JPH11142199A - Electromagnetic flowmeter - Google Patents
Electromagnetic flowmeterInfo
- Publication number
- JPH11142199A JPH11142199A JP31047597A JP31047597A JPH11142199A JP H11142199 A JPH11142199 A JP H11142199A JP 31047597 A JP31047597 A JP 31047597A JP 31047597 A JP31047597 A JP 31047597A JP H11142199 A JPH11142199 A JP H11142199A
- Authority
- JP
- Japan
- Prior art keywords
- current
- circuit
- excitation
- electromagnetic flowmeter
- exciting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、導電性流体の流
速,流量を検出する電磁流量計、さらに詳しくは工業計
測機器の信号線である4−20mA電流信号で動作し、
効率よく電力を使用する2線式電磁流量計に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic flowmeter for detecting a flow rate and a flow rate of a conductive fluid, and more particularly, it operates with a 4-20 mA current signal which is a signal line of an industrial measuring instrument.
The present invention relates to a two-wire electromagnetic flowmeter that efficiently uses electric power.
【0002】[0002]
【従来の技術】工業計測機器の信号線である4−20m
A電流信号で動作する2線式電磁流量計は良く知られて
いるが、励磁回路および流速演算回路など全ての回路を
4mA以下の電流で動作させる必要がある。これは、消
費するピーク電流が4mA以下となることであり、消費
電流のピーク値を減少させるようにする低消費電力化が
必要となる。この信号線は電流での制限が4mAであ
り、電圧としての制約はないので、従来は印加電圧を増
加させ、電圧変換器を用いて使用し得る消費電流を大き
くする方法がとられている。また、印加電圧を大きく
し、励磁回路と流速演算回路等を縦続に接続して、両回
路で使用し得る電流を増加させる方法もとられている。
以上は、使用可能な消費電力を増加させる方法である
が、これとは逆に、励磁回路の動作を間欠的に行ない、
励磁回路で使用する平均電流を低下させ、その消費電流
の変動を抑えるためローパスフィルタを使用する方法も
ある。2. Description of the Related Art 4-20 m, which is a signal line of an industrial measuring instrument.
Although a two-wire electromagnetic flowmeter operating with an A current signal is well known, it is necessary to operate all circuits, such as an excitation circuit and a flow velocity calculation circuit, with a current of 4 mA or less. This means that the consumed peak current is 4 mA or less, and it is necessary to reduce the power consumption so as to reduce the peak value of the consumed current. Since the current limit of this signal line is 4 mA and there is no restriction on the voltage, conventionally, a method of increasing the applied voltage and increasing the current consumption that can be used by using a voltage converter has been adopted. There is also a method of increasing the applied voltage and cascading an excitation circuit and a flow velocity calculation circuit to increase the current that can be used in both circuits.
The above is a method for increasing the usable power consumption. Conversely, the operation of the excitation circuit is performed intermittently,
There is also a method of using a low-pass filter to reduce the average current used in the excitation circuit and suppress the fluctuation of the current consumption.
【0003】[0003]
【発明が解決しようとする課題】このように、工業計測
機器の信号線である4−20mA電流信号で動作する2
線式電磁流量計は、励磁回路および流速演算回路など全
ての回路を4mA以下の電流で動作させる必要がある。
これは、消費するピーク電流が4mA以下となることで
あり、消費電流のピーク値を減少させるようにする低消
費電力化が必要になるという問題がある。従来は、印加
電圧を増加させ電圧変換器を利用して使用できる消費電
流を大きくする方法や、励磁回路と流速演算回路的を縦
続に接続して両回路で使用できる電流を増加させる方法
で対処しているが、その場合は安全上の問題が発生す
る。つまり、工業計測機器を爆発雰囲気内で使用する場
合、何らかの事故によって引火する可能性を抑制する必
要がある。このような場合に、印加電圧が大きいとその
対処内容が大がかりとなり、困難になるという問題であ
る。As described above, the operation using the 4-20 mA current signal which is the signal line of the industrial measuring instrument 2
In the linear electromagnetic flowmeter, it is necessary to operate all circuits such as the excitation circuit and the flow velocity calculation circuit with a current of 4 mA or less.
This means that the consumed peak current is 4 mA or less, and there is a problem that it is necessary to reduce the power consumption so as to reduce the peak value of the consumed current. Conventionally, measures have been taken to increase the current consumption that can be used by using a voltage converter by increasing the applied voltage, or to increase the current that can be used in both circuits by connecting the excitation circuit and flow velocity calculation circuit in cascade. However, in that case, a safety problem occurs. That is, when an industrial measuring instrument is used in an explosive atmosphere, it is necessary to suppress the possibility of ignition due to some kind of accident. In such a case, if the applied voltage is large, the content of the measure becomes large and it becomes difficult.
【0004】また、励磁回路の動作を間欠的に行ない、
励磁回路で使用する平均電流を低下させ、その消費電流
の変動を抑えるべく低損失のローパスフィルタを使用す
る場合には、時定数の大きなローパスフィルタが必要と
なり、使用する素子値(コンデンサ容量値,インダクタ
ンス値,抵抗値)が大きくなり、実現が困難となる。さ
らに、一般的に時定数の大きなローパスフィルタ(例え
ば、CRのパッシブフィルタ)は通過帯域でも減衰が生
じるため、電力を損失してしまうという問題もある。し
たがって、この発明の課題は、消費電流の均一化を図り
消費電流の最大値を低減させることにある。Further, the operation of the excitation circuit is performed intermittently,
When a low-loss low-pass filter is used to reduce the average current used in the excitation circuit and suppress fluctuations in the current consumption, a low-pass filter having a large time constant is required, and the element values (capacitor capacitance, (Inductance value, resistance value) becomes large, and realization becomes difficult. Further, in general, a low-pass filter having a large time constant (for example, a CR passive filter) has a problem that power is lost because attenuation occurs in a pass band. Therefore, an object of the present invention is to reduce the maximum value of the current consumption by making the current consumption uniform.
【0005】[0005]
【課題を解決するための手段】このような課題を解決す
るため、この発明では、励磁電流を流さない休止区間
(無励磁区間)を設け、この休止区間内に流速演算装置
を動作させるようにしている。すなわち、消費電流を時
分割に供給して消費電力を均一化するとともに、消費電
流の最大値を低減させる。消費電流の変動が均一化され
ることから、電流の変動を抑制するためのローパスフィ
ルタが不要となるか、または特性がさほど厳しくないフ
ィルタで済ませることができて実現が容易となり、ロー
パスフィルタの電力損失を軽減できる。また、消費電流
の最大値が低減されることから、印加電圧を増加させる
必要も無くなる。さらに、低消費電力化された電流分を
励磁電流分にまわすようにすれば、測定管に発生する交
番磁界を増加させることができ、得られる起電力のS/
Nを向上させることが可能となる。In order to solve such a problem, according to the present invention, a pause section (a non-excitation section) in which no exciting current flows is provided, and the flow velocity calculating device is operated in the pause section. ing. That is, current consumption is supplied in a time-sharing manner to make power consumption uniform and reduce the maximum value of current consumption. Since the fluctuations in the current consumption are made uniform, a low-pass filter for suppressing the fluctuations in the current is not required, or a filter whose characteristics are not so severe can be used, so that the realization becomes easy, and the power of the low-pass filter is reduced. Loss can be reduced. Further, since the maximum value of the current consumption is reduced, it is not necessary to increase the applied voltage. Further, if the reduced power consumption is converted to the excitation current, the alternating magnetic field generated in the measurement tube can be increased, and the S / E of the obtained electromotive force can be increased.
N can be improved.
【0006】[0006]
【発明の実施の形態】図1はこの発明の実施の形態を示
す構成図である。センサ部は測定管3に対し励磁コイル
1と1対の電極2を設けて構成され、また、回路部は励
磁コイル1に励磁電流を流し測定管3内に交番磁界を発
生させる励磁回路4、電極2に発生する起電力を増幅す
る増幅回路5、その増幅した信号を整流する整流回路
6、整流した信号をディジタル信号に変換するA/D
(アナログ/ディジタル)変換回路7、A/D(ADと
も記す)変換結果を交互に保持する保持回路81,8
2、ディジタル化した信号に基づき流速,流量を演算す
るマイクロプロセッサ9、演算結果を4−20mAの電
流として出力する出力電流制御回路10、励磁およびA
/D変換などのためのタイミング生成回路11、4−2
0mA信号線より回路部が使用する電源を生成する電源
回路12などから構成される。なお、整流回路6はA/
D変換回路7が正,負の入力をA/D変換できるタイプ
のものであれば、省略することができる。FIG. 1 is a block diagram showing an embodiment of the present invention. The sensor unit is configured by providing an exciting coil 1 and a pair of electrodes 2 to the measuring tube 3. The circuit unit is configured to supply an exciting current to the exciting coil 1 to generate an alternating magnetic field in the measuring tube 3. Amplifying circuit 5 for amplifying electromotive force generated at electrode 2, rectifying circuit 6 for rectifying the amplified signal, A / D for converting the rectified signal to a digital signal
(Analog / digital) conversion circuit 7, holding circuits 81, 8 for alternately holding A / D (also referred to as AD) conversion results
2. A microprocessor 9 for calculating the flow velocity and flow rate based on the digitized signal, an output current control circuit 10 for outputting the calculation result as a 4-20 mA current, excitation and A
Timing generation circuit 11, 4-2 for / D conversion and the like
The power supply circuit 12 includes a power supply circuit 12 that generates a power supply used by the circuit unit from the 0 mA signal line. The rectifier circuit 6 has an A /
If the D conversion circuit 7 is of a type capable of A / D conversion of positive and negative inputs, it can be omitted.
【0007】図2は図1の動作を説明するための波形
図、図3はこの発明を適用しない場合の波形図で、図2
と対比して説明するためのものである。さて、測定管3
内に交番磁界を発生させる励磁電流タイミングとして
は、 励磁電流の安定までに時間がかかること(時定数で1
0ms) 商用ノイズを除去するために商用周波数の50Hzま
たは60Hzの整数倍の周期でサンプリングすること
(図2は同(c)のように50Hzの場合で、20ms
のサンプリング時間の例を示している) 流速が急変しないため、サンプリング周期をある程度
遅くできること 回路のオフセット除去のため無励磁区間が必要なこと などの理由から、ここでは図2(b)に示すように20
0ms周期で励磁するものとする。ここで、励磁状態に
は3種類あり、正方向の励磁,負方向の励磁,無励磁で
あり、図2(b)には各状態を50ms毎に繰り返す例
を示している。FIG. 2 is a waveform chart for explaining the operation of FIG. 1, and FIG. 3 is a waveform chart when the present invention is not applied.
This is to explain in comparison with. Well, measuring tube 3
As for the excitation current timing for generating an alternating magnetic field in the motor, it takes time for the excitation current to stabilize (the time constant is 1).
0 ms) In order to remove commercial noise, sampling should be performed at a cycle of an integral multiple of 50 Hz or 60 Hz of the commercial frequency (FIG. 2 shows a case where the frequency is 50 Hz as shown in FIG.
(Example of sampling time is shown.) Because the flow velocity does not change abruptly, the sampling period can be reduced to some extent. For the reason that a non-excitation section is required to remove the offset of the circuit, as shown in Fig. 2 (b) To 20
Excitation is performed at a cycle of 0 ms. Here, there are three types of excitation states, excitation in the positive direction, excitation in the negative direction, and non-excitation. FIG. 2B shows an example in which each state is repeated every 50 ms.
【0008】励磁電流は励磁回路4にて正方向,負方向
に切り換えられるが、励磁回路4で消費する電流は図2
(d)に示すように1方向となる。1例として、2線式
電磁流量計での励磁回路の消費電流は励磁区間で2mA
程度、無励磁区間では0mA程度である。一方、マイク
ロプロセッサの消費電流は、従来は例えば図3(e)に
示すようにほぼ一定となるのに対し、この発明によれば
図2(e)のように、励磁区間で低消費電力モードを利
用して低消費電流とし、無励磁区間で通常消費電流とし
ている。この低消費電力モードは近年のマイクロプロセ
ッサにはほぼ標準的に備わっており、ここで必要な条件
としては、(イ)消費電流を低下させ、(ロ)外部から
の信号により通常モードへ復帰でき、(ハ)その復帰時
間が50msに比べて十分に短いこと、などである。The exciting current is switched between the positive direction and the negative direction by the exciting circuit 4, but the current consumed by the exciting circuit 4 is shown in FIG.
One direction is as shown in FIG. As an example, the current consumption of the excitation circuit in the two-wire electromagnetic flowmeter is 2 mA in the excitation section.
About 0 mA in the non-excitation section. On the other hand, the current consumption of the microprocessor is conventionally substantially constant, for example, as shown in FIG. 3E, but according to the present invention, as shown in FIG. To reduce the current consumption, and set the normal current consumption in the non-excitation section. This low power consumption mode is almost standard in modern microprocessors, and the necessary conditions are (a) to reduce current consumption and (b) to return to the normal mode by an external signal. (C) the return time is sufficiently shorter than 50 ms.
【0009】図2(e)に示すように励磁区間で低消費
電力モードとすると、その期間は演算が停止または低速
となる。しかしながら、必要とするマイクロプロセッサ
の演算量は一定量なので、無励磁区間での演算速度を向
上させる必要がある。図2では、無励磁区間での演算速
度を、この発明を適用しない図3の場合の2倍で行なう
ことを想定してマイクロプロセッサの消費電流を図示し
ている。2倍とする理由は、この発明を適用した場合の
演算時間が、この発明を適用しない場合のそれの半分に
なるからである。また、一般的に、マイクロプロセッサ
の処理速度を向上させるためには、供給クロックを高速
にする方法がとられるが、その場合、消費電流はクロッ
クに比例して増加する。このような事実に基づいて、図
2のマイクロプロセッサの消費電流を、図3と対比させ
て示している(図2の無励磁区間でのマイクロプロセッ
サの消費電流=図3のマイクロプロセッサの消費電流×
2≒2mAとして図示してある)。As shown in FIG. 2E, when the low power consumption mode is set in the excitation interval, the operation is stopped or the speed is reduced during that period. However, since the required amount of operation of the microprocessor is constant, it is necessary to improve the operation speed in the non-excitation interval. FIG. 2 illustrates the current consumption of the microprocessor assuming that the calculation speed in the non-excitation section is twice as high as that in FIG. 3 to which the present invention is not applied. The reason for the doubling is that the operation time when the present invention is applied is half that of when the present invention is not applied. In general, in order to improve the processing speed of the microprocessor, a method of increasing the supply clock is used. In this case, the current consumption increases in proportion to the clock. Based on this fact, the current consumption of the microprocessor of FIG. 2 is shown in comparison with FIG. 3 (current consumption of the microprocessor in the non-excitation section of FIG. 2 = current consumption of the microprocessor of FIG. 3). ×
(Shown as 2 ≒ 2 mA).
【0010】一方、励磁区間での消費電力については、
低消費電力モードから高速に通常モードへ復帰できるよ
うに水晶発振を継続させているため、図2に示すように
多少の消費電流(Ip* =0.2mA程度)がある。ま
た、励磁回路とマイクロプロセッサ以外の回路の消費電
流はほぼ一定であり、図2ではこれを1mA程度として
図示している。以上のように、無励磁区間でマイクロプ
ロセッサが演算を行ない、励磁区間では低消費電力モー
ドとなるように制御すると、全回路の消費電流は図2
(g)のようになる。この場合、この発明を適用しない
図3の場合に比べて消費電流の変動を抑制できるだけで
なく、消費電流の最大値を低減することができる。On the other hand, regarding the power consumption in the excitation section,
Since the crystal oscillation is continued so that the mode can be quickly returned from the low power consumption mode to the normal mode, there is some current consumption (about Ip * = 0.2 mA) as shown in FIG. The current consumption of the circuits other than the excitation circuit and the microprocessor is substantially constant, and is shown in FIG. 2 as about 1 mA. As described above, when the microprocessor performs an operation in the non-excitation interval and controls so as to be in the low power consumption mode in the excitation interval, the current consumption of all the circuits is as shown in FIG.
(G). In this case, it is possible not only to suppress the fluctuation of the current consumption, but also to reduce the maximum value of the current consumption, as compared with the case of FIG. 3 to which the present invention is not applied.
【0011】ここで、図2と図3の各場合の消費電流の
最大値について比較,検討する。いま、図2,図3にお
いて、 If :励磁電流 Ip :従来例の場合のマイクロプロセッサ消費電流 Ir :励磁回路,マイクロプロセッサ以外の回路の消
費電流 Ip* :低消費電力モード時のマイクロプロセッサ消費
電流 D =Ton/(Ton+Toff);励磁のデュー
ティ の如く定義する。Here, the maximum value of the current consumption in each case of FIGS. 2 and 3 will be compared and examined. Now, in FIGS. 2 and 3, If: excitation current Ip: microprocessor current consumption in the conventional example Ir: current consumption of circuits other than the excitation circuit and microprocessor Ip * : microprocessor current consumption in low power consumption mode D = Ton / (Ton + Toff); defined as the excitation duty.
【0012】上記のように定義すると、従来例の場合の
全回路の最大消費電流は、 If+Ip+Ir …(1) と表わされるのに対し、この発明の場合の全回路の最大
消費電流は、 励磁時 :If+Ip* +Ir …(2) 無励磁時:Ip/(1ーD)+Ir …(3) と表わされる。なお、(3)式の第1項は、マイクロプ
ロセッサの平均処理電流が、従来例とこの発明の場合と
で同じになるようにするための操作を示す。これによ
り、同じ量の演算処理ができることになる。When defined as described above, the maximum current consumption of all the circuits in the conventional example is expressed by If + Ip + Ir (1), whereas the maximum current consumption of all the circuits in the case of the present invention is as follows. : If + Ip * + Ir (2) When not excited: expressed as Ip / (1−D) + Ir (3) The first term of the equation (3) indicates an operation for making the average processing current of the microprocessor the same in the conventional example and the case of the present invention. As a result, the same amount of arithmetic processing can be performed.
【0013】さて、この発明による最大消費電流が従来
例のそれよりも低減される条件は、 (1)式>(2)式より、Ip>Ip* であるが、この条件は必ず満足される。何故ならば、I
p* はIpに対する低消費電流モードであるからであ
る。また、(1)式>(3)式より、If>Ip・D/
(1−D)である。図2の実施例の場合は、If=2m
A,D=0.5,Ip=1mAを想定していることか
ら、上式の関係を満たすことが分かる。The condition under which the maximum current consumption according to the present invention is reduced as compared with that of the conventional example is as follows: from the expression (1)> (2), Ip> Ip * , but this condition is always satisfied. . Because I
This is because p * is a low current consumption mode for Ip. Also, from the equation (1)> (3), If> Ip · D /
(1-D). In the case of the embodiment of FIG. 2, If = 2m
Since it is assumed that A, D = 0.5 and Ip = 1 mA, it can be seen that the relationship of the above expression is satisfied.
【0014】なお、図2のように無励磁区間だけマイク
ロプロセッサが演算を行なうようにし、励磁区間では必
ず低消費電力モードとするためには、図1に示すタイミ
ング生成回路11により、励磁区間の終わりのタイミン
グでマイクロプロセッサを低消費電力モードから通常モ
ードへ移行させ、必要な流速演算を無励磁区間内に完了
させ、演算終了時にソフトウエアによって再び低消費電
力モードへ移行させることで実現することができる。In order to allow the microprocessor to perform the operation only during the non-excitation period as shown in FIG. 2 and to always set the low power consumption mode in the excitation period, the timing generation circuit 11 shown in FIG. At the end timing, the microprocessor is shifted from the low power consumption mode to the normal mode, the necessary flow velocity calculation is completed within the non-excitation interval, and the software is shifted to the low power consumption mode again at the end of the calculation. Can be.
【0015】次に、図4を参照してA/D変換結果の保
持動作について説明する。電磁流量計は励磁電流と流速
によって発生する起電力の大きさから流速を求めるもの
であるが、交番磁界を使用する場合には励磁電流に相似
する起電力のピーク・ツー・ピーク(Peak−to−
Peak)を使用するのが一般的である。この起電力の
ピーク・ツー・ピークを測定するために図1のように整
流回路を使用すると、そのオフセット電圧によって交流
信号の振幅に誤差が生じる。そこで、整流回路のオフセ
ット電圧を検出してこれを補償する方法が併用される。
これは、プラス整流時の励磁期間の起電力(V+ )とプ
ラス整流時の無励磁期間の起電力電圧(V+ zero)
の差、マイナス整流時の励磁期間の起電力(V - )とマ
イナス整流時の無励磁期間の起電力電圧(V- zer
o)の差を次式のように加算して、起電力のPeak−
to−Peak(Vpp)を求める方法である。 Vpp=(V+ −V+ zero)+(V- −V- zero) …(4)Next, referring to FIG. 4, the A / D conversion result is stored.
The holding operation will be described. Excitation current and flow velocity
To calculate the flow velocity from the magnitude of the electromotive force generated by
However, when an alternating magnetic field is used, it is similar to the exciting current.
Peak-to-Peak
Peak) is generally used. Of this electromotive force
To measure peak-to-peak, align as shown in Figure 1.
When a current circuit is used, the AC
An error occurs in the amplitude of the signal. Therefore, the offset of the rectifier circuit
A method of detecting the cut-off voltage and compensating for this is also used.
This is because the electromotive force (V+) And
The electromotive force voltage (V+zero)
Difference, the electromotive force (V -) And Ma
The electromotive force voltage (V-zer
o) is added as in the following equation to obtain the peak-
This is a method for calculating to-Peak (Vpp). Vpp = (V+-V+zero) + (V--V-zero)… (4)
【0016】このようなオフセット補償と、無励磁区間
のみマイクロプロセッサ動作とを併用する場合の動作を
説明するのが、図4である。すなわち、第1の保持回路
81にはV+ とV- を図4(e)のように交互に格納
し、第2の保持回路82にはV+ zeroとV- zer
oを図4(f)のように交互に格納するようにしてい
る。そして、マイクロプロセッサが流速演算するタイミ
ングでは、2つの保持回路81,82から起電力の値を
読み込んで起電力のPeak−to−Peak演算を、
図4(g)のように行なっている。このように、保持回
路81,82を設けることで、励磁区間にマイクロプロ
セッサを低消費電力モードにしても、整流回路のオフセ
ット補償に必要な値を1つのA/D変換回路で取得する
ことができる。FIG. 4 illustrates the operation when such offset compensation is used together with the microprocessor operation only in the non-excitation section. That is, the first holding circuit 81 V + and V - stores alternately as in FIG. 4 (e), the second holding circuit 82 V + zero and V - zer
o are alternately stored as shown in FIG. Then, at the timing when the microprocessor calculates the flow velocity, the value of the electromotive force is read from the two holding circuits 81 and 82, and the Peak-to-Peak calculation of the electromotive force is performed.
This is performed as shown in FIG. By providing the holding circuits 81 and 82 in this manner, even when the microprocessor is in the low power consumption mode during the excitation interval, one A / D conversion circuit can acquire a value required for offset compensation of the rectifier circuit. it can.
【0017】[0017]
【発明の効果】この発明によれば、励磁電流を流さない
休止区間を設け、この区間内に流速演算を完了し、励磁
電流と流速演算のための消費電流を時分割に供給するた
め消費電力を均一化でき、消費電流の最大値を低減する
ことができる。そのため、消費電流の変動が均一化され
ることから、電流の変動を抑制するためのローパスフィ
ルタが不要となるか、または特性がさほど厳しくないフ
ィルタで済ませることができて実現が容易となり、ロー
パスフィルタの電力損失を軽減できる。また、消費電流
の最大値が低減されることから、印加電圧を増加させる
必要も無くなる。そして、以上のように低消費電力化さ
れた電流分を励磁電流分にまわすことにより、測定管に
発生する交番磁界を増加させることができ、得られる起
電力のS/Nを向上させることが可能となる。According to the present invention, there is provided a pause section in which no exciting current flows, in which the flow velocity calculation is completed, and the power consumption for supplying the excitation current and the current consumption for the flow velocity calculation in a time-sharing manner. Can be made uniform, and the maximum value of the current consumption can be reduced. As a result, the fluctuation of the current consumption is made uniform, so that a low-pass filter for suppressing the fluctuation of the current is not required, or a filter having less severe characteristics can be used. Power loss can be reduced. Further, since the maximum value of the current consumption is reduced, it is not necessary to increase the applied voltage. By turning the current of low power consumption as described above into the exciting current, the alternating magnetic field generated in the measuring tube can be increased, and the S / N of the obtained electromotive force can be improved. It becomes possible.
【図1】この発明の実施の形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.
【図2】図1の全体動作を説明する動作説明図である。FIG. 2 is an operation explanatory diagram illustrating an overall operation of FIG. 1;
【図3】この発明を適用しない場合の動作説明図であ
る。FIG. 3 is an operation explanatory diagram when the present invention is not applied.
【図4】この発明におけるA/D変換結果保持動作を説
明する説明図である。FIG. 4 is an explanatory diagram illustrating an A / D conversion result holding operation according to the present invention.
1…励磁コイル、2…電極、3…測定管、4…励磁回
路、5…増幅回路、6…整流回路、7…A/D変換回
路、81,82…保持回路、9…マイクロプロセッサ、
10…出力電流制御回路、11…タイミング生成回路、
12…電源回路。DESCRIPTION OF SYMBOLS 1 ... Excitation coil, 2 ... Electrode, 3 ... Measurement tube, 4 ... Excitation circuit, 5 ... Amplification circuit, 6 ... Rectification circuit, 7 ... A / D conversion circuit, 81, 82 ... Holding circuit, 9 ... Microprocessor,
10: output current control circuit, 11: timing generation circuit,
12 Power supply circuit.
Claims (2)
される励磁コイルと、この励磁コイルに励磁電流を流し
て前記測定管内に交番磁界を発生させる励磁回路と、測
定管内に配置される1対の電極と、この1対の電極間に
発生する起電力に基づき導電性流体の流量を求める流量
検出装置とを有してなる電磁流量計において、 励磁電流を流さない休止区間を設け、この休止区間以外
では前記流量検出装置の少なくとも一部分を停止または
低消費電力モードにして動作させることを特徴とする電
磁流量計。1. An exciting coil disposed near a measuring tube through which a conductive fluid flows, an exciting circuit for supplying an exciting current to the exciting coil to generate an alternating magnetic field in the measuring tube, and disposed in the measuring tube. An electromagnetic flowmeter having a pair of electrodes and a flow rate detection device for obtaining a flow rate of the conductive fluid based on an electromotive force generated between the pair of electrodes, wherein a pause section in which no exciting current flows is provided, An electromagnetic flowmeter characterized in that at least a part of the flow rate detection device is stopped or operated in a low power consumption mode in a period other than the pause section.
変換器と、A/D変換結果の少なくとも2つ以上を保持
し得る保持回路と、演算回路とから構成し、A/D変換
結果を前記保持回路へ交互に格納することを特徴とする
請求項1に記載の電磁流量計。2. The method according to claim 1, wherein the flow detecting device includes an amplifier, an A / D
9. A circuit comprising: a converter; a holding circuit capable of holding at least two or more of the A / D conversion results; and an arithmetic circuit, wherein the A / D conversion results are alternately stored in the holding circuit. 2. The electromagnetic flowmeter according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31047597A JP3659378B2 (en) | 1997-11-12 | 1997-11-12 | Electromagnetic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31047597A JP3659378B2 (en) | 1997-11-12 | 1997-11-12 | Electromagnetic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11142199A true JPH11142199A (en) | 1999-05-28 |
JP3659378B2 JP3659378B2 (en) | 2005-06-15 |
Family
ID=18005699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31047597A Expired - Fee Related JP3659378B2 (en) | 1997-11-12 | 1997-11-12 | Electromagnetic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3659378B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002340638A (en) * | 2001-05-14 | 2002-11-27 | Yokogawa Electric Corp | Electromagnetic flowmeter |
WO2006029947A1 (en) * | 2004-09-13 | 2006-03-23 | Endress+Hauser Flowtec Ag | Device and method for measuring a process parameter |
EP3015830A1 (en) | 2014-10-28 | 2016-05-04 | Azbil Corporation | Standard signal generator |
-
1997
- 1997-11-12 JP JP31047597A patent/JP3659378B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002340638A (en) * | 2001-05-14 | 2002-11-27 | Yokogawa Electric Corp | Electromagnetic flowmeter |
WO2006029947A1 (en) * | 2004-09-13 | 2006-03-23 | Endress+Hauser Flowtec Ag | Device and method for measuring a process parameter |
EP3015830A1 (en) | 2014-10-28 | 2016-05-04 | Azbil Corporation | Standard signal generator |
US10215615B2 (en) | 2014-10-28 | 2019-02-26 | Azbil Corporation | Standard signal generator |
Also Published As
Publication number | Publication date |
---|---|
JP3659378B2 (en) | 2005-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0336615B1 (en) | Electromagnetic flowmeter capable of simultaneous measurement of flow rate and conductivity of fluid | |
JP4386855B2 (en) | Operation method of magnetic inductive flow meter | |
US5621177A (en) | Electromagnetic flowmeter | |
US4206641A (en) | Electromagnetic flow meter | |
JPH11142199A (en) | Electromagnetic flowmeter | |
JP3099336B2 (en) | Electromagnetic digital current detector | |
JPH11230702A (en) | Sense signal output circuit | |
JP3161307B2 (en) | Electromagnetic flow meter | |
JP3752324B2 (en) | Electromagnetic flow meter | |
JPH085422A (en) | Electromagnetic flow meter | |
JP3244361B2 (en) | Noise removal method and converter in electromagnetic flowmeter | |
JPH063381B2 (en) | Electromagnetic flow meter | |
JP3120660B2 (en) | Electromagnetic flow meter | |
JPS6122768B2 (en) | ||
JPH0419471Y2 (en) | ||
JP2698489B2 (en) | Watt hour meter | |
JPH0554608B2 (en) | ||
JPH0450496Y2 (en) | ||
JP3208043B2 (en) | Electromagnetic log sensor | |
JP3200831B2 (en) | Excitation circuit of electromagnetic flow meter | |
JPH0738822Y2 (en) | Electromagnetic flow meter | |
JPS5839380Y2 (en) | Denjiri Yuryokei | |
JP2936843B2 (en) | Electromagnetic flow meter | |
JPH0524187Y2 (en) | ||
JPH0478126B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050309 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080325 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090325 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090325 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100325 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110325 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110325 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110325 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120325 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120325 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120325 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120325 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130325 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130325 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140325 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |