JPH0518828A - Device for measuring calorific value of flame using image processing - Google Patents

Device for measuring calorific value of flame using image processing

Info

Publication number
JPH0518828A
JPH0518828A JP17206491A JP17206491A JPH0518828A JP H0518828 A JPH0518828 A JP H0518828A JP 17206491 A JP17206491 A JP 17206491A JP 17206491 A JP17206491 A JP 17206491A JP H0518828 A JPH0518828 A JP H0518828A
Authority
JP
Japan
Prior art keywords
flame
calorific value
ratio
image processing
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17206491A
Other languages
Japanese (ja)
Other versions
JP3133387B2 (en
Inventor
Hiromitsu Ishii
弘允 石井
Takashi Ono
隆 小野
Kiyoshi Watanabe
洌 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP03172064A priority Critical patent/JP3133387B2/en
Publication of JPH0518828A publication Critical patent/JPH0518828A/en
Application granted granted Critical
Publication of JP3133387B2 publication Critical patent/JP3133387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PURPOSE:To enable a calorifit value of flame to be directly calculated and inferred by processing a color image of flame for a device which detects the calorifit value of flame using image processing which is used for judging fire, etc., by calculating the calorifit value by processing the color image of flame. CONSTITUTION:A range where a brightness signal which is contained in a color image of a flame 14 exceeds a specified level is detected as a flame region, at least a ratio (G/R) of G constituent to R constituent of the color image is calculated 22 and then is converted to a distribution temperature 24. A calorifit value E is calculated 32 based on a distribution temperature T which is obtained for each picture element which is contained in the flame region and a flame area S per picture element is calculated 32, thus obtaining its total as the calorifit value of flame.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炎のカラー画像を処理
することにより発熱量を演算して火災判断等に用いる画
像処理を用いた炎の発熱量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame calorific value detecting device using image processing for calculating a calorific value by processing a color image of a flame and using it for fire judgment.

【0002】[0002]

【従来の技術】従来、テレビカメラで警戒区域を監視
し、テレビカメラで捕えた炎の画像情報から火災を検出
する装置にあっては、一般的に、画像の輝度信号を閾値
と比較し、輝度信号が閾値を越えた画像部分を火源と判
断するようにしている。この輝度信号に基づく火源位置
の検出は、例えば特開平1−268572号の消火装置
を制御するための火源検出に使用されている。
2. Description of the Related Art Conventionally, in a device for monitoring a warning area with a television camera and detecting a fire from image information of a flame captured by the television camera, generally, a brightness signal of the image is compared with a threshold value, The image portion in which the luminance signal exceeds the threshold value is determined to be the fire source. The detection of the fire source position based on the brightness signal is used, for example, for the fire source detection for controlling the fire extinguisher disclosed in Japanese Patent Laid-Open No. 1-268572.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
輝度信号のみに依存した火災検出にあっては、火災以外
の光、例えばヘッドライトや太陽光の反射光等によって
輝度信号が閾値レベルを越える場合があり、火災による
輝度信号の変化と火災以外の原因による輝度信号の変化
を正確に区別することが困難であり、画像を用いた火災
検出装置の信頼性が十分でないという問題があった。
However, in the conventional fire detection that depends only on the luminance signal, when the luminance signal exceeds the threshold level due to light other than the fire, for example, the reflected light of headlights or sunlight. However, it is difficult to accurately distinguish the change in the brightness signal due to the fire from the change in the brightness signal due to a cause other than the fire, and there is a problem that the fire detection device using the image is not reliable enough.

【0004】本発明は、このような従来の問題点に鑑み
てなされたもので、炎のカラー画像を処理することによ
り炎の発熱量、即ち放射エネルギを直接演算できるよう
にした画像処理を用いた炎の発熱量測定装置を提供する
ことを目的とする。
The present invention has been made in view of the above conventional problems, and uses image processing in which a heat value of a flame, that is, radiant energy can be directly calculated by processing a color image of the flame. An object of the present invention is to provide a calorific value measuring device for a flame.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
本発明は次のように構成する。尚、括弧内に実施例図面
中の対応する符号を併せて示す。即ち、本発明の画像処
理を用いた炎の発熱量検出装置は、炎のカラー画像を撮
像するカラー撮像部10と、カラー撮像部の画像に含ま
れる輝度信号が所定レベルを越える範囲を炎領域として
検出する炎領域検出部28と、カラー撮像部10から得
られたG成分とR成分との比率(G/R)またはB成分
とR成分の比率(B/R)を演算する比率演算部22
と、比率演算部22で算出された比率を分布温度に変換
して1画素毎の分布温度Tを求める温度変換部24と、
炎領域検出部28で検出された炎領域に含まれる画素毎
に温度変換部24で得られた分布温度Tと1画素当りの
炎面積Sに基づいて発熱量Eを演算した総和を炎の発熱
量として演算する発熱量演算部32とを設けたことを特
徴とする。
To achieve this object, the present invention is constructed as follows. Incidentally, corresponding reference numerals in the embodiment drawings are also shown in parentheses. That is, the flame calorific value detection apparatus using the image processing of the present invention includes a color image pickup unit 10 for picking up a color image of a flame and a flame region in which the luminance signal included in the image of the color image pickup unit exceeds a predetermined level. The flame area detection unit 28 for detecting the ratio of the G component and the R component (G / R) or the ratio of the B component and the R component (B / R) obtained from the color imaging unit 10. 22
And a temperature conversion unit 24 for converting the ratio calculated by the ratio calculation unit 22 into a distribution temperature to obtain a distribution temperature T for each pixel,
For each pixel included in the flame region detected by the flame region detection unit 28, the total calculated by calculating the heat generation amount E based on the distribution temperature T obtained by the temperature conversion unit 24 and the flame area S per pixel is the heat generation of the flame. A calorific value calculation unit 32 for calculating the amount is provided.

【0006】ここで比率演算部22は、炎領域検出部2
8で検出された領域についてのみ比率を演算してもよ
い。また炎領域検出部28は、外乱光やノイズを取除く
ために最大輝度と平均輝度の略中間に閾値レベルを設定
し、この閾値レベルを越える領域を炎領域として検出す
る。
Here, the ratio calculation unit 22 uses the flame area detection unit 2
The ratio may be calculated only for the region detected in 8. Further, the flame area detection unit 28 sets a threshold level approximately in the middle of the maximum brightness and the average brightness to remove ambient light and noise, and detects an area exceeding this threshold level as a flame area.

【0007】[0007]

【作用】本願発明者にあっては、炎のカラー画像におけ
るR成分とG成分との比率(G/R)またはB成分とR
成分との比率(B/R)と炎温度との間に対応関係があ
り、この比率を使っておのおの温度を求めることができ
ることを実験的に確認した。
In the present inventor, the ratio (G / R) of the R component and the G component or the B component and the R component in the color image of the flame is obtained.
It was experimentally confirmed that there is a correspondence relationship between the ratio (B / R) with the components and the flame temperature, and that each temperature can be obtained using this ratio.

【0008】そこで本発明の画像処理を用いた災の発熱
量測定装置にあっては、CCDカラーカメラ等で撮像し
たカラー画像の中の輝度信号が所定レベルを越える領域
を炎領域として検出し、カラー画像のG成分とR成分と
の比率(G/R)またはB成分とR成分との比率(B/
R)に基づいて画素毎に分布温度Tを求める。このよう
に炎領域とその分布温度が求まれば、ステファン・ボル
ツマンの法則に基づいて炎領域からの放射エネルギE、
即ち発熱量を算出することができる。そこで本発明で
は、炎領域の画素単位に求めた分布温度Tと1画素の炎
面積Sから発熱量を求め、これを炎領域の全画素につい
て累積加算することで炎の発熱量を正確に推定すること
ができる。
Therefore, in the calorific value measuring device using the image processing of the present invention, a region in which a luminance signal in a color image picked up by a CCD color camera or the like exceeds a predetermined level is detected as a flame region, The ratio of G and R components (G / R) or the ratio of B and R components (B / R) of the color image
The distribution temperature T is calculated for each pixel based on R). If the flame region and its distribution temperature are obtained in this way, the radiant energy E from the flame region, based on Stefan-Boltzmann's law,
That is, the calorific value can be calculated. Therefore, in the present invention, the calorific value of the flame is accurately estimated by calculating the calorific value from the distribution temperature T calculated for each pixel of the flame area and the flame area S of one pixel, and cumulatively adding the calorific value to all pixels of the flame area. can do.

【0009】このように炎の発熱量そのものが推定でき
れば、火災であるか火災以外のエネルギ源であるかの判
断が適切にでき、火災監視に有効な手法を与えることが
できる。
If the calorific value itself of the flame can be estimated in this manner, it can be appropriately judged whether it is a fire or an energy source other than the fire, and an effective method for fire monitoring can be provided.

【0010】[0010]

【実施例】図1は本発明の一実施例を示した実施例構成
図である。図1において、10はカラー撮像部としての
CCDカラーカメラであり、例えばNTSC方式に従っ
たR、G、Bのカラー成分信号でなるカラー画像信号が
得られる。尚、CCDカラーカメラ10は実際の火災監
視に利用する場合には、監視区域全体を見渡せる位置に
設置されることになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of an embodiment showing one embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a CCD color camera as a color image pickup unit, which can obtain a color image signal composed of R, G, B color component signals according to the NTSC system, for example. When used for actual fire monitoring, the CCD color camera 10 is installed at a position overlooking the entire monitoring area.

【0011】CCDカラーカメラ10は所定のサンプリ
ング周期毎に撮影動作を行い、得られたカラー画像、即
ちRGB信号のそれぞれをA/D変換した後にR成分フ
レームメモリ16、Gフレームメモリ18、B成分フレ
ームメモリ20に書き込む。このメモリに書込む際の1
画面文のA/D変換のサンプリング数が1画面の画素数
を決める。
The CCD color camera 10 performs a photographing operation at a predetermined sampling period, A / D-converts each of the obtained color images, that is, RGB signals, and then R component frame memory 16, G frame memory 18, and B component. Write to the frame memory 20. 1 when writing to this memory
The sampling number of A / D conversion of the screen sentence determines the number of pixels in one screen.

【0012】比率演算部22及び温度変換部24はCC
Dカラーカメラ10の画像から炎の分布温度を検出する
温度検出部として設けられている。即ち、比率演算部2
2にあっては、G成分フレームメモリ18とR成分フレ
ームメモリ16の読出しで得られた同一画素位置のG成
分とR成分の比G/Rを演算する。比率演算部22で算
出されたG/R比から図2に示す変換特性図に従って画
素毎の分布温度Tを求めることができる。
The ratio calculator 22 and the temperature converter 24 are CC
It is provided as a temperature detection unit that detects the flame distribution temperature from the image of the D color camera 10. That is, the ratio calculator 2
In the case of 2, the ratio G / R of the G component and the R component at the same pixel position obtained by reading the G component frame memory 18 and the R component frame memory 16 is calculated. From the G / R ratio calculated by the ratio calculator 22, the distribution temperature T for each pixel can be obtained according to the conversion characteristic diagram shown in FIG.

【0013】具体的には図2に示す変換特性を備えた変
換テーブルが温度変換部24に設けられており、比率演
算部22で得られたG/Rの値で変換テーブルをアクセ
スすることで、図2の特性に従った分布温度を画素毎に
求めることができる。図2の特性図は実験的に得られた
もので、横軸xを分布温度、縦軸yを比率(G/R)と
すると、特性曲線は次式で近似できる。 y=5.37×10-165 −1.78×10-124
+5.88×10-133 −4.76×10-62
2.68×10-2x−27.4 尚、図7に示す実験的に得られたB/R比の特性変換図
を用いて分布温度を求めても良い。
Specifically, a conversion table having the conversion characteristics shown in FIG. 2 is provided in the temperature conversion section 24, and the conversion table is accessed by the G / R value obtained by the ratio calculation section 22. The distribution temperature according to the characteristics of FIG. 2 can be obtained for each pixel. The characteristic diagram of FIG. 2 is obtained experimentally, and the characteristic curve can be approximated by the following equation, where the horizontal axis x is the distribution temperature and the vertical axis y is the ratio (G / R). y = 5.37 × 10 −16 x 5 −1.78 × 10 −12 x 4
+5.88 x 10 -13 x 3 -4.76 x 10 -6 x 2 +
2.68 × 10 −2 x−27.4 Incidentally, the distribution temperature may be obtained using the characteristic conversion diagram of the B / R ratio obtained experimentally shown in FIG. 7.

【0014】一方、炎領域検出部28はG成分フレーム
メモリ18に格納されたG成分のうちの規定の閾値レベ
ルを越える領域を炎領域として抽出する。炎領域を検出
するための閾値レベルとしては、外乱光やノイズを取除
くために最大輝度と平均輝度の中間レベル、例えば 閾値レベル=(最大輝度+平均輝度)/2 とする。
On the other hand, the flame area detection unit 28 extracts, as a flame area, an area of the G component stored in the G component frame memory 18 that exceeds a prescribed threshold level. The threshold level for detecting the flame area is an intermediate level between the maximum brightness and the average brightness to remove ambient light and noise, for example, threshold level = (maximum brightness + average brightness) / 2.

【0015】温度変換部24で求められた炎検出領域に
含まれる画素毎の分布温度Tは発熱量演算部32に与え
られ、炎領域における1画素当りの炎面積Sが予め判っ
ているとすると、ステファン・ボルツマンの法則に基づ
いて炎の発熱量Eが演算される。即ち、ステファン・ボ
ルツマンの法則は炎の温度をTとすると次式で与えられ
る。 E=ε×σ×S×T4 [watt] (1) 但し、σ=(π54 )/(15c23 ) [jm-2-1-4] S:炎の表面積 ε:放射率 ここでで放射率ε及びσは定数として扱う。
It is assumed that the distribution temperature T for each pixel included in the flame detection region obtained by the temperature conversion unit 24 is given to the heat generation amount calculation unit 32, and the flame area S per pixel in the flame region is known in advance. , The heat value E of the flame is calculated based on Stefan-Boltzmann's law. That is, Stefan-Boltzmann's law is given by the following equation, where T is the temperature of the flame. E = ε × σ × S × T 4 [watt] (1) where σ = (π 5 k 4 ) / (15c 2 h 3 ) [jm −2 s −1 k −4 ] S: surface area ε of flame : Emissivity Here, the emissivity ε and σ are treated as constants.

【0016】図3は炎領域検出部28でG成分フレーム
メモリ18の画像から抽出された炎領域48の一例を示
しており、この炎領域48内の斜線部の画素について、
温度変換部24で得られた分布温度を使用して前記
(1)式の(S×T4 )の積分演算を実行すればよい。
具体的には炎領域48の画素毎に求めた(S×T4 )の
画素毎に定数(ε×σ)を掛け合わせればよい。即ち、 として炎の発熱量を求める。但し、nは炎領域の画素数
である。
FIG. 3 shows an example of the flame area 48 extracted from the image of the G component frame memory 18 by the flame area detecting section 28. Regarding the pixels in the shaded area in this flame area 48,
The integral calculation of (S × T 4 ) in the equation (1) may be executed using the distribution temperature obtained by the temperature conversion unit 24.
Specifically, the constant (ε × σ) may be multiplied for each (S × T 4 ) pixel obtained for each pixel in the flame region 48. That is, The calorific value of the flame is calculated as. However, n is the number of pixels in the flame region.

【0017】図4は本発明でカラー画像のG成分とR成
分の比率(G/R)と実際の分布温度との対応関係を裏
付ける実験データの一例である。図4のデータは、白熱
電球で照射した拡散板をCCDカラーカメラで撮影し、
画面垂直軸の100ライン、200ライン、300ライ
ン及び400ラインの各々の水平軸に示す画素数の各画
素毎の図2の特性図に従った換算値をプロットしたもの
で、2200Kの直線が放射温度計で測定した実際の表
面温度である。
FIG. 4 is an example of experimental data for supporting the correspondence between the ratio (G / R) of G and R components of a color image and the actual distribution temperature in the present invention. The data in Fig. 4 was taken with a CCD color camera of a diffuser plate illuminated with an incandescent lamp.
A conversion value is plotted according to the characteristic diagram of FIG. 2 for each pixel of the number of pixels shown on the horizontal axis of each of 100 lines, 200 lines, 300 lines and 400 lines of the screen vertical axis, and a line of 2200K is radiated. It is the actual surface temperature measured by a thermometer.

【0018】この特性から明らかなように、比率(G/
R)から求めた換算分布温度の2200Kに対するばら
つきは、±50K以内に納まっており、十分に実用可能
である。図5は燃焼材料としてエタノールを使用し、炎
の大きさを決める容器直径を変えて燃焼させ、単位燃料
当りの発熱量が判っているので燃料減少量から求めた単
位時間当りの発熱量A[KW]と、放射率をε=1とし
て本発明の(G/R)比に基づく温度検出を使用して求
めた発熱量B[KW]の実験データを示しており、併せ
て炎を平面と考えた時の炎の輻射率εを ε=A/B として示している。従って、実験データから得られた輻
射率εとして例えばε=0.2を使用すれば、実際の発
熱量を画像処理によって求めることができる。
As is clear from this characteristic, the ratio (G /
The variation of the converted distribution temperature obtained from R) with respect to 2200K is within ± 50K, which is sufficiently practical. In Fig. 5, ethanol is used as a combustion material, and the calorific value per unit fuel is known by changing the diameter of the vessel that determines the size of the flame and burning. Therefore, the calorific value per unit time A [calculated from the fuel decrease amount] KW] and the experimental data of the calorific value B [KW] obtained by using the temperature detection based on the (G / R) ratio of the present invention with the emissivity ε = 1, and the flame as a plane. The emissivity ε of the flame when considered is shown as ε = A / B. Therefore, if ε = 0.2 is used as the emissivity ε obtained from the experimental data, the actual heat generation amount can be obtained by image processing.

【0019】図6は燃焼材料をノーマルヘプタンとした
時の実験データを図5と同様に示している。
Similar to FIG. 5, FIG. 6 shows experimental data when the combustion material is normal heptane.

【0020】[0020]

【発明の効果】以上説明してきたように本発明によれ
ば、炎領域のG/R比またはB/R比から求めた温度を
使用して炎の発熱量を正確に推定することができ、この
発熱量を用いて例えば火災を監視すれば、非常に信頼性
の高い火災判断ができる。
As described above, according to the present invention, the calorific value of the flame can be accurately estimated by using the temperature obtained from the G / R ratio or the B / R ratio of the flame region, If, for example, a fire is monitored using this heat generation amount, it is possible to make a very reliable fire judgment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示した実施例構成図FIG. 1 is a configuration diagram of an embodiment showing a first embodiment of the present invention.

【図2】図1の実施例での温度検出に用いるG/R比と
分布温度の変換特性を示した特性図
FIG. 2 is a characteristic diagram showing conversion characteristics of G / R ratio and distribution temperature used for temperature detection in the embodiment of FIG.

【図3】画像から抽出された炎領域を示した説明図FIG. 3 is an explanatory diagram showing a flame region extracted from an image.

【図4】カラー画像から得られたG/R比率から求めた
分布温度と放射温度計による測定温度との対応を示した
説明図
FIG. 4 is an explanatory diagram showing a correspondence between a distribution temperature obtained from a G / R ratio obtained from a color image and a temperature measured by a radiation thermometer.

【図5】エタノールを燃した際の燃料減少量から求めた
発熱量と本発明においてε=1として求めた発熱量との
データを対比して示した説明図
FIG. 5 is an explanatory view showing the data of the calorific value obtained from the fuel decrease amount when ethanol is burned and the calorific value obtained when ε = 1 in the present invention, for comparison.

【図6】ノーマルヘプタンを燃した際の燃料減少量から
求めた発熱量と本発明においてε=1として求めた発熱
量とのデータを対比して示した説明図
FIG. 6 is an explanatory view showing the data of the calorific value obtained from the fuel decrease amount when burning normal heptane and the calorific value obtained when ε = 1 in the present invention, for comparison.

【図7】図1の実施例での温度検出に用いるB/R比と
分布温度の変換特性を示した特性図
7 is a characteristic diagram showing conversion characteristics of B / R ratio and distributed temperature used for temperature detection in the embodiment of FIG.

【符号の説明】[Explanation of symbols]

10:CCDカラーカメラ(カラー撮像部) 14:炎 16:R成分フレームメモリ 18:G成分フレームメモリ 20:B成分フレームメモリ 22:比率演算部 24:温度変換部 28:炎領域検出部 32:放射エネルギ演算部 10: CCD color camera (color imaging unit) 14: Flame 16: R component frame memory 18: G component frame memory 20: B component frame memory 22: Ratio calculation unit 24: Temperature converter 28: Flame area detection unit 32: Radiant energy calculator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 洌 東京都品川区上大崎2丁目10番43号 ホー チキ株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Taku Watanabe             2-1043 Kamiosaki, Shinagawa-ku, Tokyo Ho             Chiki Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炎のカラー画像を撮像するカラー撮像部
と、 該撮像部の画像に含まれる輝度信号が所定レベルを越え
る範囲を炎領域として検出する炎領域検出部と、 前記撮像部から得られたG成分とR成分との比率(G/
R)またはB成分とR成分の比率(B/R)を演算する
比率演算部と、 該比率演算部で算出された比率を分布温度に変換して1
画素毎の分布温度Tを求める温度変換部と、 前記炎領域検出部で検出された炎領域に含まれる画素毎
に前記温度変換部で得られた分布温度Tと1画素当りの
炎面積Sに基づいて発熱量Eを演算した総和を炎の発熱
量として演算する発熱量演算部とを設けたことを特徴と
する画像処理を用いた炎の発熱量測定装置。
1. A color image pickup section for picking up a color image of flame, a flame area detection section for detecting a range in which a luminance signal included in an image of the image pickup section exceeds a predetermined level as a flame area, and a color image pickup section obtained from the image pickup section. Ratio of G component and R component (G /
R) or a ratio calculation unit that calculates the ratio of the B component and the R component (B / R), and the ratio calculated by the ratio calculation unit is converted into a distribution temperature to be 1
A temperature conversion unit for obtaining a distribution temperature T for each pixel, and a distribution temperature T obtained by the temperature conversion unit and a flame area S per pixel for each pixel included in the flame region detected by the flame region detection unit. 2. A flame calorific value measuring device using image processing, comprising: a calorific value calculation unit that calculates a sum of calculated calorific values E as a calorific value of the flame.
【請求項2】請求項1記載の画像処理を用いた炎の発熱
量測定装置に於いて、 前記比率演算部は、前記炎領域検出部で検出された領域
についてのみ比率を演算することを特徴とする画像処理
を用いた炎の発熱量測定装置。
2. A flame calorific value measuring apparatus using image processing according to claim 1, wherein the ratio calculation unit calculates a ratio only for the area detected by the flame area detection unit. An apparatus for measuring the calorific value of a flame using image processing.
【請求項3】請求項1記載の画像処理を用いた炎の発熱
量測定装置に於いて、 前記炎領域検出部は、最大輝度と平均輝度の略中間に閾
値レベルを設定し、該閾値レベルを越える領域を炎領域
として検出することを特徴とする画像処理を用いた炎の
発熱量測定装置。
3. A flame calorific value measuring apparatus using the image processing according to claim 1, wherein the flame area detection unit sets a threshold level at approximately the middle of maximum brightness and average brightness, and the threshold level is set. An apparatus for measuring a calorific value of a flame using image processing, characterized by detecting a region exceeding the range as a flame region.
JP03172064A 1991-07-12 1991-07-12 Flame calorific value measuring device using image processing Expired - Fee Related JP3133387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03172064A JP3133387B2 (en) 1991-07-12 1991-07-12 Flame calorific value measuring device using image processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03172064A JP3133387B2 (en) 1991-07-12 1991-07-12 Flame calorific value measuring device using image processing

Publications (2)

Publication Number Publication Date
JPH0518828A true JPH0518828A (en) 1993-01-26
JP3133387B2 JP3133387B2 (en) 2001-02-05

Family

ID=15934868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03172064A Expired - Fee Related JP3133387B2 (en) 1991-07-12 1991-07-12 Flame calorific value measuring device using image processing

Country Status (1)

Country Link
JP (1) JP3133387B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11134571A (en) * 1997-10-29 1999-05-21 Nagoya Denki Kogyo Kk Method and device for fire detection
GB2390675A (en) * 2002-07-10 2004-01-14 Univ Greenwich Flame characteristic monitor using digitising image camera
JP2013152194A (en) * 2012-01-26 2013-08-08 Buriizu:Kk Infrared camera and temperature detection method of infrared emission source
KR101988252B1 (en) * 2018-11-30 2019-06-12 한국건설기술연구원 System for automatically detecting flame ignition of test sample by infrared ray (ir) heating apparatus, and method for the same
CN113092481A (en) * 2021-03-11 2021-07-09 南京理工大学 Method for judging transition point generated by soot of diffusion flame

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127123B (en) * 2010-12-30 2013-07-24 华南理工大学 Method for preparing maltooligosaccharide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11134571A (en) * 1997-10-29 1999-05-21 Nagoya Denki Kogyo Kk Method and device for fire detection
GB2390675A (en) * 2002-07-10 2004-01-14 Univ Greenwich Flame characteristic monitor using digitising image camera
JP2013152194A (en) * 2012-01-26 2013-08-08 Buriizu:Kk Infrared camera and temperature detection method of infrared emission source
KR101988252B1 (en) * 2018-11-30 2019-06-12 한국건설기술연구원 System for automatically detecting flame ignition of test sample by infrared ray (ir) heating apparatus, and method for the same
CN113092481A (en) * 2021-03-11 2021-07-09 南京理工大学 Method for judging transition point generated by soot of diffusion flame

Also Published As

Publication number Publication date
JP3133387B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US7948524B2 (en) Image processor and face detector using the same
US7158174B2 (en) Method for automatic white balance of digital images
US5995145A (en) Image capture apparatus for selectively causing a stepped reduction in video image signal values
JP2010273361A (en) Image selecting method based on image contents
JP3368084B2 (en) Fire detector
JPH0518828A (en) Device for measuring calorific value of flame using image processing
EP0810551A1 (en) Detection of and correction for specular reflections in digital image acquisition
JP3067285B2 (en) Fire detection device using image processing
JP2009124309A (en) Image device
JPH04212560A (en) Method of luminance compensation in document scanner
JP3699830B2 (en) Flame detector
JP3385475B2 (en) Image monitoring device
JP3313898B2 (en) Fire detector
JPH05164703A (en) Inspecting method for surface of workpiece
JP3592908B2 (en) Fire detection method and apparatus
KR19990040827A (en) Image correction device by optical sensor
JP2598842B2 (en) Two-dimensional scanning fire monitoring device
JPH10162267A (en) Fire detector
JP3195103B2 (en) Imaging device
JPS58165175A (en) Object detection
JPH023121B2 (en)
JP3007086B1 (en) Automatic exposure adjustment method for electronic line sensor camera
CN118118803A (en) Depth camera and electronic equipment suitable for indoor and outdoor
JPH0830727A (en) Binarizing method for character image
JP3775332B2 (en) Vehicle detection device, vehicle detection method, and vehicle detection system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees