JPH11142246A - Temperature measuring apparatus for molten metal - Google Patents

Temperature measuring apparatus for molten metal

Info

Publication number
JPH11142246A
JPH11142246A JP9306721A JP30672197A JPH11142246A JP H11142246 A JPH11142246 A JP H11142246A JP 9306721 A JP9306721 A JP 9306721A JP 30672197 A JP30672197 A JP 30672197A JP H11142246 A JPH11142246 A JP H11142246A
Authority
JP
Japan
Prior art keywords
image
molten metal
data
molten steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9306721A
Other languages
Japanese (ja)
Other versions
JP3392736B2 (en
Inventor
Masahito Sugiura
浦 雅 人 杉
Takanori Kajiya
治 屋 孝 則 加
Shuji Naito
藤 修 治 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30672197A priority Critical patent/JP3392736B2/en
Publication of JPH11142246A publication Critical patent/JPH11142246A/en
Application granted granted Critical
Publication of JP3392736B2 publication Critical patent/JP3392736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a temperature measuring apparatus whose measuring accuracy is increased by a method wherein image light at the output end of an image fiber is photographed so as to be converted into image data and the temperature of a molten metal is computed on the basis of the image data. SOLUTION: An observation nozzle 8 is passed through the bottom wall of a refractory container 10 for a converter, and an image fiber 1 is inserted into the observation nozzle 8. A purge-gas supply apparatus 9 presses high-pressure argon Ar into the observation nozzle 8. Thereby, a part between the light receiving end of the image fiber 1 and an opening coming into contact with molten steel 11 is occupied by the Ar, and the Ar is blown off into the molten steel 11 from the opening so as to be levitated as air bubbles. Thermal radiation light which is generated by the molten steel 11 in the interface between the Ar to be blown off to the molten steel 11 from the observation nozzle 8 and the molten steel 11 hits the light receiving end of the image fiber 1. A CCD camera 3 photographs an image at the output end of the image fiber 1 so as to output an image signal. A personal computer 6 writes image data to be given by an image processor 5 into a memoery at its inside. Then, the personal computer 6 converts a maximum luminance value into the temperature of the molten steel 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、転炉内溶鋼など溶
融金属の温度を測定する装置に関し、特に、連続的に測
定しうる測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the temperature of molten metal such as molten steel in a converter, and more particularly to an apparatus for continuously measuring the temperature of molten metal.

【0002】[0002]

【従来の技術】1.現在現場の操業で使われている方法 転炉上部からサブランスといわれる保護管付熱電対の計
測プローブを溶融金属に間欠的に浸漬し、溶融金属の温
度を求める。この方法では、精度の良い温度測定が行え
るが、溶融金属温度を連続的に把握できないため、きめ
細かい精錬制御が行えない。さらにプローブが消耗する
のでコストがかかるといった問題がある。
2. Description of the Related Art The method currently used in on-site operation The measurement probe of a thermocouple with a protection tube called a sublance is immersed intermittently in the molten metal from the upper part of the converter to determine the temperature of the molten metal. In this method, accurate temperature measurement can be performed. However, since the temperature of the molten metal cannot be continuously grasped, fine refining control cannot be performed. In addition, there is a problem that the probe is worn out, which increases the cost.

【0003】2.ノズルを用いる連続測温 耐熱側壁を貫通するノズルに不活性ガスを圧入してノズ
ル内への溶融金属の進入を防ぎ、放射温度計の視野をノ
ズル内に向けて、放射温度計にて溶融金属が発する熱放
射光を受けて温度を計測する(例えば特開昭61−17
919号公報)。この方法は連続測温を可能にしたが、
測定中にパージガスによりノズル先端付近の溶融金属が
凝固することがあり、それが放射温度計の視野の一部を
ふさいだ場合、放射温度計が受光する放射エネルギーが
減少するためみかけの温度が低く観測される。このとき
放射温度計の出力信号からは視野がふさがれているのか
実際に温度が低下しているのかが判断できないため、測
定値の信頼性に問題がある。
[0003] 2. Continuous temperature measurement using a nozzle Inert gas is injected into the nozzle that penetrates the heat-resistant side wall to prevent molten metal from entering the nozzle, and the radiation thermometer is directed toward the inside of the nozzle. The temperature is measured by receiving the thermal radiation emitted by
919). Although this method enabled continuous temperature measurement,
The molten gas near the tip of the nozzle may be solidified by the purge gas during measurement, and if it blocks a part of the field of view of the radiation thermometer, the radiant energy received by the radiation thermometer decreases and the apparent temperature decreases. Observed. At this time, since it cannot be determined from the output signal of the radiation thermometer whether the visual field is blocked or the temperature is actually decreasing, there is a problem in the reliability of the measured value.

【0004】3.光ファイバーを用いた連続測温 耐熱側壁あるいは底壁を貫通するノズルに、スポット光
を案内する光ファイバーを挿入して該ノズルにはパ−ジ
ガスを圧入してノズル内への溶融金属の進入を防ぎ、溶
融金属が発生する熱放射光を光ファイバ−でスポット光
を放射温度計に案内して、放射温度計にて温度を計測す
る(例えば特開昭62−52423号公報,特開昭61
−91529号公報)。この方法は連続測温を可能にし
たが、光ファイバ−の視野中心がノズル中心からずれた
り光軸がノズル中心軸に対して傾斜したりした場合、あ
るいは、測定中にパージガスによりノズル先端付近の溶
融金属が凝固することがありそれがファイバー視野の一
部をふさいだ場合、ファイバーが受光する放射エネルギ
ーが減少するためみかけの温度が低く観測される。この
とき放射温度計の出力信号からは視野がふさがれている
のか実際に温度が低下しているのかが判断できないた
め、測定値の信頼性に問題がある。
[0004] 3. Continuous temperature measurement using optical fiber Insert an optical fiber that guides spot light into a nozzle that penetrates the heat-resistant side wall or bottom wall, press-in a purge gas into the nozzle to prevent molten metal from entering the nozzle, The heat radiation generated by the molten metal is guided to a radiation thermometer by an optical fiber and a spot light is measured by a radiation thermometer (for example, JP-A-62-52423, JP-A-61-621).
-91529). This method enables continuous temperature measurement, but when the center of the visual field of the optical fiber is deviated from the center of the nozzle or the optical axis is inclined with respect to the center axis of the nozzle, or during measurement, a purge gas is used near the tip of the nozzle. If the molten metal can solidify and block part of the field of view of the fiber, the apparent temperature is observed to be low because the radiant energy received by the fiber is reduced. At this time, since it cannot be determined from the output signal of the radiation thermometer whether the visual field is blocked or the temperature is actually decreasing, there is a problem in the reliability of the measured value.

【0005】[0005]

【発明が解決しようとする課題】本発明は、耐熱壁のノ
ズルを通して溶融金属の温度を測定するにおいて、測定
精度を高くすることを第1の目的とし、測定エラ−を低
減することを第2の目的とし、連続測定の信頼性の向上
を第3の目的とし、測定環境の異常を自動検知すること
を第4の目的とする。
SUMMARY OF THE INVENTION It is a first object of the present invention to measure the temperature of a molten metal through a nozzle of a heat-resistant wall. The third object is to improve the reliability of continuous measurement, and the fourth object is to automatically detect an abnormality in the measurement environment.

【0006】[0006]

【課題を解決するための手段】(1)溶融金属(11)を収
容する耐熱側壁あるいは底壁(10)を貫通するノズルに受
光端を挿入したイメ−ジファイバ(1);前記ノズルに不
活性ガスを圧入し前記ノズル内へ溶融金属の進入を防止
するガス供給装置(9);前記イメ−ジファイバ(1)の出光
端の画像光を撮影する撮像装置(2,3);該撮像装置(2,3)
が発生する画像信号をデジタルデ−タすなわち画像デ−
タに変換する画像処理装置(5);および、該画像処理装
置(5)が発生する画像デ−タに基づいて前記撮像装置(2,
3)の撮影画面上の溶融金属像位置(11i)および溶融金属
温度(T)を演算するデ−タ処理装置(6);を備える溶融金
属の測温装置。
(1) An image fiber (1) having a light-receiving end inserted into a nozzle penetrating a heat-resistant side wall or a bottom wall (10) for accommodating a molten metal (11); A gas supply device (9) for injecting gas to prevent molten metal from entering the nozzle; an imaging device (2, 3) for capturing image light at a light emitting end of the image fiber (1); 2,3)
The digital signal, i.e., the image data
An image processing device (5) that converts the data into data; and the imaging device (2, 2) based on image data generated by the image processing device (5).
A data processing device (6) for calculating the molten metal image position (11i) and the molten metal temperature (T) on the photographing screen of 3);

【0007】なお、理解を容易にするためにカッコ内に
は、図面に示し後述する実施例の対応要素又は対応事項
の符号を、参考までに付記した。
[0007] In order to facilitate understanding, the reference numerals of the corresponding elements or corresponding items of the embodiment shown in the drawings and described later are added for reference in parentheses.

【0008】イメ−ジファイバ(1)は光像伝達機能があ
り、その受光端から前方を見た光像を出光端に伝達す
る。撮像装置(2,3)が出光端の光像を撮影して画像信号
を発生し、画像処理装置(5)が画像信号を画像デ−タに
変換する。
The image fiber (1) has a light image transmitting function, and transmits a light image viewed forward from the light receiving end to the light emitting end. An image pickup device (2, 3) captures a light image at the light exit end to generate an image signal, and an image processing device (5) converts the image signal into image data.

【0009】理想状態では、画像信号(および画像デ−
タ)で表わされる画像は、図3の(a)に示すように、
撮像装置(2,3)の画面3ifの中央にノズル内面像8i
fがあって、この像8ifの中心に溶融金属の光像11
iがあるものとなる。光像11iが最も高輝度で、ノズ
ル内面像8ifは低輝度である。このノズル内面像8i
fの外領域は、イメ−ジファイバ(1)の出光端面の外領
域であって最も低輝度である。ノズルの中心線に対して
イメ−ジファイバ(1)の視野中心線がずれている場合あ
るいは傾斜している場合には、図3の(b)に示すよう
に、溶融金属の光像11iが、理想状態の光像の一部が
欠除したものとなり、ノズルの溶融金属側開口縁部の低
輝度領域が光像11i中に占める割合が高くなり、その
分計測誤差を生ずる可能性が高くなる。ノズルの溶融金
属側開口縁の溶融金属凝固量が多くなると、図3の
(c)に示すように溶融金属の光像11iが小さくな
り、この場合もノズルの溶融金属側開口縁部の低輝度領
域が光像11i中に占める割合が高く、その分計測誤差
を生ずる可能性が高い。
In an ideal state, the image signal (and the image data)
The image represented by (ta) is, as shown in FIG.
Nozzle inner surface image 8i at the center of screen 3if of imaging device (2, 3)
f, there is a light image 11 of the molten metal at the center of this image 8if.
There will be i. The light image 11i has the highest brightness, and the nozzle inner surface image 8if has the lowest brightness. This nozzle inner surface image 8i
The area outside f is the area outside the light emitting end face of the image fiber 1 and has the lowest brightness. When the center line of the visual field of the image fiber (1) is displaced or inclined with respect to the center line of the nozzle, as shown in FIG. A part of the light image in the ideal state is missing, and the ratio of the low brightness area of the edge of the opening on the molten metal side of the nozzle in the light image 11i increases, which increases the possibility of causing a measurement error. . When the molten metal solidification amount at the molten metal side opening edge of the nozzle increases, the light image 11i of the molten metal decreases as shown in FIG. 3C, and also in this case, the brightness of the molten metal side opening edge of the nozzle is low. The proportion of the area occupied in the light image 11i is high, and there is a high possibility that a measurement error will occur.

【0010】デ−タ処理装置(6)が、上述のような溶融
金属位置(11i)を演算する。溶融金属の光像11iが、
図3の(a)に示すように、画面3ifの所定位置(画
面中央の所定領域)にあるときは、計測エラ−を生ずる
可能性は低く、最も信頼性が高い計測値が得られると見
込まれる。図3の(b)に示すように、画面3ifの所
定位置(画面中央の所定領域)から大きくずれていると
きは、計測エラ−を生ずる可能性が高く、計測値の信頼
性が低いと見込まれる。図3の(c)に示すように、溶
融金属の光像11iの中心が画面3ifの略中央にあっ
ても外縁位置が所定領域の外縁位置から大きくずれて小
さいときは、計測エラ−を生ずる可能性が高く、計測値
の信頼性が低いと見込まれる。したがって、デ−タ処理
装置(6)が演算した溶融金属像位置(11i)より計測値の信
頼性を評価することができる。
A data processor (6) calculates the molten metal position (11i) as described above. The light image 11i of the molten metal is
As shown in FIG. 3A, when it is located at a predetermined position on the screen 3if (a predetermined area in the center of the screen), the possibility of occurrence of measurement error is low, and it is expected that the measurement value with the highest reliability will be obtained. It is. As shown in FIG. 3B, when there is a large deviation from a predetermined position of the screen 3if (a predetermined area in the center of the screen), there is a high possibility that a measurement error will occur, and the reliability of the measurement value is expected to be low. It is. As shown in FIG. 3C, even if the center of the light image 11i of the molten metal is substantially at the center of the screen 3if, if the outer edge position is greatly deviated from the outer edge position of the predetermined area and small, a measurement error occurs. Probability is high and the reliability of the measured values is expected to be low. Therefore, the reliability of the measured value can be evaluated from the molten metal image position (11i) calculated by the data processing device (6).

【0011】例えば転炉精錬では温度計測が吹錬制御に
とって非常に重要である。本発明によれば、連続的な温
度計測が可能になると同時に、視野ずれや溶融金属凝固
が原因の視野狭窄による誤計測デ−タを、デ−タ処理装
置(6)が演算した溶融金属位置(11i)に基づいて排除する
ことが出来るため、操業技術,品質管理の両面で優れた
効果がある。
For example, in converter refining, temperature measurement is very important for blowing control. According to the present invention, continuous temperature measurement is enabled, and at the same time, the position of the molten metal calculated by the data processing device (6) is erroneous measurement data due to the visual field constriction due to the visual field shift or solidification of the molten metal. Since it can be excluded based on (11i), it has excellent effects in both operation technology and quality control.

【0012】[0012]

【発明の実施の形態】(2)デ−タ処理装置は、最高輝
度値を摘出しこれに対応する温度を算出する。上述のよ
うに溶融金属の光像11iが得られ、該光像11iの各
画素の輝度が対応位置の溶融金属の温度に対応する。本
実施態様によれば、自動的にこの輝度対温度との関係が
正確な位置の輝度値(すなわち最高輝度値)が摘出され
るので、計測精度が高い。測定中にノズル先端の溶融金
属凝固による視野閉そくが起る場合でも、その進行が小
さい間は安定した測定が行える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (2) The data processing device extracts the highest luminance value and calculates the temperature corresponding to the highest luminance value. As described above, the light image 11i of the molten metal is obtained, and the luminance of each pixel of the light image 11i corresponds to the temperature of the molten metal at the corresponding position. According to the present embodiment, since the luminance value (ie, the maximum luminance value) at the position where the relationship between the luminance and the temperature is accurate is automatically extracted, the measurement accuracy is high. Even if the visual field obstruction due to solidification of the molten metal at the nozzle tip occurs during the measurement, stable measurement can be performed while the progress is small.

【0013】(3)デ−タ処理装置は、撮影画面上の高
輝度領域の面積を算出して視野狭窄を検出する。この検
出結果に基づいて、温度測定の信頼性を評価できる。
(3) The data processing device calculates the area of a high-brightness area on the photographing screen to detect a narrowed visual field. Based on this detection result, the reliability of the temperature measurement can be evaluated.

【0014】(4)デ−タ処理装置は、撮影画面上の高
輝度領域の中心位置を算出して視野ずれを検出する。こ
の検出結果に基づいて、温度測定の信頼性を評価でき
る。
(4) The data processing device calculates the center position of the high-brightness area on the photographing screen to detect a visual field shift. Based on this detection result, the reliability of the temperature measurement can be evaluated.

【0015】(5)デ−タ処理装置は、撮影画面上の高
輝度ピ−ク値LPhを摘出して、それに基づいて2値化
しきい値を決定し、該2値化しきい値にて画像デ−タを
2値化し、2値化デ−タに基づいて、高輝度領域を検出
する。高輝度領域の摘出が簡易である。
(5) The data processing device extracts a high-intensity peak value LPh on the photographing screen, determines a binarization threshold value based on the extracted peak value LPh, and uses the binarization threshold value to generate an image. The data is binarized, and a high luminance area is detected based on the binarized data. Extraction of a high-luminance area is simple.

【0016】(6)デ−タ処理装置は、撮影画面上の高
輝度領域の面積を算出して前記イメ−ジファイバの受光
端に対する溶融金属の距離の短縮を検出する。観測ノズ
ルの長さは繰り返し操業により炉内耐火物とともに磨耗
してくるが、画像中の溶融金属サイズからファイバ先端
と溶融金属との距離を知ることができ、常に最適な位置
にイメージファイバを設置できる。
(6) The data processing device calculates the area of the high-brightness area on the photographing screen and detects the shortening of the distance of the molten metal from the light receiving end of the image fiber. The length of the observation nozzle wears with the refractory inside the furnace due to repeated operation, but the distance between the fiber tip and the molten metal can be known from the size of the molten metal in the image, and the image fiber is always installed at the optimum position it can.

【0017】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0018】[0018]

【実施例】図1に本発明の一実施例の構成を示す。転炉
の耐火物容器10の底壁を観測ノズル8が貫通してお
り、このノズル8にイメ−ジファイバ1が挿入されてい
る。図2に、ノズル8を拡大して示す。ノズル8内には
パ−ジガス供給装置9が高圧アルゴン(Ar)を圧入
し、これによりノズル8内の、イメ−ジファイバ1の受
光端と溶鋼に接する開口との間はArで占められ、しか
も該開口からArが溶鋼11中に吹き出し、気泡となっ
て浮上して行く。したがって、イメ−ジファイバ1の受
光端には、ノズル8から溶鋼11に吹き出すアンゴンと
溶鋼11との界面の溶鋼が発する熱放射光が当る。
FIG. 1 shows the configuration of an embodiment of the present invention. The observation nozzle 8 penetrates the bottom wall of the refractory container 10 of the converter, and the image fiber 1 is inserted into the nozzle 8. FIG. 2 shows the nozzle 8 in an enlarged manner. A purge gas supply device 9 pressurizes high-pressure argon (Ar) into the nozzle 8, whereby the space between the light receiving end of the image fiber 1 and the opening in contact with the molten steel in the nozzle 8 is occupied by Ar. Ar blows out into the molten steel 11 from the opening and floats as bubbles. Therefore, the light receiving end of the image fiber 1 is irradiated with the heat radiation emitted by the molten steel at the interface between the angling blown out from the nozzle 8 to the molten steel 11 and the molten steel 11.

【0019】溶鋼11の温度は1400〜1700°C
あるいはそれ以上の温度であり、熱放射光は赤外線およ
び可視光を含む。なお、転炉プロセスは、酸素を溶銑中
に吹き込み不純物を酸化させて除去するとともに、不純
物の酸化による発熱により高温の溶鋼を作るプロセスで
あり、転炉に酸素を吹き込む時間は12〜20分と非常
に短く、この間に溶鋼温度と成分を目標値にコントロ−
ル必要がある。したがって連続的に正確に溶鋼温度を検
出することが望まれる。
The temperature of the molten steel 11 is 1400-1700 ° C.
Alternatively, the thermal radiation includes infrared and visible light. The converter process is a process in which oxygen is blown into hot metal to oxidize and remove impurities, and a high-temperature molten steel is produced by the heat generated by the oxidation of the impurities.The time for blowing oxygen into the converter is 12 to 20 minutes. Very short, during which the temperature and composition of the molten steel are controlled to target values.
Need to be Therefore, it is desired to continuously and accurately detect the molten steel temperature.

【0020】イメ−ジファイバ1は、15000本以上
の光ファイバ(素線)を細密に結合して直径4mmに束
ねたものであり、その先端(受光端)には、焦点距離が
無限大近くの集光レンズが装着されており、イメ−ジフ
ァイバ1の受光端に、その前方の像が投射される。イメ
−ジファイバ1の出光端には、投射像がそのまま伝達さ
れる。すなわち出光端に、イメ−ジファイバ1の受光端
の前方の光像が現われる。
The image fiber 1 is composed of 15,000 or more optical fibers (element wires) tightly coupled and bundled to a diameter of 4 mm, and the tip (light receiving end) has a focal length close to infinity at its tip (light receiving end). A condenser lens is mounted, and an image in front of the light receiving end of the image fiber 1 is projected. The projected image is transmitted to the light emitting end of the image fiber 1 as it is. That is, a light image in front of the light receiving end of the image fiber 1 appears at the light emitting end.

【0021】CCDカメラ3が、波長選択フィルタ2を
通して、イメ−ジファイバ1の出光端の画像を撮影しア
ナログ画像信号(輝度を表わすビデオ信号)を出力す
る。波長選択フィルタ2は、温度に対する輝度変化が大
きい可視域の光を透過させる。CCDカメラ3のシャッ
タ速度および読取り(ビデオ信号出力)は、コントロ−
ラ4が制御する。オペレ−タはコントロ−ラ4を介して
シャッタ速度およびビデオ信号レベル(レンジ)を調整
し選択しうる。
The CCD camera 3 captures an image of the light exit end of the image fiber 1 through the wavelength selection filter 2 and outputs an analog image signal (video signal representing luminance). The wavelength selection filter 2 transmits light in the visible region where the luminance changes greatly with temperature. The shutter speed and reading (video signal output) of the CCD camera 3 are controlled by a controller.
LA 4 controls. The operator can adjust and select a shutter speed and a video signal level (range) via the controller 4.

【0022】ビデオ信号は画像処理装置5に与えられ
る。画像処理装置5は、ビデオ信号を主走査x方向64
0画素×副走査y方向480画素のデジタルデ−タすな
わち画像デ−タ(輝度を表わすデ−タ)に変換してその
内部のメモリに書込み、これを繰返して、該メモリに常
時、最新の1フレ−ム(1画面)の画像デ−タを保持す
る。画像処理装置5は、パソコン6から要求があると、
メモリの1フレ−ムの画像デ−タをパソコン6に転送す
る。パソコン6は、画像処理装置5が与える画像デ−タ
をその内部のメモリ(以下画像メモリと称す)に書込
む。
The video signal is supplied to the image processing device 5. The image processing device 5 converts the video signal in the main scanning x direction 64
It is converted into digital data of 0 pixels × 480 pixels in the sub-scanning y direction, that is, image data (data representing luminance), written into an internal memory, and is repeated. Holds image data of one frame (one screen). When the image processing device 5 receives a request from the personal computer 6,
The image data of one frame in the memory is transferred to the personal computer 6. The personal computer 6 writes the image data provided by the image processing device 5 into its internal memory (hereinafter referred to as image memory).

【0023】パソコン6は、温度計測が指示されると、
計測終了が指示されるまで、図4に示す温度計測処理を
実行する。なおこの実施例では、CCDカメラ3は、3
0フレ−ム/秒の繰返し回数でイメ−ジファイバ1の光
像を撮影し、パソコン6は、温度計測が指示され計測終
了が指示されるまで、略5回/秒の周期で、図4に示す
処理(S1〜S21)を繰返す。
When the personal computer 6 is instructed to measure the temperature,
Until the end of the measurement is instructed, the temperature measurement process shown in FIG. 4 is executed. In this embodiment, the CCD camera 3 is
The optical image of the image fiber 1 is photographed at a repetition rate of 0 frames / sec, and the personal computer 6 performs the temperature measurement at a cycle of approximately 5 times / sec until the temperature measurement is instructed and the measurement end is instructed, as shown in FIG. The processing shown (S1 to S21) is repeated.

【0024】図4を参照して、パソコン6の1回の温度
計測処理を説明する。まず画像処理装置5に画像デ−タ
の転送を要求して、1フレ−ム分の画像デ−タをパソコ
ン6の画像メモリに書込む(ステップS1)。なお、以
上においては、図4のステップ表現に関して「ステッ
プ」という語は省略し、ステップNo.記号のみを記
す。 1フレ−ム分の画像デ−タが画像メモリに書込ま
れるとパソコン6は、画像メモリの画像デ−タを順次読
出してシェ−ディング補正を施し、補正後の画像デ−タ
を画像メモリに更新書込みする(S2)。このシェ−デ
ィング補正は、CCDカメラ3の640×480画素そ
れぞれの光電変換特性のばらつきに対応して、各画素宛
ての画像デ−タ(シェ−ディング補正前デ−タ)を、基
準の光電変換特性のレベルに校正するものである。例え
ば、均一な熱放射光が得られる黒体炉を観察するなどし
て予めCCDカメラ3の光電変換特性を測定して、校正
に必要なデ−タを集収して、パソコン6内のメモリ(デ
−タベ−ス)に書込んでいる。シェ−ディング補正(S
2)では、画素座標とその補正前デ−タでメモリをアク
セスして校正デ−タ(補正後デ−タ)を読出して、画像
メモリに更新書込みする。
With reference to FIG. 4, one temperature measurement process of the personal computer 6 will be described. First, a request is made to the image processing device 5 to transfer image data, and one frame worth of image data is written into the image memory of the personal computer 6 (step S1). In the above description, the word “step” is omitted in the step expression of FIG. Only symbols are shown. When the image data for one frame is written into the image memory, the personal computer 6 sequentially reads out the image data from the image memory, performs shading correction, and stores the corrected image data in the image memory. Is updated (S2). In this shading correction, image data (data before shading correction) addressed to each pixel is used as a reference photoelectric signal in accordance with the variation in the photoelectric conversion characteristics of each of the 640 × 480 pixels of the CCD camera 3. The calibration is performed to the level of the conversion characteristic. For example, the photoelectric conversion characteristics of the CCD camera 3 are measured in advance by observing a black body furnace capable of obtaining uniform heat radiation, and data necessary for calibration is collected. (Database). Shading correction (S
In 2), the memory is accessed with the pixel coordinates and the data before correction, and the calibration data (data after correction) is read and updated and written in the image memory.

【0025】次にパソコン6は、フィルタリング(S
3)を行なう。この実施例では、各画素宛ての画像デ−
タを画像メモリから順次に読出し、1画素(注目画素)
の画像デ−タ毎に、注目画素を中心とする主走査x方向
3画素×副走査方向3画素、計9画像の画像デ−タのそ
れぞれに重み係数a〜iを乗算した積の和を、係数a〜
iの和で割算した、重み付け平均値を算出し、これをフ
ィルタリング済画像デ−タとして、画像メモリの注目画
素宛てのアドレスに更新書込みする。なお、注目画素に
宛てる係数eの値は、他の係数a〜d,f〜iの値より
大きい。
Next, the personal computer 6 performs filtering (S
Perform 3). In this embodiment, the image data addressed to each pixel is
Data is sequentially read from the image memory, and one pixel (pixel of interest) is read.
For each of the image data, the sum of the products obtained by multiplying the image data of a total of 9 images by the weighting factors a to i, that is, 3 pixels in the main scanning x direction × 3 pixels in the sub scanning direction centering on the target pixel, is used. , Coefficient a ~
A weighted average value divided by the sum of i is calculated, and the weighted average value is updated and written as filtered image data at an address addressed to a target pixel in an image memory. Note that the value of the coefficient e addressed to the target pixel is larger than the values of the other coefficients a to d and f to i.

【0026】次にパソコン6は、画像メモリ上の画像デ
−タの中の、最高輝度(ピ−ク値LPh)を表わすデ−
タと、その画素座標(メモリ上のアドレス)を摘出する
(S4)。そしてピ−ク値Lphが低輝度異常判定用の
しきい値LPTh以下かをチェックして(S5)、LP
Th以下であると、出力装置7の中のCRTディスプレ
イに「輝度異常」を表示する。なお、しきい値LPTh
は、転炉操業時の溶鋼温度正常範囲の下限値より低い温
度に対応する輝度値であり、予めパソコン6に入力(設
定)されているものであり、「輝度異常」の表示は、ノ
ズル8の閉塞又は図1に示す温度計測システムの異常が
考えられる。
Next, the personal computer 6 outputs data representing the highest luminance (peak value LPh) among the image data in the image memory.
And its pixel coordinates (address on the memory) are extracted (S4). Then, it is checked whether the peak value Lph is equal to or lower than the threshold value LPTh for judging a low luminance abnormality (S5).
If it is less than Th, “brightness abnormality” is displayed on the CRT display in the output device 7. In addition, the threshold value LPTh
Is a luminance value corresponding to a temperature lower than the lower limit of the normal range of the molten steel temperature during the operation of the converter, which is input (set) in the personal computer 6 in advance. Or the temperature measurement system shown in FIG. 1 is abnormal.

【0027】ピ−ク値Lphがしきい値LPThを越え
ているとパソコン6は、2値化しきい値BTh=k・L
PThを算出する(S7)。kは、0<k<1であり、
図3の(a)に示す溶鋼像11iをノズル内面像8ii
から切出すためのものであり、過去の計測実績から定め
られパソコンに入力(設定)されているものである。次
にパソコン6は、画像メモリの全画像デ−タをしきい値
BThで2値化し、2値デ−タをメモリ(2値画像メモ
リ)に書込む(S8)。2値デ−タの「1」は、画像デ
−タがしきい値BTh以上(溶鋼像領域11iに実質上
属する)を意味し、「0」は画像デ−タがしきい値BT
h未満(実質上溶鋼像領域11iの外)を意味する。
If the peak value Lph exceeds the threshold value LPTh, the personal computer 6 sets the binary threshold value BTh = k · L
PTh is calculated (S7). k is 0 <k <1;
The molten steel image 11i shown in FIG.
This is determined from past measurement results and input (set) to a personal computer. Next, the personal computer 6 binarizes all the image data in the image memory with the threshold value BTh and writes the binary data into the memory (binary image memory) (S8). The binary data "1" means that the image data is equal to or larger than the threshold value BTh (substantially belongs to the molten steel image area 11i), and "0" means that the image data is equal to the threshold value BT.
h (substantially outside the molten steel image area 11i).

【0028】次にパソコン6は、2値画像メモリ上の、
周囲が「0」で囲まれた「1」は「0」に、周囲が
「1」で囲まれた「0」は「1」に変更する(S9)。
これにより、2値画像メモリ上の2値デ−タは、溶鋼像
領域に実質上属する領域内はすべて「1」、該領域の外
はすべて「0」となる。
Next, the personal computer 6 operates on the binary image memory,
“1” surrounded by “0” is changed to “0”, and “0” surrounded by “1” is changed to “1” (S9).
As a result, the binary data in the binary image memory becomes "1" in all areas substantially belonging to the molten steel image area, and becomes "0" in all areas other than the area.

【0029】次にパソコン6は、2値画像メモリ上の
「1」のx方向分布ヒストグラム(x各位置での、y方
向に分布する「1」の数の積算値)を生成して、その重
心位置Wxを算出する(S10)。そしてy方向分布ヒ
ストグラム(y各位置での、x方向に分布する「1」の
数の積算値)を生成して、その重心位置Wyを算出する
(S11)。この実施例では、位置(Wx,Wy)を溶
鋼像11iの中心位置と見なす。
Next, the personal computer 6 generates an x-direction distribution histogram of "1" on the binary image memory (an integrated value of the number of "1" distributed in the y direction at each x position). The center of gravity position Wx is calculated (S10). Then, a y-direction distribution histogram (integrated value of the number of “1” distributed in the x direction at each y position) is generated, and the center of gravity position Wy is calculated (S11). In this embodiment, the position (Wx, Wy) is regarded as the center position of the molten steel image 11i.

【0030】パソコン6は次に、前記x方向分布ヒスト
グラムの、x各位置のy方向に分布する「1」の数の積
算値、の総和Sh(溶鋼像領域11i内の画素数)を算
出する(S12)。この総和Shは、溶鋼像領域11i
の面積である。次に、溶鋼像領域11iの面積Shが、
設定範囲内(STS<Sh<STL)であるかをチェッ
クする(S13,S15)。STSは視野狭窄判定用の
しきい値、STLはイメ−ジファイバ1の受光端と溶鋼
との距離短縮判定用のしきい値である。設定範囲を小側
に外れていると、「視野狭窄」をCRTディスプレイに
表示し(S14)、設定範囲を大側に外れていると、
「距離短縮」をCRTディスプレイに表示する。
Next, the personal computer 6 calculates the total Sh (the number of pixels in the molten steel image area 11i) of the integrated value of the number of "1" distributed in the y direction at each x position in the x direction distribution histogram. (S12). This sum Sh is expressed in the molten steel image area 11i.
Area. Next, the area Sh of the molten steel image area 11i is
It is checked whether it is within the setting range (STS <Sh <STL) (S13, S15). STS is a threshold value for determining the narrowing of the visual field, and STL is a threshold value for determining the reduction of the distance between the light receiving end of the image fiber 1 and the molten steel. If the setting range is out of the small side, "field narrowing" is displayed on the CRT display (S14), and if the setting range is out of the large side,
"Shortening of distance" is displayed on the CRT display.

【0031】次にパソコン6は、CCDカメラ3の画面
の中央位置(Xc,Yc)からの溶鋼像11iの中心位
置(Wx,Wy)のずれが、設定値Ra以上かをチェッ
クして(S17)、Ra以上であると「視野ずれ」をC
RTディスプレイに表示する。
Next, the personal computer 6 checks whether the deviation of the center position (Wx, Wy) of the molten steel image 11i from the center position (Xc, Yc) of the screen of the CCD camera 3 is equal to or larger than the set value Ra (S17). ), If it is Ra or more, the “field deviation” is C
Display on the RT display.

【0032】次にパソコン6は、ピ−ク値Lphを溶鋼
温度Tに変換する(S19)。過去に、転炉上部から保
護管付熱電対の計測プローブを溶鋼に浸漬して溶鋼温度
Tを計測し、そのときのピ−ク値LPhを読取って、ピ
−ク値LPh対溶鋼温度Tの関係を表わす対照テ−ブル
を作成し、この対照テ−ブルに基づいて、ピ−ク値LP
hをアドレスとし該ピ−ク値LPhをメモリデ−タとす
るデ−タマップがパソコン6のメモリ上に格納されてい
る。「温度T算出」(S19)でパソコン6は、S4で
摘出したピ−ク値LPhに対応する温度Tデ−タを、該
デ−タマップから読み出し、CRTディスプレイに表示
する。
Next, the personal computer 6 converts the peak value Lph into a molten steel temperature T (S19). In the past, a measuring probe of a thermocouple with a protection tube was immersed in molten steel from the upper part of the converter to measure the molten steel temperature T, and the peak value LPh at that time was read, and the peak value LPh versus the molten steel temperature T was measured. A control table representing the relationship is created, and the peak value LP is determined based on the control table.
A data map in which h is an address and the peak value LPh is memory data is stored in the memory of the personal computer 6. In "calculation of temperature T" (S19), the personal computer 6 reads out the temperature T data corresponding to the peak value LPh extracted in S4 from the data map and displays it on the CRT display.

【0033】次にパソコン6は、上述の検出又は算出デ
−タLPh,BTh,(Wx,Wy),Sh,T,なら
びに判定デ−タ(輝度異常,視野狭窄,距離短縮,視野
ずれ)を、パソコン6のデ−タ格納用メモリの、オペレ
−タが予め入力したチャ−ジNo.宛ての領域に、時刻
順に時刻デ−タと共に書込む。
Next, the personal computer 6 transmits the above-mentioned detected or calculated data LPh, BTh, (Wx, Wy), Sh, T, and judgment data (abnormal brightness, narrowed visual field, reduced distance, reduced visual field). , In the data storage memory of the personal computer 6, the charge number previously input by the operator. The data is written in the address area in the order of time together with the time data.

【0034】そして計測終了の指示入力の有無をチェッ
クして、終了指示が無いと、次の計測処理を開始する
(S21−S1)。
Then, it is checked whether or not a measurement end instruction has been input, and if there is no end instruction, the next measurement processing is started (S21-S1).

【0035】なお、出力装置7には、上述のCRTディ
スプレイの外に、プリンタおよび外部記憶装置が含まれ
ており、オペレ−タはパソコン6を操作してデ−タ編集
を行なって、判定デ−タと共に、計測デ−タをグラフ形
式又は表形式でCRTディスプレイに表示し又プリント
アウトすることができる。編集前のデ−タおよび編集後
のデ−タを外部記憶装置に書込むこともできる。
The output device 7 includes a printer and an external storage device in addition to the above-mentioned CRT display. The operator operates the personal computer 6 to edit the data, and determines the judgment data. Along with the data, the measurement data can be displayed on a CRT display in a graph format or a table format or printed out. The data before editing and the data after editing can be written in the external storage device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例のシステム構成を示すブロ
ック図である。
FIG. 1 is a block diagram illustrating a system configuration according to an embodiment of the present invention.

【図2】 図1に示すノズル8の拡大縦断面図である。FIG. 2 is an enlarged vertical sectional view of a nozzle 8 shown in FIG.

【図3】 図1に示すCCDカメラの撮影画面を示す平
面図であり、(a)は計測器の設定および測定環境が基
準状態であるときの画像を、(b)はイメ−ジファイバ
1の視野中心線がノズル8の中心線に対してずれたとき
の画像を、(c)はノズル8の開口縁に溶鋼が凝固して
イメ−ジファイバ1が見る溶鋼面が小さくなったときの
画像を、それぞれ示す。
3A and 3B are plan views showing a photographing screen of the CCD camera shown in FIG. 1, wherein FIG. 3A is an image when a setting of a measuring instrument and a measurement environment are in a reference state, and FIG. (C) shows an image when the molten steel solidifies at the opening edge of the nozzle 8 and the molten steel surface seen by the image fiber 1 becomes smaller. , Respectively.

【図4】 図1に示すパソコン6の、温度計測処理の概
要を示すフロ−チャ−トである。
FIG. 4 is a flowchart showing an outline of a temperature measurement process of the personal computer 6 shown in FIG.

【符号の説明】[Explanation of symbols]

1:イメ−ジファイバ 2:波長選択フィルタ 3:CCDカメラ 3if:撮影画面 4:コントロ−ラ 5:画像処理装置 6:パソコン 7:出力装置 8:観測ノズル 8ii:ノズル内面像 9:パ−ジガス供給装置 10:耐火物容器 11:溶鋼 11i:溶鋼像 1: Image fiber 2: Wavelength selection filter 3: CCD camera 3if: Photographing screen 4: Controller 5: Image processing device 6: Personal computer 7: Output device 8: Observation nozzle 8ii: Nozzle inner surface image 9: Purging gas supply Apparatus 10: Refractory vessel 11: Molten steel 11i: Molten steel image

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】溶融金属を収容する耐熱側壁あるいは底壁
を貫通するノズルに受光端を挿入したイメ−ジファイ
バ;前記ノズルに不活性ガスを圧入し前記ノズル内へ溶
融金属の進入を防止するガス供給装置;前記イメ−ジフ
ァイバの出光端の画像光を撮影する撮像装置;該撮像装
置が発生する画像信号をデジタルデ−タすなわち画像デ
−タに変換する画像処理装置;および、 該画像処理装置が発生する画像デ−タに基づいて前記撮
像装置の撮影画面上の溶融金属像位置および溶融金属温
度を演算するデ−タ処理装置;を備える溶融金属の測温
装置。
An image fiber having a light-receiving end inserted into a nozzle penetrating a heat-resistant side wall or a bottom wall for containing a molten metal; a gas for injecting an inert gas into the nozzle to prevent the molten metal from entering the nozzle; A supply device; an imaging device that captures image light at the light exit end of the image fiber; an image processing device that converts an image signal generated by the imaging device into digital data, that is, image data; and the image processing device A data processing device for calculating the position of the molten metal image and the temperature of the molten metal on the photographing screen of the imaging device based on the image data generated by the temperature controller.
【請求項2】デ−タ処理装置は、前記撮影画面上の最高
輝度値を摘出しこれに対応する温度を算出する、請求項
1記載の溶融金属の測温装置。
2. A temperature measuring device for a molten metal according to claim 1, wherein said data processing device extracts a maximum luminance value on said photographing screen and calculates a temperature corresponding thereto.
【請求項3】デ−タ処理装置は、撮影画面上の高輝度領
域の面積を算出して視野狭窄を検出する、請求項1記載
の溶融金属の測温装置。
3. The molten metal temperature measuring device according to claim 1, wherein the data processing device calculates the area of a high-brightness region on the photographing screen to detect a visual field narrowing.
【請求項4】デ−タ処理装置は、撮影画面上の高輝度領
域の中心位置を算出して視野ずれを検出する、請求項1
記載の溶融金属の測温装置。
4. The data processing device according to claim 1, wherein a center position of a high-brightness area on the photographing screen is calculated to detect a visual field shift.
The temperature measuring device for molten metal according to the above.
【請求項5】デ−タ処理装置は、撮影画面上の高輝度ピ
−ク値LPhを摘出して、それに基づいて2値化しきい
値を決定し、該2値化しきい値にて画像デ−タを2値化
し、2値化デ−タに基づいて、高輝度領域を検出する、
請求項3又は請求項4記載の溶融金属の測温装置。
5. A data processing apparatus extracts a high-intensity peak value LPh on a photographing screen, determines a binarization threshold value based on the extracted peak value LPh, and uses the binarization threshold value to determine image data. Binarizing the data, detecting a high-luminance area based on the binarized data;
The molten metal temperature measuring device according to claim 3 or 4.
JP30672197A 1997-11-10 1997-11-10 Temperature measuring device for molten metal Expired - Fee Related JP3392736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30672197A JP3392736B2 (en) 1997-11-10 1997-11-10 Temperature measuring device for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30672197A JP3392736B2 (en) 1997-11-10 1997-11-10 Temperature measuring device for molten metal

Publications (2)

Publication Number Publication Date
JPH11142246A true JPH11142246A (en) 1999-05-28
JP3392736B2 JP3392736B2 (en) 2003-03-31

Family

ID=17960505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30672197A Expired - Fee Related JP3392736B2 (en) 1997-11-10 1997-11-10 Temperature measuring device for molten metal

Country Status (1)

Country Link
JP (1) JP3392736B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028764A (en) * 2000-07-13 2002-01-29 Tokai Carbon Co Ltd Method and device for observing break-out in continuous casting of steel
WO2003010501A1 (en) * 2001-07-27 2003-02-06 Nippon Steel Corporation Molten metal temperature measuring instrument and method
EP1291444A1 (en) * 2000-06-12 2003-03-12 Nippon Steel Corporation Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
JP2004037163A (en) * 2002-07-01 2004-02-05 Nippon Steel Corp Temperature measuring apparatus in molten metal
WO2014034657A1 (en) * 2012-08-28 2014-03-06 新日鐵住金株式会社 Method and device for measuring surface temperature of strand
CN105865633A (en) * 2016-05-19 2016-08-17 田乃良 Floating tracking temperature measurement method adopting heat conduction and radiation
EP3290881A1 (en) 2016-09-01 2018-03-07 Heraeus Electro-Nite International N.V. Optical cored wire immersion nozzle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291444A1 (en) * 2000-06-12 2003-03-12 Nippon Steel Corporation Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
EP1291444A4 (en) * 2000-06-12 2004-03-17 Nippon Steel Corp Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
JP2002028764A (en) * 2000-07-13 2002-01-29 Tokai Carbon Co Ltd Method and device for observing break-out in continuous casting of steel
WO2003010501A1 (en) * 2001-07-27 2003-02-06 Nippon Steel Corporation Molten metal temperature measuring instrument and method
US6923573B2 (en) 2001-07-27 2005-08-02 Nippon Steel Corporation Apparatus and method for measuring temperature of molten metal
JP2004037163A (en) * 2002-07-01 2004-02-05 Nippon Steel Corp Temperature measuring apparatus in molten metal
WO2014034657A1 (en) * 2012-08-28 2014-03-06 新日鐵住金株式会社 Method and device for measuring surface temperature of strand
JP5459459B1 (en) * 2012-08-28 2014-04-02 新日鐵住金株式会社 Method and apparatus for measuring surface temperature of slab
CN103889616A (en) * 2012-08-28 2014-06-25 新日铁住金株式会社 Method and device for measuring surface temperature of strand
KR101427073B1 (en) * 2012-08-28 2014-08-05 신닛테츠스미킨 카부시키카이샤 Method and apparatus for measuring surface temperature of cast slab
CN103889616B (en) * 2012-08-28 2015-04-01 新日铁住金株式会社 Method and device for measuring surface temperature of strand
CN105865633A (en) * 2016-05-19 2016-08-17 田乃良 Floating tracking temperature measurement method adopting heat conduction and radiation
EP3290881A1 (en) 2016-09-01 2018-03-07 Heraeus Electro-Nite International N.V. Optical cored wire immersion nozzle
WO2018041721A1 (en) 2016-09-01 2018-03-08 Heraeus Electro-Nite International N.V. Optical cored wire immersion nozzle
US11440081B2 (en) 2016-09-01 2022-09-13 Heraeus Electro-Nite International N.V. Optical cored wire immersion nozzle

Also Published As

Publication number Publication date
JP3392736B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
JP4580466B2 (en) Hot metal temperature detection method and blast furnace operation method using the same
JPH11142246A (en) Temperature measuring apparatus for molten metal
JP2500931B2 (en) Endoscope device
CN111337132B (en) Temperature measuring method and device and digital image acquisition equipment
JPH06166590A (en) Device for measuring diameter of crystal
JP2005081419A (en) Automatic control method for tig arc welding
JPS5855512A (en) Method for judging condition of blast furnace
JP2000249670A (en) Displacement-measuring device at hot temperature
JP2007002307A (en) Method and instrument for measuring diameter of molten iron tapping hole of blast furnace
JP4873788B2 (en) Detection method of furnace conditions
JP2006126062A (en) Temperature measurement method and apparatus for molten metal
JP2009124309A (en) Image device
JP2004037163A (en) Temperature measuring apparatus in molten metal
JPH0518828A (en) Device for measuring calorific value of flame using image processing
JP3246375B2 (en) Method and apparatus for detecting gas distribution in blast furnace
CN117056148B (en) Method for detecting abnormal display of screen
JPH09307700A (en) Image pickup device
JPS6365348A (en) Method and instrument for measuring fusion characteristic of inorganic body
JP4260673B2 (en) Hot spot radiation measuring method and apparatus
JPH11281485A (en) Continuous temperature measuring method for molten steel
JP4006090B2 (en) Single crystal diameter measuring device
JPH02194305A (en) Two-dimensional shape measuring instrument for light emission body
JP4439991B2 (en) Hot spot radiation measuring method and apparatus
JP2001318002A (en) Temperature distribution measuring instrument for race way in tuyere of blast furnace
KR101134024B1 (en) Apparatus and method for measuring a length of a crop in hot endless rolling process

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees