JPS6122768B2 - - Google Patents

Info

Publication number
JPS6122768B2
JPS6122768B2 JP8354177A JP8354177A JPS6122768B2 JP S6122768 B2 JPS6122768 B2 JP S6122768B2 JP 8354177 A JP8354177 A JP 8354177A JP 8354177 A JP8354177 A JP 8354177A JP S6122768 B2 JPS6122768 B2 JP S6122768B2
Authority
JP
Japan
Prior art keywords
signal
voltage
current
excitation
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8354177A
Other languages
Japanese (ja)
Other versions
JPS5419779A (en
Inventor
Ichiu Suzuki
Chuji Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP8354177A priority Critical patent/JPS5419779A/en
Publication of JPS5419779A publication Critical patent/JPS5419779A/en
Publication of JPS6122768B2 publication Critical patent/JPS6122768B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 本発明は、電磁流量計発信器の励磁コイルに電
流を比較的高い周波数でON―OFF制御されるス
イツチを介して供給し、スイツチがONで電源か
ら励磁コイルに供給される電流とスイツチが
OFFで励磁コイルの逆起電力によつて励磁コイ
ルに流れる電流とをカレントトランスの2つの1
次巻線に夫々逆極性に供給し、カレントトランス
の2次巻線に励磁電流に比例した交流電流を得る
ようにした電磁流量計の改良に関する。
[Detailed Description of the Invention] The present invention supplies current to the excitation coil of an electromagnetic flowmeter transmitter via a switch that is controlled ON-OFF at a relatively high frequency, and when the switch is turned on, the power supply supplies current to the excitation coil. The current and switch
The current flowing through the excitation coil due to the back electromotive force of the excitation coil when it is OFF is connected to the current transformer.
The present invention relates to an improvement in an electromagnetic flowmeter in which an alternating current proportional to an excitation current is supplied to the secondary winding of a current transformer by supplying the secondary windings with opposite polarities.

第1図は本発明の基本となる従来の電磁流量計
の回路構成図であり、1は電磁流量計発信器、2
は被測定流体が通る導管、3,4は導管に設けら
れた電極、5は励磁コイル、6は電極3,4間に
発生する流量信号を増幅する信号増幅器、7は割
算回路、8は電磁電流検出用のカレントトラン
ス、9は整流回路、10は励磁コイル5に発生す
る逆起電力によつて生ずる電流を流すダイオー
ド、11はスイツチ、12はスイツチ駆動回路、
13は整流器、14は商用電源である。
FIG. 1 is a circuit configuration diagram of a conventional electromagnetic flowmeter that is the basis of the present invention, in which 1 is an electromagnetic flowmeter transmitter, 2
is a conduit through which the fluid to be measured passes, 3 and 4 are electrodes provided in the conduit, 5 is an excitation coil, 6 is a signal amplifier that amplifies the flow rate signal generated between the electrodes 3 and 4, 7 is a divider circuit, and 8 is a A current transformer for detecting electromagnetic current; 9 is a rectifier circuit; 10 is a diode for passing a current generated by the back electromotive force generated in the exciting coil 5; 11 is a switch; 12 is a switch drive circuit;
13 is a rectifier, and 14 is a commercial power source.

この回路の構成は次のようである。 The configuration of this circuit is as follows.

商用電源14は整流器13に接続され、整流器
13の出力にはスイツチ11とカレントトランス
8の第1の1次巻線8aと励磁コイル5とからな
る直列回路が接続されている。励磁コイル5と並
列にカレントトランス8の第2の1次巻線8bと
ダイオード10の直列回路が接続されている。電
極3,4は信号増幅器6の入力端に接続され、信
号増幅器6の出力端は割算回路7に接続されてい
る。カレントトランス8の2次巻線8cは整流回
路9に接続され、整流回路9の出力端は割算回路
7に接続されている。
The commercial power supply 14 is connected to a rectifier 13, and the output of the rectifier 13 is connected to a series circuit consisting of the switch 11, the first primary winding 8a of the current transformer 8, and the exciting coil 5. A series circuit of a second primary winding 8b of a current transformer 8 and a diode 10 is connected in parallel with the exciting coil 5. The electrodes 3 and 4 are connected to the input end of a signal amplifier 6, and the output end of the signal amplifier 6 is connected to a divider circuit 7. A secondary winding 8c of the current transformer 8 is connected to a rectifier circuit 9, and an output end of the rectifier circuit 9 is connected to a divider circuit 7.

この回路の動作は次のようである。 The operation of this circuit is as follows.

商用電源14の交流電圧は整流器13により全
波整流される。スイツチ11はスイツチ駆動回路
12により商用電源14の周波数より高い周波数
でON―OFF駆動される。したがつて、スイツチ
11を介して整流器13から励磁コイル5に断続
的に電流が供給される。この電流はカレントトラ
ンス8の第1の1次巻線8aに流れ、2次巻線8
cに伝達される。また、スイツチ11がOFFの
時、励磁コイル5には逆起電力が発生し、励磁コ
イル5にはダイオード10とカレントトランス8
の第2の1次巻線8bを介して電流が流れる。こ
の電流はカレントトランス8の第2の1次巻線8
bから2次巻線8cに伝達される。
The AC voltage of the commercial power supply 14 is full-wave rectified by the rectifier 13 . The switch 11 is driven ON-OFF by a switch drive circuit 12 at a frequency higher than the frequency of the commercial power supply 14. Therefore, current is intermittently supplied from the rectifier 13 to the excitation coil 5 via the switch 11. This current flows to the first primary winding 8a of the current transformer 8, and the secondary winding 8a
transmitted to c. Further, when the switch 11 is OFF, a back electromotive force is generated in the excitation coil 5, and the excitation coil 5 has a diode 10 and a current transformer 8.
A current flows through the second primary winding 8b. This current flows through the second primary winding 8 of the current transformer 8.
b to the secondary winding 8c.

したがつて、励磁コイル5に流れる励磁電流は
スイツチ11のON時はもちろんOFF時も励磁コ
イル5に発生する逆起電力により電流が流れ、連
続的な直流励磁電流となる。また、カレントトラ
ンス8に於て、第1の1次巻線8aと第2の1次
巻線8bとの巻き方向が逆方向とされ、第1の1
次巻線8aに流れる電流により生ずる磁束の方向
と、第2の1次巻線8bに流れる電流により生ず
る磁束の方向とが互に逆方向となる。これにより
カレントトランス8の2次巻線8cに、スイツチ
11のON―OFF周波数と同一の周波数で励磁電
流に比例した交流電流が発生する。
Therefore, the excitation current flowing through the excitation coil 5 is caused by the back electromotive force generated in the excitation coil 5 both when the switch 11 is turned on as well as when it is turned off, and becomes a continuous DC excitation current. Further, in the current transformer 8, the winding directions of the first primary winding 8a and the second primary winding 8b are opposite, and the first primary winding 8a and the second primary winding 8b are wound in opposite directions.
The direction of the magnetic flux generated by the current flowing through the secondary winding 8a and the direction of the magnetic flux generated by the current flowing through the second primary winding 8b are opposite to each other. As a result, an alternating current proportional to the excitation current is generated in the secondary winding 8c of the current transformer 8 at the same frequency as the ON-OFF frequency of the switch 11.

一方、電極3,4間に発生した流量信号は信号
増幅器6により増幅され、割算回路7に供給され
る。カレントトランス8の2次巻線8cに発生す
る励磁電流に比例した交流電流は整流回路9にお
いて直流に整流され、比較信号として割算回路7
に供給される。割算回路7では信号増幅器6から
の流量信号を整流回路9からの比較信号で割算し
て、励磁電流の変動による流量信号を補償し、出
力端子OUTから高精度の流量信号を得るもので
ある。
On the other hand, the flow rate signal generated between the electrodes 3 and 4 is amplified by a signal amplifier 6 and supplied to a divider circuit 7. The alternating current proportional to the excitation current generated in the secondary winding 8c of the current transformer 8 is rectified into direct current in the rectifier circuit 9, and is used as a comparison signal by the dividing circuit 7.
is supplied to The divider circuit 7 divides the flow rate signal from the signal amplifier 6 by the comparison signal from the rectifier circuit 9, compensates for the flow rate signal due to fluctuations in the excitation current, and obtains a highly accurate flow rate signal from the output terminal OUT. be.

なお、スイツチ11のON―OFF駆動におい
て、OFFとする時間を周期的に長くとれば、こ
の長いOFF時の非励磁状態とON―OFF時の励磁
状態との繰り返しの低周波矩形波励磁方式の電磁
流量計となる。
In addition, in the ON-OFF driving of the switch 11, if the OFF time is periodically extended, the low-frequency rectangular wave excitation method of repeating the de-energized state during the long OFF period and the energized state during the ON-OFF period can be used. It becomes an electromagnetic flowmeter.

低周波励磁方式の電磁流量計においては、一般
に励磁状態と非励磁状態(又は正の励磁状態と負
の励磁状態)において励磁電流が安定した点で流
量信号及び励磁電流の変動を補償するための比較
電圧をサンプルし、励磁状態時の信号から非励磁
状態時の信号を引き算することにより電気回路等
から発生する直流分を打ち消している。
In a low-frequency excitation type electromagnetic flowmeter, a process is generally performed to compensate for fluctuations in the flow rate signal and excitation current at the point where the excitation current is stabilized in an excitation state and a non-excitation state (or a positive excitation state and a negative excitation state). By sampling the comparison voltage and subtracting the signal in the de-energized state from the signal in the energized state, the DC component generated from the electric circuit etc. is canceled out.

この本発明の基本となる電磁流量計は、励磁電
流に比例した比較電圧を検出するのにカレントト
ランス8により行なうことに特徴を持つものであ
り、次のような長所がある。
This electromagnetic flowmeter, which is the basis of the present invention, is characterized in that it uses a current transformer 8 to detect a comparative voltage proportional to the excitation current, and has the following advantages.

(a) カレントトランス8に流れる電流の周波数
は、励磁コイルに流れる励磁電流が直流或いは
低い周波数であつても、スイツチ11のON―
OFF駆動の周波数と同一であり、比較的高い
周波数であるので小形のカレントトランスでも
高精度の比較信号が容易に得られる。
(a) The frequency of the current flowing through the current transformer 8 is determined by the ON--
Since it is the same frequency as the OFF drive frequency and is relatively high, a highly accurate comparison signal can be easily obtained even with a small current transformer.

(b) 商用電源と検出された比較信号との絶縁がカ
レントトランスによりとられる。
(b) Isolation between the commercial power supply and the detected comparison signal is provided by a current transformer.

(c) 得られる比較信号は比較的大きな値として得
られる。
(c) The comparison signal obtained is obtained as a relatively large value.

ところで、このような電磁流量計において、更
に高精度に励磁電流に比例した比較信号の検出を
行なおうとした場合、商用電源電圧が零ボルトと
なる付近で次に示す問題点がある。
By the way, in such an electromagnetic flowmeter, when an attempt is made to detect a comparison signal proportional to the excitation current with higher precision, the following problem occurs near the point where the commercial power supply voltage reaches zero volts.

第2図はその問題点を説明するための動作波形
図であり、1は商用電源14を整流器13で整流
した電圧波形、2はスイツチ11のON―OFF駆
動波形、3はカレントトランス8の第1の1次巻
線8aに流れる電流波形、4は第2の1次巻線8
bに流れる電流波形、5は励磁コイル5に流れる
励磁電流波形、6はカレントトランス8の2次巻
線8cに発生する電流波形、7は2次巻線8cに
発生する交流電流を整流した波形である。尚、こ
こでは簡単なためカレントトランスは少くとも商
用周波数以上の帯域では平坦な周波数特性を有す
るものとして示してある。
FIG. 2 is an operating waveform diagram to explain the problem. 1 is a voltage waveform obtained by rectifying the commercial power supply 14 with a rectifier 13, 2 is an ON-OFF driving waveform of the switch 11, and 3 is the current transformer 8's voltage waveform. 1 is the current waveform flowing through the primary winding 8a, 4 is the second primary winding 8
5 is the waveform of the current flowing through the exciting coil 5; 6 is the current waveform generated in the secondary winding 8c of the current transformer 8; 7 is the waveform obtained by rectifying the alternating current generated in the secondary winding 8c. It is. For simplicity, the current transformer is shown here as having flat frequency characteristics at least in the band above the commercial frequency.

電源側から励磁コイル5に供給される電流は、
電源電圧が零ボルト付近となるとスイツチ11が
ON状態であつても電源電圧が整流器13の順方
向電圧より低くなるので第2図波形3に示す様に
この区間では一時的に電源から供給される電流の
値が減少してしまう。一方、励磁コイル5の逆起
電力により励磁コイル5に流れる電流はスイツチ
11のOFF時のみでなく、スイツチ11がON状
態であつても電源電圧が零ボルト付近となる時に
も流れ、第2図波形4に示す様に電源側からの供
給電流が減少した分に相当する電流が流れる。
The current supplied to the excitation coil 5 from the power supply side is
When the power supply voltage approaches zero volts, switch 11
Even in the ON state, the power supply voltage is lower than the forward voltage of the rectifier 13, so the value of the current supplied from the power supply temporarily decreases in this section, as shown in waveform 3 in FIG. On the other hand, the current flowing through the excitation coil 5 due to the back electromotive force of the excitation coil 5 flows not only when the switch 11 is OFF, but also when the power supply voltage is near zero volts even when the switch 11 is ON. As shown in waveform 4, a current corresponding to the decrease in the current supplied from the power supply side flows.

つまり、電源電圧が零ボルト付近でスイツチ1
1がON状態となつていると、カレントトランス
8の第1の1次巻線8aにも第2の1次巻線8b
にも同時に電流が流れる。すると、カレントトラ
ンス8の2次巻線8cにはこれらの差電流が発生
することになるので、第2図波形6に示す2次巻
線8cに発生する電流を整流すると第2図波形7
に示す様に、電源電圧が零ボルト付近で第1、第
2の1次巻線8a,8bに同時に流れる電流値が
第2図波形5に示す励磁電流の値より減少する。
この減少した値が比較信号の誤差となる。
In other words, when the power supply voltage is near zero volts, switch 1
1 is in the ON state, the first primary winding 8a of the current transformer 8 also has the second primary winding 8b.
Current also flows at the same time. Then, these difference currents will be generated in the secondary winding 8c of the current transformer 8, so if the current generated in the secondary winding 8c shown in the waveform 6 in FIG. 2 is rectified, the current will be shown in the waveform 7 in FIG.
As shown in FIG. 2, when the power supply voltage is near zero volts, the value of the current flowing simultaneously through the first and second primary windings 8a and 8b decreases from the value of the excitation current shown in waveform 5 in FIG.
This reduced value becomes an error in the comparison signal.

この問題点を解決する方法として、次のような
方法も1つとして考えられる。つまり、整流器1
3の出力端に平滑用コンデンサを挿入して、交流
電源電圧が零ボルトとなる時にはこの平滑用コン
デンサから励磁コイル5に電流が供給されるよう
にする方法である。ところがこの方法は、励磁電
流に数アンペア以上と大電流が必要な電磁流量計
では、大容量のコンデンサが必要である。またこ
の様に大容量のコンデンサは信頼性の高いものが
得にくい。
The following method can be considered as one method to solve this problem. In other words, rectifier 1
In this method, a smoothing capacitor is inserted into the output terminal of the coil 3, and current is supplied from the smoothing capacitor to the excitation coil 5 when the AC power supply voltage becomes zero volts. However, this method requires a large-capacity capacitor for electromagnetic flowmeters that require a large excitation current of several amperes or more. Furthermore, it is difficult to obtain a highly reliable capacitor with such a large capacity.

そこで本発明は、商用電源電圧が零ボルト付近
では比較信号に誤差成分を含むので、商用電源電
圧が零となる附近を除く所定期間だけゲートする
ゲート幅を有するゲート信号を用いて信号処理を
行なうようにしたものである。
Therefore, the present invention performs signal processing using a gate signal having a gate width that is gated for a predetermined period excluding the vicinity where the commercial power supply voltage is zero, since the comparison signal contains an error component when the commercial power supply voltage is around zero volts. This is how it was done.

第3図は本発明の一実施例を示す電磁流量計で
あり、15は偏差増幅器、16,17,22は半
導体スイツチ、18は減算平滑回路、20は電
圧/周波数変換器、21は周波数/電流変換器、
23は発振器、24はフリツプフロツプ、26は
波形整形回路、7は分周回路、28はタイミング
発生回路、29は例えば第5図1,2に示す如き
零電圧検出回路である。
FIG. 3 shows an electromagnetic flowmeter showing an embodiment of the present invention, in which 15 is a deviation amplifier, 16, 17, and 22 are semiconductor switches, 18 is a subtraction smoothing circuit, 20 is a voltage/frequency converter, and 21 is a frequency/frequency converter. current converter,
23 is an oscillator, 24 is a flip-flop, 26 is a waveform shaping circuit, 7 is a frequency dividing circuit, 28 is a timing generation circuit, and 29 is a zero voltage detection circuit as shown in FIGS. 1 and 2, for example.

この電磁流量計の基本となる構成は第1図と同
様であり、次に詳細に説明する。
The basic configuration of this electromagnetic flowmeter is the same as that shown in FIG. 1, and will be explained in detail next.

初めに、割算回路の構成は次のようである。偏
差増幅器15の一方の入力端は信号増幅器6の出
力端に接続されている。偏差増幅器15の出力端
は半導体スイツチ16,17からなるゲート回路
を介して減算平滑回路18の入力端に接続されて
いる。減算平滑回路18の出力端は電圧/周波数
変換器20に接続されている。電圧/周波数変換
器20の出力端は周波数/電流変換器21の入力
端に接続され、周波数/電流変換器21の出力端
がこの電磁流量計の出力端OUTとなつている。
偏差増幅器15の他方の入力端は半導体スイツチ
22を介して整流回路の出力端に接続されてい
る。この半導体スイツチ22は電圧/周波数変換
器20のパルス幅が一定の周波数信号によりON
―OFF駆動される。
First, the configuration of the division circuit is as follows. One input terminal of the deviation amplifier 15 is connected to the output terminal of the signal amplifier 6. The output terminal of the deviation amplifier 15 is connected to the input terminal of a subtraction smoothing circuit 18 via a gate circuit consisting of semiconductor switches 16 and 17. The output end of the subtractive smoothing circuit 18 is connected to a voltage/frequency converter 20. The output end of the voltage/frequency converter 20 is connected to the input end of the frequency/current converter 21, and the output end of the frequency/current converter 21 is the output end OUT of this electromagnetic flowmeter.
The other input terminal of the deviation amplifier 15 is connected to the output terminal of the rectifier circuit 9 via a semiconductor switch 22. This semiconductor switch 22 is turned on by a frequency signal with a constant pulse width from the voltage/frequency converter 20.
- Driven OFF.

また、スイツチ駆動回路12の構成は次のよう
である。発振器23の出力端はフリツプフロツプ
24の入力端に接続されている。波形整形回路2
6は商用電源14の電圧を波形整形し、その出力
端は分周回路27の入力端に接続されている。そ
してアンドゲート25の両入力端がフリツプフロ
ツプ24の出力端と分周回路27の出力端に接続
されている。このアンドゲートの出力によりスイ
ツチ11がON―OFF駆動される。
Further, the configuration of the switch drive circuit 12 is as follows. The output of oscillator 23 is connected to the input of flip-flop 24. Waveform shaping circuit 2
6 waveform-shapes the voltage of the commercial power supply 14, and its output end is connected to the input end of the frequency dividing circuit 27. Both input terminals of the AND gate 25 are connected to the output terminal of the flip-flop 24 and the output terminal of the frequency dividing circuit 27. The switch 11 is driven ON-OFF by the output of this AND gate.

そして、半導体スイツチ16,17からなるゲ
ート回路を駆動する回路の構成は次のようであ
る。タイミング発生回路28は分周回路27の出
力を入力している。零電圧検出回路29は商用電
源14の電圧を入力し、その出力端はアンドゲー
ト30,31の入力端に接続されている。アンド
ゲート30,31の夫々の他方の入力端はタイミ
ング発生回路28の出力端に夫々接続されてい
る。このアンドゲート30,31の出力により半
導体スイツチ16,17がON―OFF駆動され
る。
The configuration of the circuit for driving the gate circuit consisting of semiconductor switches 16 and 17 is as follows. The timing generating circuit 28 receives the output of the frequency dividing circuit 27 as input. The zero voltage detection circuit 29 inputs the voltage of the commercial power supply 14, and its output terminal is connected to the input terminals of the AND gates 30 and 31. The other input terminals of AND gates 30 and 31 are connected to the output terminal of timing generation circuit 28, respectively. The outputs of the AND gates 30 and 31 drive the semiconductor switches 16 and 17 ON and OFF.

第4図は第3図に示す電磁流量計の動作を示す
波形図であり、1は商用電源14の電圧波形、2
はアンドゲート25の出力波形、3はカレントト
ランス8の2次巻線8cの電圧を単に整流する整
流回路9の出力波形、4は零電圧検出回路29の
出力波形、5,6はアンドゲート30,31の出
力波形である。
4 is a waveform diagram showing the operation of the electromagnetic flowmeter shown in FIG. 3, where 1 is the voltage waveform of the commercial power supply 14, 2
is the output waveform of the AND gate 25, 3 is the output waveform of the rectifier circuit 9 that simply rectifies the voltage of the secondary winding 8c of the current transformer 8, 4 is the output waveform of the zero voltage detection circuit 29, and 5 and 6 are the AND gate 30 , 31.

よつて第4図波形図から明らかなように、第3
図に示す電磁流量計では、励磁電流が安定した状
態において第4図波形5に示すように比較信号が
励磁電流と比例する期間の間だけ偏差増幅器15
の出力電圧をゲートするようにしたので、精度良
く流量信号が求められる。
Therefore, as is clear from the waveform diagram in Figure 4, the third
In the electromagnetic flowmeter shown in the figure, when the excitation current is stable, the deviation amplifier 15 is used only during the period in which the comparison signal is proportional to the excitation current, as shown in waveform 5 in Figure 4.
Since the output voltage is gated, the flow rate signal can be obtained with high accuracy.

なお、スイツチ駆動回路12において、商用電
源14の周波数と同期させたのは、商用電源から
の誘導ノイズの影響を除去するためである。
Note that the reason why the switch drive circuit 12 is synchronized with the frequency of the commercial power source 14 is to eliminate the influence of induced noise from the commercial power source.

また半導体スイツチ22は信号増幅器6からの
流量信号を比較信号で割算するためのものであ
る。すなわち、信号増幅器6の出力をVi、整流
回路の出力である比較信号をVrとおき、電
圧/周波数変換器20の出力をFとおくと、偏差
増幅器15の入力端では次の関係式が成立する。
Further, the semiconductor switch 22 is for dividing the flow rate signal from the signal amplifier 6 by the comparison signal. That is, if the output of the signal amplifier 6 is Vi, the comparison signal that is the output of the rectifier circuit 9 is Vr, and the output of the voltage/frequency converter 20 is F, then at the input terminal of the deviation amplifier 15, the following relational expression is obtained. To establish.

Vi=Vr・F したがつて出力Fは、 F=Vi/Vr となり、電圧/周波数変換器20の出力として、
流量信号Viを比較信号Vrで割算した値が得られ
る。
Vi=Vr・F Therefore, the output F is F=Vi/Vr, and as the output of the voltage/frequency converter 20,
A value is obtained by dividing the flow rate signal Vi by the comparison signal Vr.

また本発明は、励磁状態と非励磁状態の繰り返
しの電磁流量計に限られることなく、正の励磁状
態と負の励磁状態の繰り返し或いは正の励磁状態
と非励磁状態と負の励磁状態と非励磁状態との繰
り返しの電磁流量計にも適用出来る。また、直流
励磁方式の電磁流量計にも適用出来る。
Furthermore, the present invention is not limited to an electromagnetic flowmeter that repeats an excited state and a de-energized state, but also repeats a positive excitation state and a negative excitation state, or a positive excitation state, a de-excitation state, a negative excitation state, and a de-excitation state. It can also be applied to electromagnetic flowmeters that repeatedly enter and exit the excited state. It can also be applied to a DC excitation type electromagnetic flowmeter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本となる従来の電磁流量計
の回路構成図、第2図は第1図に示す電磁流量計
の動作波形図、第3図は本発明の一実施例を示す
電磁流量計の回路構成図、第4図は第3図に示す
電磁流量計の動作波形図、第5図1,2は夫々零
電圧検出回路図である。 1:電磁流量計発信器、3,4:電極、5:励
磁コイル、6:信号増幅器、7:割算回路、8:
カレントトランス、8a:第1の1次巻線、8
b:第2の1次巻線、8c:2次巻線、9:整流
回路、11:スイツチ、12:スイツチ駆動回
路、13:整流器、14:商用電源、15:偏差
増幅器、16,17,22:半導体スイツチ、1
8:減算平滑回路、20:電圧/周波数変換器、
21:周波数/電流変換器、23:発振器、2
4:フリツプフロツプ、26:波形整形回路、2
7:分周回路、28:タイミング発生回路、2
9:零電圧検出回路。
Fig. 1 is a circuit diagram of a conventional electromagnetic flowmeter that is the basis of the present invention, Fig. 2 is an operating waveform diagram of the electromagnetic flowmeter shown in Fig. 1, and Fig. 3 is an electromagnetic flowmeter showing an embodiment of the present invention. FIG. 4 is an operating waveform diagram of the electromagnetic flowmeter shown in FIG. 3, and FIGS. 5 1 and 2 are zero voltage detection circuit diagrams, respectively. 1: Electromagnetic flowmeter transmitter, 3, 4: Electrode, 5: Excitation coil, 6: Signal amplifier, 7: Divider circuit, 8:
Current transformer, 8a: first primary winding, 8
b: second primary winding, 8c: secondary winding, 9: rectifier circuit, 11: switch, 12: switch drive circuit, 13: rectifier, 14: commercial power supply, 15: deviation amplifier, 16, 17, 22: Semiconductor switch, 1
8: subtraction smoothing circuit, 20: voltage/frequency converter,
21: Frequency/current converter, 23: Oscillator, 2
4: Flip-flop, 26: Waveform shaping circuit, 2
7: Frequency division circuit, 28: Timing generation circuit, 2
9: Zero voltage detection circuit.

Claims (1)

【特許請求の範囲】 1 A 交流電源の電圧を整流して整流電圧を得
る整流手段と、 B 前記交流電源の周波数より高い断続周波数を
含み励磁電流の波形を決めるスイツチ駆動信号
により制御されて前記整流電圧をオン・オフす
る駆動スイツチ手段と、 C 被測定流体に磁場を印加するための励磁電流
が流される励磁コイルと、 D 第一および第二の1次巻線と2次巻線とを有
し、前記第二の1次巻線は前記第一の1次巻線
によつて生ずる磁束が打消される向きに結線さ
れ、前記第一の1次巻線は前記駆動スイツチ手
段を介して前記励磁電流が流され、前記第二の
1次巻線はダイオードを介して前記励磁コイル
の両端に接続され前記励磁コイルの逆起電力に
よつて流れる電流が流され、前記2次巻線には
前記励磁電流に対応した比較信号を得るカレン
トトランスと、 E 前記交流電源の電圧がゼロとなる附近のゼロ
電圧を検出するゼロ電圧検出手段と、 F 前記ゼロ電圧検出手段に基づき検出された検
出信号により前記交流電源の電圧がゼロとなる
附近を除く所定期間だけ通すゲート幅を有する
ゲート信号を発生するゲート信号発生手段と、 G 発信器から出力される流量信号と帰還信号と
の偏差を増幅する偏差増幅器の出力を前記ゲー
ト信号により開閉される1対のスイツチ手段を
介して減算平滑手段に印加し、この減算平滑手
段の出力電圧をその電圧値に比例した周波数信
号に変換し、この周波数信号により前記比較信
号を制御して前記帰還電圧とする信号変換手段
と、 から成る電磁流計。
[Scope of Claims] 1. A rectifying means for rectifying the voltage of the AC power source to obtain a rectified voltage; B. A switch driving signal that is controlled by a switch drive signal that includes an intermittent frequency higher than the frequency of the AC power source and determines the waveform of the excitation current. A driving switch means for turning on and off the rectified voltage; C. An excitation coil through which an excitation current is passed for applying a magnetic field to the fluid to be measured; D. First and second primary windings and a secondary winding. the second primary winding is connected in a direction that cancels the magnetic flux generated by the first primary winding, and the first primary winding is connected to the drive switch via the drive switch means. The excitation current is applied to the second primary winding, and the second primary winding is connected to both ends of the excitation coil via a diode, and a current is applied to the secondary winding due to the back electromotive force of the excitation coil. is a current transformer that obtains a comparison signal corresponding to the excitation current, E is a zero voltage detecting means for detecting a zero voltage near where the voltage of the AC power supply becomes zero, and F is a detection detected based on the zero voltage detecting means. Gate signal generating means for generating a gate signal having a gate width that allows the signal to pass for a predetermined period excluding the vicinity where the voltage of the AC power source becomes zero due to the signal; G. Amplifying the deviation between the flow rate signal output from the transmitter and the feedback signal. The output of the deviation amplifier is applied to the subtraction smoothing means through a pair of switch means opened and closed by the gate signal, and the output voltage of the subtraction smoothing means is converted into a frequency signal proportional to the voltage value. An electromagnetic current meter comprising: signal converting means that controls the comparison signal according to a signal and converts the comparison signal into the feedback voltage.
JP8354177A 1977-07-14 1977-07-14 Exciter for electromagnetic flowmeter Granted JPS5419779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8354177A JPS5419779A (en) 1977-07-14 1977-07-14 Exciter for electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8354177A JPS5419779A (en) 1977-07-14 1977-07-14 Exciter for electromagnetic flowmeter

Publications (2)

Publication Number Publication Date
JPS5419779A JPS5419779A (en) 1979-02-14
JPS6122768B2 true JPS6122768B2 (en) 1986-06-03

Family

ID=13805356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8354177A Granted JPS5419779A (en) 1977-07-14 1977-07-14 Exciter for electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPS5419779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105480U (en) * 1990-02-16 1991-10-31

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843419A (en) * 1987-04-21 1989-06-27 Olympus Optical Co., Ltd. Light quantity measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105480U (en) * 1990-02-16 1991-10-31

Also Published As

Publication number Publication date
JPS5419779A (en) 1979-02-14

Similar Documents

Publication Publication Date Title
US4849869A (en) Switching regulator having a pulse width control system
US5132608A (en) Current measuring method and apparatus therefor
EP2115863A1 (en) Load current detection in electrical power converters
US3996797A (en) Magnetic flowmeter
US4206641A (en) Electromagnetic flow meter
JPS5825965B2 (en) Denjiri Yuryokei
GB2177210A (en) Electromagnetic flowmeter
JP2016178800A (en) Switching power supply device
JP4375914B2 (en) Switching power supply
JPS6122768B2 (en)
US3983475A (en) Frequency selective detecting system for detecting alternating magnetic fields
US4156363A (en) Magnetic flowmeter
JPS5916645B2 (en) Excitation circuit of electromagnetic flowmeter
JPS5836291B2 (en) Excitation circuit of electromagnetic flowmeter
EP0513842B1 (en) Power supply apparatus for magnetron driving
JPS6117285B2 (en)
JPS5858606B2 (en) Excitation circuit of electromagnetic flowmeter
JPS6020015Y2 (en) electromagnetic flow meter
JPS6048689B2 (en) electromagnetic flow meter
JPS5829850B2 (en) Excitation circuit of electromagnetic flowmeter
JPH11142199A (en) Electromagnetic flowmeter
JPS6225695Y2 (en)
JP3120660B2 (en) Electromagnetic flow meter
JPS5833484B2 (en) Excitation circuit of electromagnetic flowmeter
JPS5810690B2 (en) Denjiri Yuryokei