JP5266112B2 - Manufacturing method of lens array for three-dimensional image - Google Patents

Manufacturing method of lens array for three-dimensional image Download PDF

Info

Publication number
JP5266112B2
JP5266112B2 JP2009067784A JP2009067784A JP5266112B2 JP 5266112 B2 JP5266112 B2 JP 5266112B2 JP 2009067784 A JP2009067784 A JP 2009067784A JP 2009067784 A JP2009067784 A JP 2009067784A JP 5266112 B2 JP5266112 B2 JP 5266112B2
Authority
JP
Japan
Prior art keywords
lens
photo
ring
resin
lens array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009067784A
Other languages
Japanese (ja)
Other versions
JP2010223976A (en
Inventor
洪恩 廖
健純 土肥
誠 岩原
Original Assignee
有限会社ディー・エッチ・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ディー・エッチ・エス filed Critical 有限会社ディー・エッチ・エス
Priority to JP2009067784A priority Critical patent/JP5266112B2/en
Publication of JP2010223976A publication Critical patent/JP2010223976A/en
Application granted granted Critical
Publication of JP5266112B2 publication Critical patent/JP5266112B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lens array for a three-dimensional image and a method for manufacturing the same, for simply achieving high lens disposition accuracy, and having high and uniform optical performance of individual lenses. <P>SOLUTION: The high performance lens array for a three-dimensional image is obtained as follows. A ring which is circular inside and has a surface hard to wet by liquid-like photo-curable resin is made to closely adhere to a certain portion of a transparent substrate, a fixed amount of the liquid-like photo-curable resin is dripped in the ring, and when the liquid-like resin spreads all over the inside of the ring and also it is formed into a domed-shape by surface tension, and the photo-curable resin is cured like a dome by irradiating light to form one lens. The lenses thus formed by a dome of photo-curable resin are arranged in two dimensions on the transparent substrate by repeating a series of operations from positioning of the ring to curing of photo-curable resin while the position on the transparent substrate is varied. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、特に、インテグラルフォトグラフィー(IP)やインテグラルビデオグラフィー(IV)に重要な微小凸レンズアレイを高精度かつ容易に製作する方法に関する。   In particular, the present invention relates to a method of manufacturing a micro convex lens array important for integral photography (IP) and integral videography (IV) with high accuracy and ease.

三次元画像表示方法の一つである「インテグラルフォトグラフィー(IP)」や、その画像群の表示を電子化し動画にも対応させた「インテグラルビデオグラフィー(IV)」においては、微小凸レンズを二次元的に並べた凸レンズアレイとその焦点面に配した画像群を組み合わせることにより、1.特殊なメガネを掛けることなく裸眼で三次元像が観察できる。2.複数の観察者が同時に観察できる。3.観察者が上下左右前後に移動しても空間に定位した三次元像が得られ、かつ三次元像に歪が無い、といった優れた特長をもつ三次元画像が得られる。   In “Integral Photography (IP)”, which is one of the three-dimensional image display methods, and “Integral Videography (IV)” in which the display of the image group is digitized to support moving images, a micro convex lens is used. By combining a two-dimensionally arranged convex lens array and a group of images arranged on its focal plane, A three-dimensional image can be observed with the naked eye without wearing special glasses. 2. Multiple observers can observe at the same time. 3. Even if the observer moves up and down, left and right and back and forth, a three-dimensional image localized in space can be obtained, and a three-dimensional image having excellent features such as no distortion in the three-dimensional image can be obtained.

この方式は約100年前に提案されていて、理論的に優れた三次元像を記録再生可能な優れた方式であるにもかかわらず、現在でも未だ広く実用に供されるには至っていない。その大きな原因はこのレンズアレイの製造の難しさにある。   This method was proposed about 100 years ago, and even though it is an excellent method capable of recording and reproducing a theoretically excellent three-dimensional image, it has not yet been put to practical use. The major cause is the difficulty in manufacturing this lens array.

個々のレンズが結像レンズであるため、光学的に優れたレンズであることと、焦点距離等がよく揃っていること、レンズの配置精度が優れていること等が要求されるが、例えば樹脂板を直接切削や研削で加工しようとしても、凸面が並んでいる面を製作しなければならないことから、切削工具が隣のレンズ表面と干渉し、加工できない。樹脂板を熱プレス成形する金型であれば、凹面が並んだ形状なのでその加工時に隣のレンズ表面が切削工具と干渉することは避けられるが、高画質の三次元像を得るためのレンズアレイなら、レンズの個数が数万個から数十万個必要で、これだけの個数の精密な窪みを欠陥無く加工することは極めて困難であった。   Since each lens is an imaging lens, it is required to be an optically superior lens, to have a good focal length, etc., and to have excellent lens placement accuracy. Even if the plate is to be processed directly by cutting or grinding, the surface on which the convex surfaces are arranged must be manufactured, so that the cutting tool interferes with the adjacent lens surface and cannot be processed. If it is a mold that heat-presses a resin plate, the concave lens is arranged side by side, so it is possible to avoid the adjacent lens surface from interfering with the cutting tool during processing, but a lens array to obtain a high-quality three-dimensional image. Then, tens of thousands to hundreds of thousands of lenses are required, and it was extremely difficult to process such a number of precise depressions without defects.

簡単な製造方法として、光硬化インクをスクリーン印刷する方法が知られている。この製法を簡単に説明すると、円形開口が規則正しく配列された厚みのあるスクリーンと透明な光硬化インクを用いて透明基板に印刷し、透明インクが厚く塗られた円形部分が規則正しく並んだ印刷物が作られる。印刷して数秒から数十秒経つと、透明インクはそれ自身の表面張力で表面が球面に近くなるので、その頃を見計らって光を当て透明インクを硬化させると、透明基板に凸レンズが規則正しく並んだもの(レンズアレイ)ができる。   As a simple manufacturing method, a method of screen printing a photocurable ink is known. Briefly describing this manufacturing method, a printed material is printed on a transparent substrate using a thick screen with transparent openings arranged in a regular pattern and transparent light-curing ink, and circular parts coated with thick transparent ink are regularly arranged. It is done. After a few seconds to several tens of seconds after printing, the surface of the transparent ink becomes close to a spherical surface due to its own surface tension, so if you look at that time and apply the light to cure the transparent ink, the convex lenses are regularly arranged on the transparent substrate. A thing (lens array) is made.

この製法で製作されたレンズアレイが三次元画像用として用いられることも多いが、印刷時にスキジーの移動に伴うスクリーンの移動により、レンズの配置精度を高精度にすることが難しく、また、厚く印刷された円形状のインクは硬化させるまで徐々に周囲に広がり、出来上がる各レンズの半径を安定させにくい。さらに、個々のレンズの外形が細かい凹凸のある円形で真円ではなく、印刷の僅かな条件の変化で、インクの付着量が変化し、出来上がるレンズの直径が揃わないこともしばしば生じ、レンズアレイ全域に特性の揃った高精度の光学レンズが並んだレンズアレイを得るのが困難な製法であった。   The lens array produced by this manufacturing method is often used for 3D images, but it is difficult to increase the lens placement accuracy due to the movement of the screen accompanying the movement of the squeegee during printing. The formed circular ink gradually spreads around until it is cured, and it is difficult to stabilize the radius of each lens that is completed. In addition, the outer shape of each lens is not round and round with fine irregularities, and a slight change in printing conditions often changes the amount of ink attached, resulting in uneven lens diameters. It was difficult to obtain a lens array in which high-precision optical lenses with uniform characteristics were arranged in the entire area.

三次元画像の記録再生に使用するレンズアレイは、高性能なものは製作が非常に困難であったし、スクリーン印刷を用いた簡単な製法では高性能なものが製作できなかった。   A high-performance lens array used for recording and reproducing three-dimensional images is very difficult to manufacture, and a high-performance lens array cannot be manufactured by a simple manufacturing method using screen printing.

各レンズの配置や特性が悪いと、ボケの大きい三次元像しか得られなかったり、見る方向により異なる歪みを持つ三次元画像となり、高品質の三次元画像が得られない。   If the arrangement and characteristics of each lens are poor, only a three-dimensional image with a large blur can be obtained, or a three-dimensional image with different distortions depending on the viewing direction, and a high-quality three-dimensional image cannot be obtained.

そこで、本発明は、スクリーン印刷を用いた簡単な製法の長所を踏襲しながら、レンズ配置精度を高め、個々のレンズの光学的性能を高める方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a method for improving the lens placement accuracy and improving the optical performance of each lens while following the advantages of a simple manufacturing method using screen printing.

以上の課題を解決するために、透明基板のある箇所に、内側が円形で液状光硬化樹脂に濡れにくい表面を持ったリングを密着させ、該リングの中に一定量の前記液状光硬化樹脂を滴下し、該液状樹脂がリングの内側全体に拡がるとともに表面張力でドーム形状になったところで、光を照射し光硬化樹脂をドーム状に硬化させて一つのレンズを形成し、該透明基板上で位置を変えて前記リングの位置決めから光硬化性樹脂の硬化までの一連の操作を繰り返すことにより、光硬化樹脂のドームにより形成されたレンズを該透明基板上に二次元的に配列したことを特徴とする三次元画像用レンズアレイ製造方法を提供するIn order to solve the above-described problems, a ring having a circular inner surface and a surface that is difficult to wet with the liquid photo-curing resin is adhered to a portion of the transparent substrate, and a certain amount of the liquid photo-curing resin is placed in the ring. When the liquid resin spreads over the entire inside of the ring and forms a dome shape due to surface tension, light is irradiated to cure the photocurable resin into a dome shape to form a single lens on the transparent substrate. The lens formed by the photo-curing resin dome is two-dimensionally arranged on the transparent substrate by repeating a series of operations from positioning the ring to curing the photo-curing resin by changing the position. to provide a method of manufacturing a three-dimensional image for Les Nzuarei to.

本発明によれば、レンズアレイの個々の凸レンズ形状を透明樹脂の表面張力でレンズを製作するという点はスクリーン印刷法と同様で金型が不要だという大きな特長を持ちながら、内側が円形で光硬化樹脂に濡れにくいリングを用いて光硬化樹脂の拡がる寸法及び形状を規制することで、個々のレンズの円形の外形及び直径を正確に揃え、また、ディスペンサ装置を用いることで個々のレンズに必要な光硬化樹脂の量を安定させると共に、位置決め精度に優れた3軸リニアステージで該円形リングを移動することにより、直径も形状も配置精度も精巧な凸レンズアレイを簡単に製作することができる。   According to the present invention, the lens is manufactured by using the surface tension of the transparent resin for each convex lens shape of the lens array, which is similar to the screen printing method. By using a ring that is hard to get wet with the cured resin, the size and shape of the light-curing resin that spreads are regulated, so that the circular outer shape and diameter of each lens are precisely aligned, and it is necessary for each lens by using a dispenser device. By moving the circular ring with a three-axis linear stage having excellent positioning accuracy while stabilizing the amount of a light-curing resin, it is possible to easily manufacture a convex lens array having a precise diameter, shape, and placement accuracy.

個々のレンズのレンズ面形状は、光硬化樹脂の表面張力により生じる球面を利用して製作するので、同一の円形リングで全てのレンズを製作することと、正確に一定量滴下できるディスペンサを組み合わせることで光学特性の揃ったレンズ群が製作されるし、該光硬化樹脂の表面張力で得られる正確な球面をそのまま光で硬化させるため、光学特性の優れた球面レンズが得られる。   The lens surface shape of each lens is manufactured using a spherical surface generated by the surface tension of the photo-curing resin, so all lenses are manufactured with the same circular ring, and a dispenser that can accurately drop a certain amount is combined. Thus, a lens group with uniform optical characteristics is manufactured, and an accurate spherical surface obtained by the surface tension of the photo-curing resin is cured as it is, so that a spherical lens having excellent optical characteristics can be obtained.

本発明の一実施例によるレンズアレイを製作するための、最初の工程を示す図FIG. 3 shows an initial process for fabricating a lens array according to an embodiment of the present invention. 滴下した光硬化樹脂が円形ドーム状になった状態を示す図The figure which shows the state where dripped photocuring resin became circular dome shape 円形ドーム状の光硬化樹脂を硬化させる工程を示した図Diagram showing the process of curing a circular dome-shaped photo-curing resin 最初の凸レンズが完成し、リングを基板から離した状態を示す図The figure which shows the state where the first convex lens was completed and the ring was separated from the substrate 2番目のレンズ製作の最初の工程を示す図Diagram showing the first process of manufacturing the second lens 2番目に滴下した光硬化樹脂が円形ドーム状になった状態を示す図The figure which shows the state in which the photocured resin dripped 2nd became circular dome shape 2番目の円形ドーム状光硬化樹脂を硬化させる工程を示した図The figure which showed the process of hardening 2nd circular dome shape photocuring resin 2個の凸レンズが完成し、リングを基板から離した状態を示す図The figure which shows the state which completed two convex lenses and separated the ring from the substrate 3番目のレンズ製作の最初の工程を示す図Diagram showing the first process of manufacturing the third lens レンズ群が1列完成した状態を示す図The figure which shows the state which completed the lens group 1 row. レンズ群を二次元的に配列したレンズアレイの斜視図(完成図)A perspective view of a lens array in which lens groups are arranged two-dimensionally (completed drawing)

以下本発明を実施するための最良の形態を、実施例により詳しく説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

本発明による三次元画像用レンズアレイの製造装置を、図1に示す。1は本発明のレンズアレイ製造装置のベースであり、1bは柱、1cは上部梁である。   An apparatus for manufacturing a three-dimensional image lens array according to the present invention is shown in FIG. 1 is a base of the lens array manufacturing apparatus of the present invention, 1b is a column, and 1c is an upper beam.

柱1bはベース1上に固着され、梁1cは2本の柱1b上に固着されている。   The column 1b is fixed on the base 1, and the beam 1c is fixed on the two columns 1b.

2は前後動用リニアステージで、ベース1に固着されている。2bは該リニアステージ2の可動ステージで紙面に直交する方向(前後)に移動可能である。   Reference numeral 2 denotes a linear stage for back and forth movement, which is fixed to the base 1. 2b is a movable stage of the linear stage 2 and is movable in a direction (front and back) perpendicular to the paper surface.

2cは加工物を乗せる可動テーブルでステージ2bの上に固着されていて、加工物を乗せる面はほぼ水平に設置されている。3は左右動用リニアステージで、該梁1cに固着されている。   2c is a movable table on which the workpiece is placed, and is fixed on the stage 2b, and the surface on which the workpiece is placed is set substantially horizontally. Reference numeral 3 denotes a linear stage for lateral movement, which is fixed to the beam 1c.

3bは該リニアステージの可動ステージで、紙面の左右方向に移動可能である。   3b is a movable stage of the linear stage, and is movable in the left-right direction on the paper surface.

4及び5は上下動用のリニアステージで、金具3cを介して左右動可動ステージ3bに固着されている。   Reference numerals 4 and 5 denote linear stages for vertical movement, which are fixed to the left-right movable stage 3b via a metal fitting 3c.

4bはリニアステージ4の可動ステージ、5bはリニアステージ5の可動ステージで、共に上下方向に移動可能である。   4b is a movable stage of the linear stage 4, and 5b is a movable stage of the linear stage 5, both of which are movable in the vertical direction.

6はディスペンサで、中には光硬化樹脂が充填されていて、コンピュータ(図には記載されていない)からの信号に従って先端の細いノズルから一定量の光硬化樹脂を吐出する。   A dispenser 6 is filled with a photo-curing resin, and discharges a certain amount of photo-curing resin from a nozzle with a thin tip according to a signal from a computer (not shown in the figure).

7は本発明の要である支持アーム付きリングで、リングの内側は円形で光硬化樹脂に濡れにくいフッ素樹脂加工が施されていて可動ステージ5bに固着されている。この図では、可動ステージ5bを駆動しリング7の全面が基板9に密着している状態を示している。また、この図ではリング7は断面図として表示している。   Reference numeral 7 denotes a ring with a supporting arm, which is the key of the present invention. The inner side of the ring is circular and is subjected to fluororesin processing that is difficult to wet with the photo-curing resin, and is fixed to the movable stage 5b. This figure shows a state in which the movable stage 5 b is driven and the entire surface of the ring 7 is in close contact with the substrate 9. In this figure, the ring 7 is shown as a sectional view.

8は点灯するとリング7内の基板9をほぼ一様に照明できる光硬化樹脂の硬化用光源で、リング7に固着されている。   8 is a light source for curing a photo-curing resin that can illuminate the substrate 9 in the ring 7 almost uniformly when it is lit.

9は製作するレンズアレイの透明ガラス基板である。   Reference numeral 9 denotes a transparent glass substrate of the lens array to be manufactured.

10はディスペンサ6の中の光硬化樹脂がコンピュータからの信号に従って所定量が先端の細いノズルから吐出した光硬化樹脂である。   Reference numeral 10 denotes a photo-curing resin that is discharged from a nozzle having a thin tip by a predetermined amount according to a signal from the computer.

10cは既に硬化した光硬化樹脂により形成された凸レンズであり、該基板9に固着している。   Reference numeral 10 c denotes a convex lens made of a photocured resin that has already been cured, and is fixed to the substrate 9.

図には記載していないが、リニアステージ2、リニアステージ3、リニアステージ4、リニアステージ5、ディスペンサ6、光源8は、それぞれのドライバを介して1台のコンピュータから制御されている。   Although not shown in the figure, the linear stage 2, the linear stage 3, the linear stage 4, the linear stage 5, the dispenser 6, and the light source 8 are controlled from a single computer via respective drivers.

以下、図1から図11を用いてレンズアレイの製造工程を詳細に説明する。   Hereinafter, the manufacturing process of the lens array will be described in detail with reference to FIGS.

図1は、本発明による凸レンズアレイ製作の最初の工程を示している。   FIG. 1 shows the first step of fabricating a convex lens array according to the present invention.

まず、リニアステージ5を駆動し透明ガラス基板9に円形リング7を密着させた後、ディスペンサ6のノズル先端が光硬化樹脂を基板9に滴下するのに適した高さになるようにリニアステージ4を駆動し、最後にディスペンサ6を駆動し光硬化樹脂10をガラス基板上に密着させたリング7のほぼ中央に滴下させている状態を示している。   First, the linear stage 5 is driven to bring the circular ring 7 into close contact with the transparent glass substrate 9, and then the linear stage 4 so that the nozzle tip of the dispenser 6 has a height suitable for dropping the photo-curing resin onto the substrate 9. , And finally, the dispenser 6 is driven and the photo-curing resin 10 is dripped almost at the center of the ring 7 in close contact with the glass substrate.

図2は、図1の次の工程を示す図で、滴下した光硬化樹脂10bが円形リング7内全面に拡がるとともに、リング7の内側はフッ素樹脂加工してあり光硬化樹脂10bで濡れにくいので、光硬化樹脂10bのガラス基板9に触れていない側の表面は光硬化樹脂10bの表面張力できれいな球面になる(滴下中の光硬化樹脂を10で表したのに対し、片面がガラス基板に密着し、表面が球面になった液状の光硬化樹脂を10bで表している。)。   FIG. 2 is a diagram showing the next step of FIG. 1, and the dripped photo-curing resin 10b spreads over the entire surface of the circular ring 7, and the inside of the ring 7 is processed with fluororesin so that it is difficult to get wet with the photo-curing resin 10b. The surface of the photo-curing resin 10b on the side not touching the glass substrate 9 becomes a clean spherical surface due to the surface tension of the photo-curing resin 10b (the photo-curing resin being dropped is represented by 10, whereas one side is the glass substrate) A liquid photo-curing resin that is in close contact and has a spherical surface is represented by 10b).

図3は、光硬化樹脂10bを硬化させている工程を示す図である。   FIG. 3 is a diagram illustrating a process of curing the photocurable resin 10b.

まず、ディスペンサ6のノズル先端の光硬化樹脂を硬化させないために、ステージ4を駆動しディスペンサ6を光源8から遠ざける。   First, the stage 4 is driven and the dispenser 6 is moved away from the light source 8 in order not to cure the photo-curing resin at the tip of the nozzle of the dispenser 6.

次に、液状光硬化樹脂10bの表面がきれいな球面になるのを待って、光源8を一定時間点灯し、液状光硬化樹脂10bを硬化させ、平凸レンズ形状の固体の光硬化樹脂10cになる。   Next, after waiting for the surface of the liquid photocurable resin 10b to become a clean spherical surface, the light source 8 is turned on for a certain period of time to cure the liquid photocurable resin 10b, resulting in a plano-convex lens-shaped solid photocurable resin 10c.

図4は、図3の次の工程を示す図で、液状光硬化樹脂10bが硬化し、個体の光硬化樹脂による平凸レンズ10cになった後に、コンピュータからの信号によりリニアステージ6を駆動し、リング7をガラス基板9から離した状態を示している。   FIG. 4 is a diagram showing the next step of FIG. 3. After the liquid photocurable resin 10 b is cured and becomes a plano-convex lens 10 c made of a solid photocured resin, the linear stage 6 is driven by a signal from the computer, A state in which the ring 7 is separated from the glass substrate 9 is shown.

図5は、図4の次の工程を示す図で、完成した第1の凸レンズ10cの隣に第2の凸レンズを製作する工程に移った最初の状態を示している。   FIG. 5 is a diagram showing the next step of FIG. 4 and shows an initial state in which a second convex lens is manufactured next to the completed first convex lens 10c.

図3の状態から、リニアステージ3に信号を送り、製作するレンズアレイのレンズピッチだけ可動ステージ3bを右に移動させる。   From the state of FIG. 3, a signal is sent to the linear stage 3, and the movable stage 3b is moved to the right by the lens pitch of the lens array to be manufactured.

可動ステージ3cには金具3cを介してリニアステージ4、同可動ステージ4b、ディスペンサ6,リニアステージ5、同可動ステージ5b、リング7、光源8が搭載されているので、それらも全てレンズピッチ分右に移動する。   Since the movable stage 3c is equipped with the linear stage 4, the movable stage 4b, the dispenser 6, the linear stage 5, the movable stage 5b, the ring 7, and the light source 8 through the metal fitting 3c, all of them are also moved to the right by the lens pitch. Move to.

リニアステージ3が所定位置に移動した後、リニアステージ5を駆動しリング7をガラス基板9へ密着させる。   After the linear stage 3 moves to a predetermined position, the linear stage 5 is driven to bring the ring 7 into close contact with the glass substrate 9.

その後、ディスペンサ6のノズル先端が光硬化樹脂を基板9に滴下するのに適した高さになるようにリニアステージ4を駆動し、最後にディスペンサ6を駆動し光硬化樹脂10をガラス基板上に密着させたリング7のほぼ中央に滴下させる。   Thereafter, the linear stage 4 is driven so that the nozzle tip of the dispenser 6 has a height suitable for dropping the photocurable resin onto the substrate 9, and finally the dispenser 6 is driven to place the photocurable resin 10 on the glass substrate. It is dripped in the substantially center of the ring 7 which was stuck.

この状態は、ガラス基板には既に硬化した光硬化樹脂により形成された凸レンズ10cが1個固着していることと、レンズ可動ステージ3bとそれに搭載された機器の位置が製作するレンズアレイのレンズピッチ分右に移動している以外は図1と全く同じである。   In this state, one convex lens 10c formed of an already hardened photo-curing resin is fixed to the glass substrate, and the lens pitch of the lens array produced by the position of the lens movable stage 3b and the equipment mounted thereon. Except for moving right by minute, it is exactly the same as FIG.

図6は、図5の次の工程を示す図で、滴下した光硬化樹脂10bが円形リング7内全面に拡がり、表面が球面になった液状の光硬化樹脂10bを生じる。   FIG. 6 is a diagram showing the next step of FIG. 5, and the dripped photocurable resin 10 b spreads over the entire surface of the circular ring 7, resulting in a liquid photocurable resin 10 b having a spherical surface.

この工程は、ガラス基板には既に硬化した光硬化樹脂により形成された凸レンズ10cが1個固着していることと、レンズ可動ステージ3bとそれに搭載された機器の位置が製作するレンズアレイのレンズピッチ分右に移動している以外は図2と全く同じである。   In this process, one convex lens 10c formed of a photocured resin that has already been cured is fixed to the glass substrate, and the lens pitch of the lens array that is produced by the position of the lens movable stage 3b and the device mounted thereon. Except for moving right by minute, it is exactly the same as FIG.

図7は、図6の次の工程を示す図で、光硬化樹脂10bを硬化させる図3と同様の工程を示す図である。   FIG. 7 is a diagram showing the next step of FIG. 6 and showing the same step as FIG. 3 for curing the photo-curing resin 10b.

この工程も、ガラス基板には既に硬化した光硬化樹脂により形成された凸レンズ10cが1個固着していることと、レンズ可動ステージ3bとそれに搭載された機器の位置が製作するレンズアレイのレンズピッチ分右に移動している以外は図3と全く同じなので、動作の説明は省略する。   In this process as well, one convex lens 10c formed of a photocured resin that has already been cured is fixed to the glass substrate, and the lens pitch of the lens array produced by the position of the lens movable stage 3b and the device mounted thereon. Since it is exactly the same as FIG. 3 except that it has moved to the right, description of the operation will be omitted.

図8は、図7の次の工程を示す図で、液状光硬化樹脂10bが硬化し、個体の光硬化樹脂による平凸レンズ10cになった後に、コンピュータからの信号によりリニアステージ6を駆動し、リング7をガラス基板9から離した状態を示している。   FIG. 8 is a diagram showing the next step of FIG. 7, after the liquid photocurable resin 10 b is cured to become a plano-convex lens 10 c made of an individual photocurable resin, the linear stage 6 is driven by a signal from the computer, A state in which the ring 7 is separated from the glass substrate 9 is shown.

この工程も、ガラス基板に固着している硬化した光硬化樹脂により形成された凸レンズ10cが2個になったことと、可動ステージ3bとそれに搭載された機器の位置が製作するレンズアレイのレンズピッチ分右に移動している以外は図4と全く同じである。   Also in this process, there are two convex lenses 10c formed of a cured photo-curing resin fixed to the glass substrate, and the lens pitch of the lens array produced by the position of the movable stage 3b and the equipment mounted thereon. Except for moving right by minute, it is exactly the same as FIG.

図9は、図8の次の工程を示す図で、完成した2個の凸レンズ10cの隣に第3の凸レンズを製作する工程に移った最初の状態を示している。   FIG. 9 is a diagram showing the next step of FIG. 8 and shows an initial state in which a third convex lens is manufactured next to two completed convex lenses 10c.

この工程も、ガラス基板には既に硬化した光硬化樹脂により形成された凸レンズ10cが1個固着していることと、レンズ可動ステージ3bとそれに搭載された機器の位置が製作するレンズアレイのレンズピッチ分右に移動している以外は図1や図5と全く同じなので動作の説明は省略する。   In this process as well, one convex lens 10c formed of a photocured resin that has already been cured is fixed to the glass substrate, and the lens pitch of the lens array produced by the position of the lens movable stage 3b and the device mounted thereon. Except for the movement to the right, it is exactly the same as FIG. 1 and FIG.

このように、可動ステージ3bとそれに搭載された機器の位置をレンズピッチ分右に移動させては図1〜図4に示した工程を繰り返すことによりレンズアレイの1列分のレンズ群が完成する。これを図10に示す。   As described above, the position of the movable stage 3b and the equipment mounted thereon is moved to the right by the lens pitch, and the steps shown in FIGS. 1 to 4 are repeated to complete a lens group for one column of the lens array. . This is shown in FIG.

レンズアレイの1列分のレンズ群が完成した後は、リニアステージ2を駆動し、レンズ1ピッチ分可動ステージ2bとそれに搭載されたテーブル2c、ガラス基板9を奥に移動させるとともに、可動ステージ3bを図1の位置に移動し、次の列のレンズ群の製作に取り掛かる。   After the lens group for one row of the lens array is completed, the linear stage 2 is driven to move the movable stage 2b, the table 2c mounted thereon, and the glass substrate 9 by one lens pitch, and the movable stage 3b. 1 is moved to the position shown in FIG. 1, and the next lens group is manufactured.

次の列のレンズ群製作工程は、ガラス基板には既に硬化した光硬化樹脂により形成された複数の凸レンズ10cが1列固着していることと、レンズ可動ステージ2bとそれに搭載されたテーブル2c、ガラス基板9の位置が製作するレンズアレイのレンズピッチ分奥に移動している以外は図1〜図9の工程と全く同じなので動作の説明は省略する。   In the lens group manufacturing process of the next row, a plurality of convex lenses 10c formed of a photocured resin that has already been cured are fixed to the glass substrate in one row, a lens movable stage 2b and a table 2c mounted thereon, Since the position of the glass substrate 9 is moved to the back of the lens pitch of the lens array to be manufactured, it is exactly the same as the steps of FIGS.

2列目のレンズ群が完成すれば、ガラス基板9をレンズ1ピッチ分奥に移動させるとともに、図1〜図9の工程を繰り返す。   If the lens group of the 2nd row is completed, while moving the glass substrate 9 back 1 lens pitch, the process of FIGS. 1-9 is repeated.

さらに、製作するレンズアレイのレンズ列数だけ図1〜図9の工程を繰り返すことで、二次元にレンズが並んだレンズアレイが完成する。   Furthermore, by repeating the steps of FIGS. 1 to 9 by the number of lens rows of the lens array to be manufactured, a lens array in which lenses are arranged in two dimensions is completed.

図11は、このようにして完成したレンズアレイの斜視図である。   FIG. 11 is a perspective view of the lens array thus completed.

この図ではレンズアレイの配列が縦横等距離の碁盤の目状のものを示したが、縦横のピッチが異なるものや、蜂の巣状配列等、他の配列も本発明の方法で製作することができる。   In this figure, the arrangement of the lens array is shown as a grid pattern of equidistant vertical and horizontal distances, but other arrangements such as those having different vertical and horizontal pitches and honeycomb arrangements can also be produced by the method of the present invention. .

説明した実施例では、レンズアレイの基板として透明板ガラスを用いたもので説明したが、目的によっては透明樹脂板を基板にすることもある。   In the embodiment described above, a transparent plate glass is used as the substrate of the lens array. However, depending on the purpose, a transparent resin plate may be used as the substrate.

本発明により、レンズアレイの個々の凸レンズ形状を透明樹脂の表面張力でレンズを製作するという点はスクリーン印刷法と同様で金型が不要だという大きな特長を持ちながら、リニアステージを用いてレンズ配置を決めることで配置精度を上げ、ディスペンサ装置を用いることで個々のレンズに必要な光硬化樹脂の量を安定させると共に、内側が円形で光硬化樹脂に濡れにくい表面を持つリングをガイドにして滴下させることで表面張力による球面を精巧なものにできるので、個々のレンズが光学特性に優れ、また光学特性が揃った凸レンズアレイを簡単に製作することができる。   According to the present invention, a lens is arranged using a linear stage while having the great feature that a mold is not necessary in the same way as the screen printing method in that the lens is manufactured with the surface tension of the transparent resin for each convex lens shape of the lens array. By using the dispenser device, the amount of photo-curing resin required for each lens is stabilized, and the inner ring is dripped using a ring with a surface that is difficult to wet with photo-curing resin as a guide. By doing so, the spherical surface due to surface tension can be made elaborate, so that it is possible to easily manufacture a convex lens array in which individual lenses have excellent optical characteristics and uniform optical characteristics.

従って、インテグラルフォトグラフィー(IP)やインテグラルビデオグラフィー(IV)に重要な微小凸レンズアレイを高精度かつ容易に製作することができ、鮮明な三次画像が得られる静止画や動画表示機器が簡単に安価に製作できることになり、医用画像表示、機械設計、流れの可視化、等に利用できる他、娯楽、展示会、屋外表示など種々の分野での使用が期待される。   Therefore, the micro-convex lens array, which is important for integral photography (IP) and integral videography (IV), can be manufactured with high accuracy and ease, and still images and moving image display devices that can produce clear tertiary images are simple. In addition to being used for medical image display, machine design, flow visualization, etc., it is expected to be used in various fields such as entertainment, exhibitions, outdoor displays, etc.

1 レンズアレイ製造装置のベース
1b レンズアレイ製造装置の柱
1c 本発明のレンズアレイ製造装置の上部梁
2 前後動用リニアステージ
2b 前後動リニアステージ2の可動ステージ
2c 可動ステージ2bに固着した可動テーブル
3 左右動用リニアステージ
3b 左右動リニアステージ3の可動ステージ
3c 可動ステージ3bに上下動ステージ4,5を固着する金具
4 ディスペンサ6用上下動リニアステージ
4b 上下動リニアステージ4の可動ステージ
5 リング7用上下動リニアステージ
5b 上下動リニアステージ5の可動ステージ
6 ディスペンサ
7 可動ステージ5bに固着するアーム付き円形リング
8 光硬化樹脂硬化用光源
9 透明ガラス基板
10 ディスペンサから滴下される液状光硬化樹脂
10b 円形ドーム状になった液状光硬化樹脂
10c 円形ドーム状に硬化した光硬化樹脂
DESCRIPTION OF SYMBOLS 1 Base 1b of lens array manufacturing apparatus Column 1c of lens array manufacturing apparatus Upper beam 2 of lens array manufacturing apparatus of this invention 2 Linear stage 2b for a back-and-forth movement The movable stage 2c of the linear stage 2 for a back-and-forth movement The movable table 3 fixed to the movable stage 2b Linear stage for movement 3b Movable stage 3c for left and right linear stage 3 Metal fitting 4 for attaching vertical movement stages 4 and 5 to movable stage 3b Vertical movement linear stage 4b for dispenser 6 Vertical movement linear stage 4 movable stage 5 Ring 7 vertical movement Linear stage 5b Movable stage 6 of vertically moving linear stage 5 Dispenser 7 Circular ring with arm fixed to movable stage 5b 8 Light-curing resin curing light source 9 Transparent glass substrate 10 Liquid photo-curing resin 10b dropped from dispenser in a circular dome shape Liquid photocuring Resin 10c Photo-curing resin cured in circular dome shape

Claims (1)

透明基板のある箇所に、内側が円形で、液状光硬化樹脂に濡れにくい表面を持ったリングを密着させ、該リングの中に一定量の前記液状光硬化樹脂を滴下し、該液状樹脂がリングの内側全体に拡がるとともに表面張力でドーム形状になったところで、光を照射し光硬化樹脂をドーム状に硬化させて一つのレンズを形成し、該透明基板上で位置を変えて前記リングの位置決めから光硬化性樹脂の硬化までの一連の操作繰り返すことにより、光硬化樹脂のドームにより形成されたレンズを該透明基板上に二次元的に配列したことを特徴とする三次元画像用レンズアレイの製造方法。   A ring having a circular inner surface and a surface that is difficult to wet with the liquid photocurable resin is brought into close contact with a portion of the transparent substrate, and a certain amount of the liquid photocurable resin is dropped into the ring, and the liquid resin is attached to the ring. When the dome shape is spread by the surface tension and spreads all over the inside of the, the light curing resin is cured into a dome shape to form one lens, and the position of the ring is changed by changing the position on the transparent substrate A lens array for a three-dimensional image, wherein the lens formed by the dome of the photo-curing resin is two-dimensionally arranged on the transparent substrate by repeating a series of operations from the curing to the curing of the photo-curing resin. Production method.
JP2009067784A 2009-03-19 2009-03-19 Manufacturing method of lens array for three-dimensional image Expired - Fee Related JP5266112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067784A JP5266112B2 (en) 2009-03-19 2009-03-19 Manufacturing method of lens array for three-dimensional image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067784A JP5266112B2 (en) 2009-03-19 2009-03-19 Manufacturing method of lens array for three-dimensional image

Publications (2)

Publication Number Publication Date
JP2010223976A JP2010223976A (en) 2010-10-07
JP5266112B2 true JP5266112B2 (en) 2013-08-21

Family

ID=43041278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067784A Expired - Fee Related JP5266112B2 (en) 2009-03-19 2009-03-19 Manufacturing method of lens array for three-dimensional image

Country Status (1)

Country Link
JP (1) JP5266112B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165932A (en) * 1988-12-20 1990-06-26 Seiko Epson Corp Manufacture of microlens array
JPH06160763A (en) * 1992-11-24 1994-06-07 Ricoh Co Ltd Imaging element array and its production
JP2002350606A (en) * 2001-05-25 2002-12-04 Stanley Electric Co Ltd Method for manufacturing resin microlens and light receiving and emitting element having the resin microlens
JP4797165B2 (en) * 2005-10-20 2011-10-19 国立大学法人静岡大学 Method and apparatus for fine processing of photocurable resin

Also Published As

Publication number Publication date
JP2010223976A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5519529B2 (en) Layered manufacturing method and lighting system used therefor
JP5670198B2 (en) Optical element and method for manufacturing wafer scale assembly
CN1258105C (en) Method and apparatus for manufacturing micro-lens array substrate
US7794633B2 (en) Method and apparatus for fabricating lens masters
WO2014015613A1 (en) Mask plate for manufacturing spacer, method for manufacturing spacer, and display device
CN104589651B (en) Photocuring printing device and method
JP2006171753A (en) Microlens array sheet using micro machining and method for manufacturing same
US20150131034A1 (en) Apparatus and method for manufacturing micro lens array, and micro lens array manufactured using the same
CN110023234A (en) Optical layer is configured in imprint lithography process
JP5522587B2 (en) Method for manufacturing two-stage rod lens array
CN104511995A (en) Apparatus and method for molding optical lense during a puddle dispensing process
JP3818320B2 (en) Method for producing a mold used for the production of optical elements having optical sub-elements arranged in a pattern with respect to each other and apparatus for carrying out such a method
JP2012187762A (en) Method of manufacturing fine pattern molding, stamper, and the fine pattern molding
WO2016065811A1 (en) Micro lens array and manufacturing method therefor, image acquisition device and display device
TWI421629B (en) Manufacturing a replication tool, sub-master or replica
JP5266112B2 (en) Manufacturing method of lens array for three-dimensional image
JP2006091891A (en) Microlens array sheet and manufacturing method thereof
KR101597520B1 (en) producing method for forming mold of optical lens, optical lens of the same producing method and producing method for optical lens using the same mold
JP2004333537A (en) Microlens array sheet
JP2013161997A (en) Manufacturing method of aggregation of minute structure patterns and manufacturing apparatus thereof
JP2012525996A (en) Method for making an object with a structured surface
JP2010223975A (en) Method of manufacturing lens array and lens array
JP2016224303A (en) Measuring apparatus
JP2001301052A (en) Method for manufacturing micro-lens/micro-lens array/ micro-lens and method for manufacturing micro-lens array
CN110383168A (en) Optical layer is configured in imprint lithography process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5266112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees