最初に圧痕を形成する位置は、ある列で最初に形成される圧痕と、ある列と隣合う列で最初に形成される圧痕とが極力隣り合わないようにすればよい。 Further, first to form the indentations positions in each column using the same indenter, so that the indentation which is initially formed in a column, and indentation which is initially formed in the column adjacent the certain column are not adjacent to each other as much as possible it may be set to. しかしながら、同じ圧痕が全て隣合わないようにしなくとも、それで製造されるマイクロレンズアレイの必要な性能が確保される場合が多い。 However, even without that the same indentation can not Tonariawa all, so often required performance of the microlens array to be manufactured is ensured.

【0022】そこで、本発明の第1の実施の形態では、 [0022] Therefore, in the first embodiment of the present invention,
最初の用いられる一番大きな圧子で形成される圧痕A1 Indentations formed in the first of the biggest indenter used A1
同士が隣合わないように圧痕A1の形成開始位置を設定し、かつ2番目に大きな圧子で形成される圧痕A2と一番大きな圧子で形成される圧痕A1の位置関係がそれぞれ隣合う列で異なるように、圧痕A2の形成開始位置を設定する。 Each other to set the forming start position of the indentation A1 so as not Tonariawa, and the positional relationship of the indentation A1 formed with indentation A2 formed in the second big indenter with largest indenter is different adjacent each column as described above, setting the formation starting position of the indentation A2.

【0023】ちなみに、図1は本発明の第1の実施の形態で金型母材5に圧痕が形成された様子を示しているが、形成された圧痕は図1を見てもわかるように、X軸と平行に列んでいる。 [0023] Incidentally, FIG. 1, as is shown how the indentation in the mold base material 5 is formed in the first embodiment of the present invention, formed indentations can be seen from Figure 1 , and in Retsun parallel to the X axis. この様に同一直線上に列んでいる一つの並びを「列」と言い表している。 A sequence of one that in this way the Retsun on the same straight line that expresses a "column". なお、マイクロレンズアレイの形成方法では、同じ圧子で形成される圧痕の間隔は、それぞれ同じとしている。 In the method for forming the microlens array, the interval of the indentation formed in the same indenter is directed to respectively the same. また、各列におけるそれぞれの圧子の最初に圧痕を形成する位置は、同じ列の隣合う圧痕と少なくとも一部が重なり合うように設定している。 The position of forming a first indentation of the respective indenter in each row is set to at least a portion indentations adjacent the same row overlap. この様に、圧痕が形成されていない領域を極力少なくすることで、拡散性の良いマイクロレンズアレイが作製出来るためである。 Thus, by reducing the area where indentations are not formed as much as possible, because the diffusion of good microlens array can be fabricated. そして、列と列との間隔も、同様な理由で圧痕同士が一部重なり合うように設定する。 Then, the interval between the rows and columns indentation between the same reason can be set to partially overlap.

【0024】ところで、本発明の実施の形態では、4種類の圧子を用いて、圧痕を形成するので、各列毎に、最初に圧痕形成する位置をそれぞれの圧子毎に入力し、そして、更に同じ圧子で形成される圧痕の間隔を入力している。 By the way, in the embodiment of the present invention, by using the four kinds of the indenter, so to form an impression, for each column, enter first the position of indentations formed for each of the indenter, and, further and enter the interval of the indentation formed in the same indenter. 具体的には、図1に示すとおり、まず、コンピュータ24にムービングコイル装置2への供給電圧値V1 Specifically, as shown in FIG. 1, first, the supply voltage to the moving coil device 2 to the computer 24 V1
(圧痕A1加工用),V2(圧痕A2加工用),・・ (For processing indentation A1), V2 (for indentation A2 processing), ...
・,Vn(圧痕An加工用)、X方向への移動距離Pμ ·, Vn (for indentation An machining), moving distance Pμ in the X direction
m(一定)、圧痕A1の一列目の開始位置の座標(x1 m (constant), the first column of the start position of the indentation A1 coordinates (x1
1,y1)、圧痕A1の二列目の開始位置の座標(x12, 1, y1), the second row of the starting position of the indentation A1 coordinates (x12,
y2)、・・・、圧痕A1のm列目の開始位置の座標(x1m,ym)、つづいて圧痕A2の一列目の開始位置の座標(x21,y1)、圧痕A2の二列目の開始位置の座標(x22,y2)、・・・、圧痕A2のm列目の開始位置の座標(x2m,ym)、・・・、圧痕Anの一列目の開始位置の座標(xn1,y1)、圧痕Anの二列目の開始位置の座標(xn2,y2)、・・・、圧痕Anのm y2), ···, m-th column of the start position of the coordinates of the indentation A1 (x1m, ym), followed by the first column of the start position of the indentation A2 coordinates (x21, y1), the start of the second row of indentations A2 position of coordinates (x22, y2), ···, the start position of the m-th column of indentation A2 coordinates (x2m, ym), ···, the coordinates of the first column of the start position of the indentation An (xn1, y1), the coordinates of the second row of the starting position of the indentation An (xn2, y2), ···, of the indentation An m
列目の開始位置の座標(xnm,ym)を入力する。 Th column of the start position of the coordinate (xnm, ym) to enter. なお、本発明の第1の実施の形態では、圧子の種類が4種類なので、n=4となる。 In the first embodiment of the present invention, since the type of the indenter is four, and n = 4. そして、X方向への移動距離Pμmという距離は、圧痕A1、A2、〜Anまでの全ての圧痕の大きさの総和よりも、短めに設定している。 The distance that the moving distance Pμm in the X direction, indentations A1, A2, than the total size of all the indentation to .about.An, is set short so.
なぜなら、それぞれ同じ列で隣り合った圧痕は、一部が重なり合うように形成するためである。 This is because indentation adjacent respectively the same column, in order to form so as to partially overlap. また、開始位置の決定には、本発明の第1の実施の形態では、圧痕A1 Also, the determination of the start position, in the first embodiment of the present invention, indentation A1
の場合のみ、隣の列の同じ圧痕と隣合わないように設定した。 If only, it was set so as not to Tonariawa with the same impression of the adjacent row. 他の圧痕については、少なくともX軸方向と平行に、またはY軸方向と平行に同じ圧痕同士が並ばないようにしている。 For other indentations, in parallel with at least X-axis direction or parallel to the same indentations between the Y-axis direction, it is prevented line up.

【0025】また同時に、金型母材5に圧痕を形成する範囲も、コンピュータ24に入力する。 [0025] At the same time, the range of forming the indentation in the mold base material 5, and inputs to the computer 24. 次に、金型母材5をXYステージ6上の所定の位置に載置し、スタートをかける。 Then, by placing the mold base material 5 at a predetermined position on the XY stage 6, it applies a start. そして、金型母材5上における原点出しを行った後に、圧痕A1の一列目の開始位置の座標(x11, Then, after the origin initialization at the mold base material on 5, one row of the start position of the indentation A1 coordinates (x11,
y1)上に圧子1が位置するように移動する。 y1) indenter 1 is moved to be positioned above. 移動が完了したら、ムービングコイル装置2に電圧V1が供給され、圧子1によって金型母材5の鏡面に圧痕A1が形成される。 When the move is completed, the supply voltage V1 to the moving coil device 2, indentation A1 is formed on the mirror surface of the mold base material 5 by the indenter 1. XYステージ6により金型母材5をX方向にP P of the mold base material 5 in the X direction by the XY stage 6
マイクロメートル(μm)移動する。 Micrometers (μm) to move. 金型母材5が所定の範囲内にあれば、再びムービングコイル装置2に電圧V1が供給され、圧子1によって金型母材5の鏡面に圧痕A1が形成される。 If mold base material 5 is within a predetermined range, it is supplied a voltage V1 to the moving coil device 2 again, indentation A1 is formed on the mirror surface of the mold base material 5 by the indenter 1. この様にしてX方向への移動が圧痕を形成する範囲内であれば前述した動作を繰り返すが、その範囲を越えるとXYステージ6は圧痕A1の二列目(図1のY軸上では、y2)の開始位置の座標(x Such a manner moving in the X direction to repeat the operations described above as long as it is within the range of forming the indentations, but the second row of the XY stage 6 indentations A1 exceeds the range (on the Y axis of Figure 1, y2) of the start position of the coordinates (x
12,y2)上に圧子1が位置するように移動する。 12, y2) indenter 1 is moved to be positioned above.

【0026】そして、ムービングコイル装置2に電圧V [0026] Then, the voltage V to the moving coil device 2
1が供給され、圧子1によって金型母材5の鏡面に圧痕A1が形成される。 1 is supplied, indentations A1 is formed on the mirror surface of the mold base material 5 by the indenter 1. XYステージ6により金型母材5をX方向にPμm移動する。 To Pμm moving mold base material 5 in the X direction by the XY stage 6. そして、圧痕を形成する範囲か否かを判定し、その範囲を越えるような場合は、更に隣の列に移動の開始位置に移動させる。 Then, it is determined whether the range or not to form the indentation, when that exceeds the range is moved to the starting position of the movement further adjacent column. 以上の動作をm m The above operation
列まで繰り返して圧痕A1が金型母材表面の所望の範囲に形成される。 Indentation A1 is repeated until the column is formed in a desired range of the mold base material surface.

【0027】次に、圧痕A2を形成する圧子に変えて、 Next, instead of the indenter to form an indentation A2,
ムービングコイル装置2にその圧子を装着する。 The indenter is attached to the moving coil device 2. そして、XYステージ6は圧痕A2の一列目の開始位置の座標(x21,y1)上に圧子1が位置するように移動する。 Then, XY stage 6 moves as the indenter 1 is positioned on the first column of the start position of the indentation A2 coordinates (x21, y1). ムービングコイル装置2に電圧V2が供給され、圧子1によって金型母材5の鏡面に圧痕A2が形成される。 Voltage V2 to the moving coil device 2 is supplied, indentation A2 is formed on the mirror surface of the mold base material 5 by the indenter 1. 次に、XYステージ6により金型母材5をX方向にPマイクロメートル(μm)移動する。 Then, P micrometers ([mu] m) to move the mold base material 5 in the X direction by the XY stage 6. そして、金型母材5が所定の範囲内にあれば、再びムービングコイル装置に電圧V2が供給され、圧子1によって金型母材5の鏡面に圧痕A2が形成される。 Then, if the mold base material 5 is within a predetermined range, the voltage V2 supplied to the moving coil device again, indentation A2 is formed on the mirror surface of the mold base material 5 by the indenter 1. この様にしてX方向への移動が圧痕を形成する範囲内であれば前述した動作を繰り返すが、その範囲を越えるとXYステージ6は圧痕A Such a manner moving in the X direction to repeat the operations described above as long as it is within a range to form the indentations but, XY stage 6 exceeds that range pitting A
2の二列目(図1のY軸上では、y2)の開始位置の座標(x22,y2)上に圧子1が位置するように移動する。 2 of the second row (on the Y axis in FIG. 1, y2) moves such indenter 1 is positioned on the coordinates of the start position (x22, y2). その後、ムービングコイル装置2に電圧V2が供給され、圧子1によって金型母材5の鏡面に圧痕A2が形成される。 Thereafter, the voltage V2 to the moving coil device 2 is supplied, indentation A2 is formed on the mirror surface of the mold base material 5 by the indenter 1. そして、XYステージ6により金型母材5をX方向にPμm移動する。 Then, Pμm moves the mold base material 5 in the X direction by the XY stage 6.

【0028】以下同様にして圧痕Anまでが金型母材表面の所望の範囲に形成される。 [0028] until the same manner indentation An is formed into the desired range of mold base material surface. この様にして圧痕が形成された金型母材5は、図1に示す形状を有する。 Mold base material 5 which indentations are formed in this manner has a shape shown in FIG. 次に、 next,
金型母材5を金型の一部として用い、金型を形成する。 Using a mold base material 5 as part of the mold to form a mold.
そして、形成された金型にアクリル樹脂を封入し圧縮成形することで、マイクロレンズアレイが製造される。 Then, the formed mold by compression molding enclosing an acrylic resin, a microlens array is manufactured.

【0029】ところで、入射光を反射しつつ拡散させる拡散板の製造方法は、金型の代わりに、拡散板を構成する金属を用い、圧痕が拡散板の所定の面に形成されるまで、マイクロレンズアレイの製造方法と同様な工程を行えばよい。 By the way, the manufacturing method of the diffuser plate to diffuse while reflecting the incident light, instead of the mold, using a metal constituting the diffusion plate, until indentations are formed on the predetermined surface of the diffusion plate, micro it may be performed similar to step in the method of manufacturing the lens array. この様にして作製された拡散板は、図1と同形状を有する。 Diffusing plate which is thus produced has a same shape as FIG. なお、圧痕形成位置の座標入力は光学設計で得られたCADデータをそのままコンピュータ24 Incidentally, as the computer 24 the CAD data coordinate input indentations forming position obtained by optical design
に入力することにより簡略化できる。 It can be simplified by inputting the. なお、この様な場合でも、コンピュータ24に入力されるデータ数が、従来のものと比較して格段に少ないので、転送時間が短縮化することができる。 Even when such a number of data input to the computer 24, so much smaller as compared with the conventional, it is possible to shorten the transfer time.

【0030】また、圧痕A1〜Anの加工を連続して行わず、圧痕A1が終了したら形成状態を確認し、再度スタートをかけて圧痕A2の加工を始めるというような断続的運転を行うこともできる。 [0030] In addition, not continuously carried out the processing of the indentation A1~An, indentation A1 is confirmed the formation state when you are finished, it is also possible to carry out the intermittent operation, such as that begin the process of indentation A2 over the start again it can. また、本発明においては、各列毎に一種類の圧痕が形成し終わったら、圧子を替えて、一列毎に圧痕を形成しても構わない。 In the present invention, once it finished one type of indentations in each row form, instead of the indenter, may be formed indentations for each line. しかし、 But,
この様に圧痕を形成する場合は、圧子を替える回数が増加してしまうという欠点があるが、各列毎に位置補正を行う場合には、この様な方法でも構わない。 When forming the impression in this manner, there is a drawback that the number of times changing the indenter is increased, when performing position correction for each column, it may be in such a way.

【0031】 [0031]

【実施例】次に、実施例を挙げて本発明を説明する。 EXAMPLES The present invention will now be described by way of Examples. 図5は本発明に係るマイクロレンズの一実施例の平面図である。 Figure 5 is a plan view of an embodiment of a microlens according to the present invention. 金型の圧痕加工には、先端が曲率30μmの半球状をしたダイヤモンド圧子を用いている。 The indentation machining of the mold, the tip is a diamond indenter with a semi-spherical curvature 30 [mu] m. この圧子により、圧痕A1大きさφ22μm,深さ2.1μm、圧痕A2大きさφ20μm,深さ1.7μm、圧痕A3大きさφ18μm,深さ1.4μm、圧痕A4大きさφ16 The indenter indentation A1 size Fai22myuemu, depth 2.1 .mu.m, indentation A2 size [phi] 20 [mu] m, depth 1.7 [mu] m, indentation A3 size Fai18myuemu, depth 1.4 [mu] m, indentation A4 size φ16
μm,深さ1.1μmの4種類の圧痕をそれぞれX方向のピッチ68μmで縦27mm,横44mmの範囲で金型表面に形成している。 [mu] m, vertical 27mm at a pitch 68μm four indentations in the X direction each depth 1.1 .mu.m, is formed on the mold surface in a range of horizontal 44 mm. この金型を用いてアクリル樹脂を圧縮成形することにより、L1,L2,L3,L4の4種類のマイクロレンズによって構成されるマイクロレンズアレイ30を製作した。 By compression molding the acrylic resin using this mold was fabricated microlens array 30 configured by L1, L2, L3, L4 4 types of microlenses.

【0032】 [0032]

【発明の効果】以上のように本発明によれば、ムラがなく拡散性のよいマイクロレンズアレイを簡単な方法で製作することができる。 According to the present invention as described above, according to the present invention, it is possible to manufacture a good microlens array diffusivity no unevenness in a simple manner.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明によるマイクロレンズアレイを製造するのに用いた金型の平面図である。 It is a plan view of a mold used to produce the microlens array according to the invention; FIG.

【図2】圧子押圧装置の概略を示す斜視図である。 2 is a perspective view schematically showing the indenter pressing device.

【図3】ムービングコイル装置2の詳細を示す断面図である。 3 is a cross-sectional view showing the details of a moving coil device 2.

【図4】ムービングコイル装置2の動作を説明する図である。 4 is a diagram for explaining the operation of the moving coil device 2.

【図5】本発明によるマイクロレンズアレイの一実施例の平面図である。 It is a plan view of an embodiment of a microlens array according to the present invention; FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1・・・圧子 2・・・ムービングコイル装置 3・・・モータ 5・・・金型母材,金型 6・・・XYステージ 20・・・ステージ駆動回路 21・・・ステージ移動量検知回路 22・・・ムービングコイル駆動回路 23・・・回転角割出し回路 24・・・コンピュータ 30・・・マイクロレンズアレイ 1 ... indenter 2 ... moving coil device 3 ... motor 5 ... die base material, the mold 6 ... XY stage 20 ... stage driver 21 ... stage moving amount detection circuit 22 ... moving coil drive circuit 23 ... rotation angle indexing circuit 24 ... computer 30 ... microlens array

Claims (8)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 径の異なる3種類以上の圧子を用い、圧痕法により被加工物に圧痕を形成することで製造される拡散板の製造方法において、 第1の圧子でもって圧痕を前記被加工物に形成する際には、第1列目の第1の開始位置から、所定方向に等間隔で前記被加工物に圧痕を形成し、 前記第1の圧子でもって形成されるべき圧痕が前記第1 [Claim 1] with different three or more of the indenter diameters, in the manufacturing method of the diffuser plate to be manufactured by forming the indentation on the workpiece by indentation method, the workpiece indentations with a first indenter in forming the object from a first start position of the first column, the indentation is formed on the workpiece at equal intervals in the predetermined direction, the indentations to be formed with a first indenter said first
    列目に全て形成されたら、次に前記第1列目と隣り合う第2列目において、前記第1の開始位置に存在する圧痕と隣合わない位置から圧痕形成を開始し、前記所定の方向に第1列目で形成された圧痕の間隔と同じ間隔で圧痕を形成させ、 次に、前記第1の圧子とは異なる径の第2の圧子でもって圧痕を前記被加工物に形成する際には、前記第1列目上で既に圧痕が形成されていない第2の開始位置から、 When all formed in th column, then in the second row adjacent to the first row, to start an impression formed from a position not Tonariawa and indentations present in the first starting position, the predetermined direction the first row indentation is formed at the same intervals as those of the formed indentation in, then when forming an indentation on the workpiece with a second indenter having different diameters from said first indenter from the second start position is not already indentation formed in the first row superior,
    前記所定方向でかつ前記第1の圧子でもって形成された圧痕の間隔と同じ間隔で圧痕を形成し、 前記第2の圧子でもって形成されるべき圧痕が前記第1 The predetermined direction a and the first indentation is formed at the same intervals as the formation interval of the indentation with at indenter indentation the first to be formed with a second indenter
    列目に全て形成されたら、次に前記第2列目では、前記第1列目での第1の圧子による圧痕と第2の圧子による圧痕との位置関係とは異なる位置関係になる位置から圧痕形成を開始し、前記所定の方向にかつ前記第1の圧子でもって形成された圧痕の間隔と同じ間隔で、前記第2 When all formed in th column, in the next second row, from positions become different positional relationship between the position relationship between the indentation by indentation and a second indenter by the first indenter in the first column start the indentation formed in the predetermined direction and at the same interval as the first interval of the indentation which is formed with at indenter, said second
    の圧子による圧痕を形成させ、 更に、前記第1の圧子および前記第2の圧子とは圧痕の径が異なるそのほかの圧子を用いて圧痕を形成する際には、各列における圧痕形成の開始位置を任意に決定して、圧痕形成を開始し、前記所定の方向にかつ前記第1 Indenter indentation to form by the further wherein the first indenter and said second indenter when forming the indentation by using other indenter having different diameters of the indentations, the start position of the indentations formed in each row the arbitrarily determined, it starts imprinted, and the first in the predetermined direction
    の圧子でもって形成された圧痕の間隔と同じ間隔で圧痕を形成させ、前記被加工物に圧痕を形成することを特徴とする拡散板の製造方法 Method of manufacturing a diffusion plate indentation is formed at the same intervals as the intervals of the indentation which is formed with at indenter, and forming an impression on the workpiece
  2. 【請求項2】 前記圧痕の間隔は、前記被加工物への圧痕形成で用いられる圧子の径を全ての種類足し合わせた長さよりも、短いことを特徴とする請求項1記載の拡散板の製造方法 Wherein spacing of the indentations, said to workpiece than all kinds plus the combined length of the diameter of the indenter used in the imprinted, claim 1 according diffuser plate, wherein the shorter Production method
  3. 【請求項3】 前記所定の方向と平行な方向をX軸、前記被加工物面上で前記所定の方向とは垂直な方向にY軸とした座標上で、前記被加工物上に形成される圧痕の種類をn個とした場合、前記第1列目から第n列目までの前記そのほかの圧子で形成される圧痕の位置のX座標成分は、各々異なるように形成されていることを特徴とする請求項1記載の拡散板の製造方法 Wherein said predetermined X-axis parallel to the direction, the on coordinates above the predetermined direction with the Y-axis in a direction perpendicular on the workpiece surface, is formed on the workpiece If indentation type was used as the n that, X-coordinate component of the position of the indentation formed in the other of the indenter from the first column to the n-th column, that are formed respectively differently method of manufacturing a diffusion plate according to claim 1, wherein
  4. 【請求項4】 径の異なる3種類以上の圧子を用い、圧痕法により金型基材に圧痕を形成し、前記金型基材を用いてマイクレンズアレイを製造する方法において、 第1の圧子でもって圧痕を前記金型基材に形成する際には、第1列目の第1の開始位置から、所定方向に等間隔で前記金型基材に圧痕を形成し、 前記第1の圧子でもって形成されるべき圧痕が前記第1 4. using different three or more of the indenter diameters, indentation is formed on the mold substrate by indentation method, a process for the preparation of the microphone lens array using the mold base material, a first indenter in with in forming indentations in the mold base material from a first start position of the first column to form an impression on the mold substrate at equal intervals in the predetermined direction, said first indenter in having indentations to be formed by said first
    列目に全て形成されたら、次に前記第1列目と隣り合う第2列目において、前記第1の開始位置と隣合わない位置から圧痕形成を開始し、前記所定の方向に前記第1列目で形成された圧痕の間隔と同じ間隔で圧痕を形成させ、 次に、前記第1の圧子とは異なる径の第2の圧子でもって圧痕を前記被加工物に形成する際には、前記第1列目上の既に圧痕が形成されていない第2の開始位置から、 When all formed in th column, then in the second row adjacent to the first row, the indentation formed starting from a position not Tonariawa said first start position, the first in the predetermined direction 1 to form indentations at the same intervals as those of the indentation formed by th column, then, the indentation with the second indenter having different diameters from said first indenter when forming the workpiece, from already second start position is not indentations formed on the first row,
    前記所定方向でかつ前記第1の圧子でもって形成された圧痕の間隔と同じ間隔で前記第2の圧子による圧痕を形成し、 前記第1列目に前記第2の圧子でもって形成されるべき圧痕が全て形成されたら、次に前記第2列目では、前記第1列目での第1の圧子による圧痕と第2の圧子による圧痕との位置関係とは異なる位置関係になる位置から圧痕形成を開始し、前記所定の方向にかつ前記第1の圧子でもって形成された圧痕の間隔と同じ間隔で前記第2の圧子による圧痕を形成させ、 更に、前記第1の圧子及び前記第2の圧子の径とは異なる径を有するそのほかの圧子でもって圧痕を形成する際には、各列における圧痕形成の開始位置を任意に決定して、圧痕形成を開始し、前記所定の方向にかつ前記第1 Wherein forming a predetermined direction a and indentations according to the second indenter at the same interval as the first interval of the indentation which is formed with at indenter, to be formed with a second indenter to the first row When indentations are all formed, in then the second row, indentation from position where the different positional relationship with the position relationship between the indentation by indentation and a second indenter by the first indenter in the first column start the formation, the predetermined direction and indentations is formed by the second indenter at the same interval as the first interval of the indentation which is formed with at indenter, further said first indenter and the second when the diameter of the indenter to form an indentation with at other indenter having different diameters, and arbitrarily determine the starting position of the indentations formed in each row, and start the indentation formed, and in the predetermined direction the first
    の圧子でもって形成された圧痕の間隔と同じ間隔で圧痕を形成させ、前記金型基材に圧痕を形成することを特徴とするマイクロレンズアレイの製造方法 Method of manufacturing at the same intervals as the formation interval of the indentation with at indenter to form an indentation, the microlens array and forming an impression on the mold base
  5. 【請求項5】 前記第1の圧子でもって形成される圧痕の間隔は、前記被加工物への圧痕形成で用いられる圧子の径を全ての種類足し合わせた長さと同じであることを特徴とする請求項4記載のマイクロレンズアレイの製造方法 Interval wherein an indentation is formed with a first indenter, and wherein the same as diameter length obtained by adding all types of indenter used in the indentation formation on the workpiece method of manufacturing a microlens array according to claim 4 wherein
  6. 【請求項6】 前記所定の方向と平行な方向にX軸を、 6. The X-axis in the predetermined direction parallel to the direction,
    前記金型基材上で前記所定の方向とは垂直な方向にY軸とした座標上で、前記金型基材上に形成される圧痕の種類をn個とした場合、第1列目から第n列目までの前記そのほかの圧子が形成されている位置のX座標成分は、 On coordinates from the predetermined direction on the mold base material is a Y-axis perpendicular to the direction, the type of indentations formed on the mold base when n pieces, the first column the X coordinate component of the position where the other of the indenter is formed up to the n-th column,
    各々異なるように形成されていることを特徴とする請求項4記載のマイクロレンズアレイの製造方法 Method of manufacturing a microlens array according to claim 4, wherein each is differently formed
  7. 【請求項7】 径または深さの異なるn種類の凹部を二次元方向に配置してなる拡散板において、 径及び深さの等しい凹部同士の配列間隔が一方向において等間隔で、前記一方向と垂直な方向には、径及び高さの等しい凹部同士が隣り合わないように形成されたことを特徴とする拡散板 7. The diameter or different n types of recess depths arranged two-dimensionally formed by the diffusion plate, at equally spaced arrangement intervals equal recesses between the diameter and depth in one direction, the one direction diffusion plate to the vertical direction and wherein the equal recesses between the radial and height is formed so as not adjacent
  8. 【請求項8】 径または高さの異なるn種類のマイクロレンズを二次元方向に配置してなるマイクロレンズアレイにおいて、 径及び高さの等しいマイクロレンズ同士の配列間隔が一方向において等間隔で、前記一方向と垂直な方向には、 8. The diameter or height different n types of microlens microlens array formed by arranging in a two-dimensional directions, at equal intervals arrangement intervals equal microlenses each other diameter and height in one direction, the first direction and the direction perpendicular
    径及高さの等しいマイクロレンズ同士が隣り合わないように形成されたことを特徴とするマイクロレンズアレイ A microlens array, wherein the 径及 equal microlenses each other in height is formed so as not adjacent
JP31406897A 1997-11-14 1997-11-14 Production process and the diffusion plate of the diffuser, as well as the microlens array manufacturing method and a microlens array Expired - Lifetime JP4243779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31406897A JP4243779B2 (en) 1997-11-14 1997-11-14 Production process and the diffusion plate of the diffuser, as well as the microlens array manufacturing method and a microlens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31406897A JP4243779B2 (en) 1997-11-14 1997-11-14 Production process and the diffusion plate of the diffuser, as well as the microlens array manufacturing method and a microlens array

Publications (2)

Publication Number Publication Date
JPH11142609A true JPH11142609A (en) 1999-05-28
JP4243779B2 JP4243779B2 (en) 2009-03-25

Family

ID=18048849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31406897A Expired - Lifetime JP4243779B2 (en) 1997-11-14 1997-11-14 Production process and the diffusion plate of the diffuser, as well as the microlens array manufacturing method and a microlens array

Country Status (1)

Country Link
JP (1) JP4243779B2 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326230A (en) * 2001-05-07 2002-11-12 Ricoh Co Ltd Method and apparatus for manufacturing mold, and mold and molding
JP2004145328A (en) * 2002-10-04 2004-05-20 Keiwa Inc Optical sheet and back light unit using the same
US6835535B2 (en) 2000-07-31 2004-12-28 Corning Incorporated Microlens arrays having high focusing efficiency
JP2005148427A (en) * 2003-11-17 2005-06-09 Olympus Corp Focus plate original plate and its manufacturing method
JP2005221516A (en) * 2004-02-03 2005-08-18 Olympus Corp Diffusion plate and optical device equipped with the same diffusion plate
US7033736B2 (en) 2000-07-31 2006-04-25 Corning Incorporated Structured screens for controlled spreading of light
US7092165B2 (en) 2000-07-31 2006-08-15 Corning Incorporated Microlens arrays having high focusing efficiency
JP2008213348A (en) * 2007-03-06 2008-09-18 Ricoh Co Ltd Method and device for producing fine shaped form, and die and optical element
US7645057B2 (en) 2005-04-21 2010-01-12 Miraenanotech Co., Ltd. Optical sheet and backlight assembly of liquid crystal display with the same
JP2010151902A (en) * 2008-12-24 2010-07-08 Seiko Epson Corp Screen
JP2010262264A (en) * 2009-04-10 2010-11-18 Seiko Epson Corp Reflective screen, projection system, front projection television, and method for manufacturing reflective screen
US8088325B2 (en) 2007-11-19 2012-01-03 3M Innovative Properties Company Articles and methods of making articles having a concavity or convexity
JP2013522681A (en) * 2010-03-17 2013-06-13 ペリカン イメージング コーポレーションPelican Imaging Corporation Methods for making master imaging lens array
JP5323811B2 (en) * 2008-03-21 2013-10-23 株式会社きもと Light control film, a manufacturing method of the backlight device and the uneven pattern forming mold using the same
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10311649B2 (en) 2017-09-01 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092165B2 (en) 2000-07-31 2006-08-15 Corning Incorporated Microlens arrays having high focusing efficiency
US6835535B2 (en) 2000-07-31 2004-12-28 Corning Incorporated Microlens arrays having high focusing efficiency
US7033736B2 (en) 2000-07-31 2006-04-25 Corning Incorporated Structured screens for controlled spreading of light
JP2002326230A (en) * 2001-05-07 2002-11-12 Ricoh Co Ltd Method and apparatus for manufacturing mold, and mold and molding
JP2004145328A (en) * 2002-10-04 2004-05-20 Keiwa Inc Optical sheet and back light unit using the same
JP2005148427A (en) * 2003-11-17 2005-06-09 Olympus Corp Focus plate original plate and its manufacturing method
JP4527967B2 (en) * 2003-11-17 2010-08-18 オリンパス株式会社 Focusing plate master and a production method thereof
JP2005221516A (en) * 2004-02-03 2005-08-18 Olympus Corp Diffusion plate and optical device equipped with the same diffusion plate
US7645057B2 (en) 2005-04-21 2010-01-12 Miraenanotech Co., Ltd. Optical sheet and backlight assembly of liquid crystal display with the same
JP2008213348A (en) * 2007-03-06 2008-09-18 Ricoh Co Ltd Method and device for producing fine shaped form, and die and optical element
US8088325B2 (en) 2007-11-19 2012-01-03 3M Innovative Properties Company Articles and methods of making articles having a concavity or convexity
JP5323811B2 (en) * 2008-03-21 2013-10-23 株式会社きもと Light control film, a manufacturing method of the backlight device and the uneven pattern forming mold using the same
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9060121B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9049390B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of images captured by arrays including polychromatic cameras
US9055213B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9077893B2 (en) 2008-05-20 2015-07-07 Pelican Imaging Corporation Capturing and processing of images captured by non-grid camera arrays
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9235898B2 (en) 2008-05-20 2016-01-12 Pelican Imaging Corporation Systems and methods for generating depth maps using light focused on an image sensor by a lens element array
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
JP2010151902A (en) * 2008-12-24 2010-07-08 Seiko Epson Corp Screen
JP2010262264A (en) * 2009-04-10 2010-11-18 Seiko Epson Corp Reflective screen, projection system, front projection television, and method for manufacturing reflective screen
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
JP2013522681A (en) * 2010-03-17 2013-06-13 ペリカン イメージング コーポレーションPelican Imaging Corporation Methods for making master imaging lens array
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10311649B2 (en) 2017-09-01 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing

Also Published As

Publication number Publication date
JP4243779B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
Golini et al. Precision optics fabrication using magnetorheological finishing
JP2715527B2 (en) Three-dimensional shape forming method
KR101192624B1 (en) Systems and methods for fabricating microstructures by imaging a radiation sensitive layer sandwiched between outer layers, and microstructures fabricated thereby
US5239892A (en) Rotating device
JP4145978B2 (en) The optical shaping apparatus and method
JP3938714B2 (en) Exposure apparatus
Gale et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists
CN101628477B (en) Process for the production of a three-dimensional object with resolution improvement by ''pixel-shift''
DE69908120T2 (en) An optical scanning microscope with a large field, high scanning speed
US5116174A (en) Method and apparatus for manufacturing jewelry, and an article of jewelry made thereby
EP0676275A1 (en) Stereolithographic exposure head
JP3373518B2 (en) Micro lens manufacturing method and apparatus
CN100430685C (en) Systems and methods for rapidly automatically focusing a machine vision inspection system
DE19680863B4 (en) A method for producing optical surfaces, and processing machine for carrying out the method
US8540906B2 (en) Method of molding, process for producing lens, molding apparatus, process for producing stamper, master production apparatus, stamper production system, and stamper production apparatus
US5695895A (en) Randomised mask for a diffusing screen
EP1894705B1 (en) Method and device for creating a three dimensional object with resolution enhancement by means of pixel shift
US6862141B2 (en) Optical substrate and method of making
US5687031A (en) Three-dimensional image acquisition apparatus
US20030205851A1 (en) Device and method for producing freely formed products
US4089608A (en) Non-contact digital contour generator
GB1593050A (en) Contact sensing probe
DE69530452T2 (en) Method and apparatus for energy beam machining
JP4607881B2 (en) Systems and methods for forming optical microstructures using a radiation beam which is cylinder-shaped platform and raster scan
EP0732624A2 (en) Fabrication method with energy beam and fabrication apparatus therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term