JPH11142006A - Refrigerant circulation system - Google Patents

Refrigerant circulation system

Info

Publication number
JPH11142006A
JPH11142006A JP30399397A JP30399397A JPH11142006A JP H11142006 A JPH11142006 A JP H11142006A JP 30399397 A JP30399397 A JP 30399397A JP 30399397 A JP30399397 A JP 30399397A JP H11142006 A JPH11142006 A JP H11142006A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
refrigerating machine
compressor
machine oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30399397A
Other languages
Japanese (ja)
Inventor
Isao Funayama
功 舟山
Satoshi Suzuki
聡 鈴木
Kunihiro Morishita
国博 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30399397A priority Critical patent/JPH11142006A/en
Publication of JPH11142006A publication Critical patent/JPH11142006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a current leaking by means of oil attached to a motor even in a state where a high voltage is supplied to the motor by using a refrigerant having no mutual solubility or having a weak solubility with respect to the refrigerant because the refrigerator scarcely contains a refrigerant of high dielectric constant. SOLUTION: A compressor 1 controlling a motor unit by an inverter driving circuit capable of making a supply voltage greater than a voltage smoothed from a main power source and controlling the speed of rotation, an outdoor heat exchanger 3, a throttle mechanism 4, and an indoor heat exchanger 5 are connected by a refrigerant piping. A refrigerant containing mainly a hydrofluorocarbon(HFC) is used as the refrigerant and oil which has no mutual solubility or has weak solubility with respect to the refrigerant is used as a refrigerator oil sealed in the compressor 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、家庭用・産業用
に利用される冷媒循環システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant circulation system used for domestic and industrial use.

【0002】[0002]

【従来の技術】図6は例えば特開平5−17789号公
報に示された従来の冷媒循環システム(ここでは冷凍空
調装置)を示す冷媒回路図である。図において、1はイ
ンバータ駆動により回転速度を制御可能な圧縮機、5は
利用側熱交換器である室内熱交換器、4は絞り機構、3
は熱源側熱交換器である室外熱交換器、2は冷媒の流れ
を逆転させる機能を有する四方弁である。これらは配管
によって直列に接続されて冷凍サイクルを構成してい
る。
2. Description of the Related Art FIG. 6 is a refrigerant circuit diagram showing a conventional refrigerant circulation system (here, a refrigerating air conditioner) disclosed in Japanese Patent Application Laid-Open No. Hei 5-17789. In the figure, 1 is a compressor whose rotation speed can be controlled by inverter driving, 5 is an indoor heat exchanger which is a use side heat exchanger, 4 is a throttle mechanism, 3
Is an outdoor heat exchanger which is a heat source side heat exchanger, and 2 is a four-way valve having a function of reversing the flow of the refrigerant. These are connected in series by piping to constitute a refrigeration cycle.

【0003】また、この冷凍空調装置には、冷媒として
例えば可燃性冷媒であるHFC32を含む混合冷媒が用
いられ、また冷凍機油としては、例えばこの混合冷媒に
対して相互溶解性があるエステル系油が用いられてい
る。
In this refrigerating air conditioner, a mixed refrigerant containing, for example, HFC32, which is a flammable refrigerant, is used as a refrigerant, and as a refrigerating machine oil, for example, an ester oil which is mutually soluble in the mixed refrigerant. Is used.

【0004】ところで、漏洩電流は圧縮機1のモータ部
に電圧がかかっている状態で、モータ部に付着した冷凍
機油を介して発生する。図7は、冷凍機油中の冷媒溶解
量と漏洩電流との関係を示したものであるが、図7より
冷凍機油中の冷媒溶解量が上昇すると、冷凍機油中に比
誘電率の高い冷媒の溶け込み量が増加するので、圧縮機
1のモータ部に付着した油を介して漏洩電流が流れやす
くなる。使用する圧縮機のモータ部に供給される電圧が
元電源を平滑した電圧より大きくなるインバータ駆動の
場合、更に漏洩電流は流れやすくなる。
[0004] By the way, the leakage current is generated through the refrigerating machine oil attached to the motor unit in a state where a voltage is applied to the motor unit of the compressor 1. FIG. 7 shows the relationship between the amount of refrigerant dissolved in the refrigerating machine oil and the leakage current. When the amount of refrigerant dissolved in the refrigerating machine oil increases from FIG. Since the amount of penetration increases, the leakage current easily flows through the oil attached to the motor section of the compressor 1. In the case of an inverter drive in which the voltage supplied to the motor section of the compressor to be used is higher than the voltage obtained by smoothing the main power supply, the leakage current is more likely to flow.

【0005】一般に漏洩電流は使用される油や冷媒の比
誘電率が大きくなるにつれて増加する傾向にある。また
液冷媒は冷凍機油と比べて、2〜3倍の比誘電率を有す
る。漏洩電流を抑制するためには、冷凍機油の比誘電率
の低い冷凍機油および冷媒を使用するか、もしくは比誘
電率の高い冷媒の冷凍機油への溶け込みを削減する必要
があるが、エステル系油のような相溶性の冷凍機油では
溶け込み量を制御することはできなかった。
In general, the leakage current tends to increase as the relative permittivity of the oil or refrigerant used increases. The liquid refrigerant has a relative dielectric constant that is two to three times that of the refrigerating machine oil. In order to suppress the leakage current, it is necessary to use a refrigerator oil and a refrigerant having a low relative dielectric constant of the refrigerator oil or to reduce the dissolution of a refrigerant having a high relative dielectric constant into the refrigerator oil. With a compatible refrigerating machine oil such as described above, the amount of penetration could not be controlled.

【0006】図8は、冷媒・冷凍機油混合時の比誘電率
の関係を示している。HCFC系冷媒であるR22とH
FC系冷媒であるR410Aの飽和物性の比誘電率とを
比較すると、HFC系冷媒であるR410Aの方が比誘
電率は1.5倍程度高く、漏洩電流は流れやすい特徴が
ある。また従来使用していたエステル系油は油そのもの
の比誘電率が高く、更にエステル系油は相溶油であるた
め、比誘電率の高い冷媒の溶け込み量を増加させ、漏洩
電流を増加させる要因となっていた。
FIG. 8 shows the relationship between the relative permittivity when the refrigerant and the refrigerating machine oil are mixed. R22 and H which are HCFC refrigerants
Comparing the relative dielectric constant of the saturated physical property of R410A, which is an FC-based refrigerant, the relative dielectric constant of R410A, which is an HFC-based refrigerant, is about 1.5 times higher, and the leakage current is easy to flow. The ester oil used conventionally has a high relative permittivity of the oil itself, and the ester oil is a compatible oil, so the amount of refrigerant having a high relative permittivity increases and the leakage current increases. Had become.

【0007】[0007]

【発明が解決しようとする課題】従来の冷媒循環システ
ムは以上のように構成されていたので、HFC系冷媒を
使用し、インバータ駆動回路のように圧縮機のモータ部
に供給される電圧が元電源を平滑した電圧より大きくな
る電気回路を備えた冷媒回路で、圧縮機に封入された冷
凍機油に冷媒と溶解性の高いものを使用したとき、比誘
電率の高い冷媒を油中に多量に含んでしまうため、モー
タに付着した油を介して漏れ電流が増加してしまうとい
う問題点があった。
Since the conventional refrigerant circulation system is configured as described above, an HFC-based refrigerant is used, and the voltage supplied to the motor section of the compressor as in an inverter drive circuit is reduced. A refrigerant circuit equipped with an electric circuit that is higher than the smoothed voltage of the power supply.When a refrigerant with high solubility is used for the refrigerating machine oil enclosed in the compressor, a large amount of refrigerant with a high relative dielectric constant is contained in the oil. Therefore, there is a problem that leakage current increases through oil adhering to the motor.

【0008】この発明は、上記のような問題を解決する
ためになされたもので、漏洩電流が少ない冷媒循環シス
テムを実現することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to realize a refrigerant circulation system having a small leakage current.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

【0010】この発明に係る冷媒循環システムは、供給
電圧を元電源を平滑した電圧より大きくできると共に回
転速度を制御可能なインバータ駆動回路によりモータ部
を制御する圧縮機、熱源側熱交換器、絞り機構、利用側
熱交換器を冷媒配管により連結し、冷媒としてハイドロ
フルオロカーボン(HFC)を主成分とするものを用
い、前記圧縮機に封入された冷凍機油として、冷媒に対
して相互溶解性がないか或は弱溶解性のものを用いたも
のである。
[0010] The refrigerant circulation system according to the present invention provides a compressor, a heat source side heat exchanger, and a throttle, in which a supply voltage can be made higher than a voltage obtained by smoothing an original power supply and a motor section is controlled by an inverter drive circuit capable of controlling a rotation speed. The mechanism and the use-side heat exchanger are connected by a refrigerant pipe, and a refrigerant mainly composed of hydrofluorocarbon (HFC) is used as the refrigerant, and the refrigerating machine oil sealed in the compressor has no mutual solubility with the refrigerant. Alternatively, a poorly soluble one is used.

【0011】また、冷凍機油としてアルキルベンゼン系
油又は鉱油を用いたものである。
[0011] Further, an alkylbenzene-based oil or a mineral oil is used as the refrigerating machine oil.

【0012】また、冷凍機油として、圧縮機のモータ部
の使用される圧力条件下における冷媒の飽和温度に対し
10deg以上の温度範囲において、冷凍機油中に溶解
している冷媒の飽和重量溶解率を15%以下としたもの
である。(ここで、飽和重量溶解率(α)はα=油に溶
け込んだ液冷媒の重量/(油に溶け込んだ液冷媒の重量
+油の重量)を意味する)
[0012] Further, as the refrigerating machine oil, the saturation weight dissolution rate of the refrigerant dissolved in the refrigerating machine oil in the temperature range of 10 deg or more with respect to the saturation temperature of the refrigerant under the pressure conditions used in the motor section of the compressor. 15% or less. (Here, the saturated weight dissolution rate (α) means α = weight of liquid refrigerant dissolved in oil / (weight of liquid refrigerant dissolved in oil + weight of oil))

【0013】また、冷媒としてR410Aを用いると共
に、冷凍機油としてアルキルベンゼン系油を用いたもの
である。
Further, R410A is used as a refrigerant, and an alkylbenzene-based oil is used as a refrigerating machine oil.

【0014】[0014]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態を図について説明する。図1はこの発明の実
施の形態の一例を示す冷媒回路図であり、図において1
はモータ部を有し、回転速度を制御可能なインバータ駆
動の圧縮機、2は冷房・暖房時の流れを切り替える四方
弁、3は熱源側熱交換器である室外熱交換器、4は絞り
機構である電子膨張弁、5は利用側熱交換器である室内
熱交換器であり、これらは冷媒配管により順次連結され
ている。11はインバータ駆動回路により前記圧縮機1
の回転速度を制御する圧縮機駆動装置である。圧縮機1
のモータ部へは外部の商用電源から圧縮機駆動装置11
を介して電源が供給される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing an example of an embodiment of the present invention.
Is a compressor driven by an inverter having a motor unit and capable of controlling the rotation speed, 2 is a four-way valve for switching a flow during cooling and heating, 3 is an outdoor heat exchanger which is a heat source side heat exchanger, and 4 is a throttle mechanism. The electronic expansion valves 5 and 5 are indoor heat exchangers which are use side heat exchangers, and these are sequentially connected by refrigerant pipes. Numeral 11 denotes the compressor 1 by an inverter drive circuit.
Is a compressor drive device for controlling the rotation speed of the compressor. Compressor 1
Of the compressor drive device 11 from an external commercial power supply
Power is supplied via the.

【0015】31は圧縮機1、四方弁2、室外熱交換器
3、電子膨張弁等を備えた室外機、32は室内熱交換器
5等を備えた室内機で、これら室内機31と室外機32
とはガス側室内外接続配管21及び液側室内外接続配管
22で接続され、冷媒循環システムを構成している。6
は室外熱交換器にて送風する室外送風ファン、7は室内
熱交換器にて送風する室内送風ファン、12は室外送風
ファン6の回転速度を制御する室外送風ファン駆動装
置、13は室内送風ファン7の回転速度を制御する室内
送風ファン駆動装置である。
An outdoor unit 31 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an electronic expansion valve, and the like. An indoor unit 32 includes an indoor heat exchanger 5 and the like. Machine 32
Are connected by a gas side indoor / outdoor connection pipe 21 and a liquid side indoor / outdoor connection pipe 22, and constitute a refrigerant circulation system. 6
Is an outdoor blower fan that blows air with the outdoor heat exchanger, 7 is an indoor blower fan that blows air with the indoor heat exchanger, 12 is an outdoor blower fan driving device that controls the rotation speed of the outdoor blower fan 6, and 13 is an indoor blower fan. 7 is an indoor fan driving device for controlling the rotation speed of the fan 7.

【0016】14は圧縮機駆動装置11、室外送風ファ
ン駆動装置12等をトータル制御する室外マイコン制御
部、15は室内送風ファン駆動装置13等をトータル制
御すると共に、室外マイコン制御部14と信号接続され
た室内マイコン制御部である。また、この冷媒循環シス
テム内には、冷媒としてR32とR125の混合冷媒で
あるR410Aが用いられており、冷凍機油としては例
えばR410Aと相互溶解性が小さく、しかもその比重
が液冷媒の比重より小さいアルキルベンゼン系油が用い
られている。
Reference numeral 14 denotes an outdoor microcomputer control unit for totally controlling the compressor drive unit 11, the outdoor blower fan drive unit 12 and the like, and 15 denotes a total connection control of the indoor blower fan drive unit 13 and the like, and a signal connection with the outdoor microcomputer control unit 14. Of the room microcomputer. Further, in this refrigerant circulation system, R410A which is a mixed refrigerant of R32 and R125 is used as a refrigerant, and as a refrigerating machine oil, for example, mutual solubility with R410A is small, and its specific gravity is smaller than that of the liquid refrigerant. Alkylbenzene oils are used.

【0017】次に動作について、図2に示した圧力−エ
ンタルピー線図を用いて説明する。まず暖房運転時は、
図1中実線矢印で示すように、圧縮機1で圧縮された高
温高圧の冷媒(図中A点)は、ガス側室内外接続配管2
1を通って凝縮器として動作する室内熱交換器5で凝縮
し液化する(図中B点)。この液冷媒は液側室内外接続
配管22を通って、電子式膨張弁4で減圧されて低温低
圧の気液二相冷媒となって蒸発器として動作する室外熱
交換器3で蒸発し、四方弁2を通って、圧縮機1に戻
り、再び圧縮される。
Next, the operation will be described with reference to the pressure-enthalpy diagram shown in FIG. First, during heating operation,
As shown by a solid line arrow in FIG. 1, the high-temperature and high-pressure refrigerant (point A in the figure) compressed by the compressor 1 is supplied to a gas side indoor / outdoor connection pipe 2.
1 and condensed and liquefied in the indoor heat exchanger 5 operating as a condenser (point B in the figure). The liquid refrigerant passes through the liquid-side indoor / outdoor connection pipe 22 and is decompressed by the electronic expansion valve 4 to become a low-temperature low-pressure gas-liquid two-phase refrigerant and evaporates in the outdoor heat exchanger 3 operating as an evaporator. 2 and return to the compressor 1 to be compressed again.

【0018】一方、冷房時は図中破線矢印で示すよう
に、圧縮機1で圧縮された高温高圧の冷媒蒸気(図中A
点)は、凝縮器として動作する室外熱交換器3で凝縮し
液化する(図中B点)。この液冷媒は、電子式膨張弁4
で減圧されて低温低圧の気液二相冷媒となり、液側室内
外接続配管22を通って、蒸発器として動作する室内熱
交換器5に流入する(図中C点)。さらに、この冷媒は
室内熱交換器3で蒸発し、ガス側室内外接続配管21お
よび四方弁2を通って、圧縮機1に戻り、再び圧縮され
る。
On the other hand, at the time of cooling, as indicated by a broken line arrow in the figure, a high-temperature and high-pressure refrigerant vapor (A in the figure) compressed by the compressor 1 is used.
(Point) is condensed and liquefied in the outdoor heat exchanger 3 operating as a condenser (point B in the figure). This liquid refrigerant is supplied to the electronic expansion valve 4.
And becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 5 that operates as an evaporator through the liquid side indoor / outdoor connection pipe 22 (point C in the figure). Further, the refrigerant evaporates in the indoor heat exchanger 3, returns to the compressor 1 through the gas side indoor / outdoor connection pipe 21 and the four-way valve 2, and is compressed again.

【0019】図7は冷凍機油中の冷媒溶解率と漏洩電流
との関係を示したものであるが、従来使用していた冷媒
との溶解性の高い冷凍機油(相溶油)では、油中に比誘
電率の高い冷媒が多量に含まれ、更に圧縮機モータに高
い電圧が供給されている状態では、モータに付着した油
を介して漏れ電流が流れやすくなる。
FIG. 7 shows the relationship between the refrigerant dissolution rate in the refrigerating machine oil and the leakage current. When the compressor motor contains a large amount of refrigerant having a high relative dielectric constant and a high voltage is supplied to the compressor motor, a leakage current easily flows through oil adhering to the motor.

【0020】そこで、この実施の形態では、冷媒との溶
解性の少ない冷凍機油(弱相溶油)を用いている。図7
のように、冷媒との溶解性の少ない冷凍機油(弱相溶
油)には油中に比誘電率の高い冷媒をほとんど溶解して
いないため、モータに高い電圧が供給されている状態に
おいても、モータに付着した油を介して漏れる電流が増
加することを抑制することができる。
Therefore, in this embodiment, a refrigerating machine oil (weakly compatible oil) having low solubility in the refrigerant is used. FIG.
Refrigeration oil with low solubility in refrigerant (weakly compatible oil) has little refrigerant with a high relative permittivity dissolved in the oil, so even when a high voltage is supplied to the motor, In addition, it is possible to suppress an increase in current leaking through oil attached to the motor.

【0021】また、圧縮機のモータ効率改善を実施する
手段として圧縮機のモータ部のコア積み幅アップがある
が、その場合圧縮機シェル部とモータ部のスペースが縮
まり、その結果漏洩電流が増加する。これまでは漏洩電
流を抑制するため、圧縮機の効率改善にも限度があった
が、冷媒との溶解性の少ない冷凍機油を用いることで、
圧縮機の効率改善をはかることが可能となる。
As means for improving the motor efficiency of the compressor, there is an increase in the core stacking width of the motor part of the compressor. In this case, the space between the compressor shell part and the motor part is reduced, and as a result, the leakage current increases. I do. Until now, there was a limit to the efficiency improvement of the compressor in order to suppress the leakage current, but by using the refrigerating machine oil with low solubility with the refrigerant,
It is possible to improve the efficiency of the compressor.

【0022】また、圧縮機をインバータ駆動回路により
回転速度を可変する際、キャリア周波数を高くすると波
形が正弦波に近づき効率改善となるが、その際漏洩電流
も増加する傾向にあり、これまでは効率とのトレードオ
フが必要であった。冷媒との溶解性の少ない冷凍機油を
用いることで漏洩電流が減少するので、インバータ効率
の改善をはかることが可能となる。
Further, when the rotational speed of the compressor is varied by an inverter drive circuit, when the carrier frequency is increased, the waveform approaches a sine wave to improve the efficiency. At that time, however, the leakage current also tends to increase. A trade-off with efficiency was needed. Since the leakage current is reduced by using the refrigerating machine oil having low solubility in the refrigerant, it is possible to improve the inverter efficiency.

【0023】実施の形態2.図9はこれまで冷媒循環装
置用として使用してきた、冷媒としてはHCFC系冷媒
であるR22、冷凍機油としてはアルキルベンゼン油+
鉱油の、冷凍機油温度と飽和液冷媒温度との差(以後は
冷凍機油温のスーパーヒートと称する)と冷凍機油の粘
度、冷媒の冷凍機油中の溶解率の関係を示したものであ
る。冷凍機油温のスーパーヒートが10deg以下にな
ると、冷凍機油の粘度が急激に低下し、圧縮機の摺動部
の潤滑不良による異常磨耗、焼き付き等の信頼性が問題
となる。
Embodiment 2 FIG. FIG. 9 shows R22, which is an HCFC-based refrigerant, and Alkylbenzene oil + as a refrigerating machine oil, which have been used for a refrigerant circulation device.
It shows the relationship between the difference between the refrigerating machine oil temperature and the saturated liquid refrigerant temperature of the mineral oil (hereinafter referred to as the refrigerating machine oil temperature superheat), the refrigerating machine oil viscosity, and the refrigerant dissolution rate in the refrigerating machine oil. When the superheat of the refrigerating machine oil temperature is 10 deg or less, the viscosity of the refrigerating machine oil rapidly decreases, and reliability such as abnormal wear and seizure due to poor lubrication of sliding parts of the compressor becomes a problem.

【0024】図5は各冷媒・冷凍機油混合時の冷凍機油
のスーパーヒートと漏洩電流を示す図である。冷媒とし
てHCFC系冷媒であるR22、冷凍機油としてはアル
キルベンゼン油+鉱油を使用したこれまでの冷凍サイク
ルにおいては、冷媒そのものの比誘電率はHFC系冷媒
より低いため、冷媒の冷凍機油への溶解率が少ない条件
下では冷媒・冷凍機油混合時の比誘電率は低くなる。
FIG. 5 is a diagram showing superheat and leakage current of refrigerating machine oil when each refrigerant and refrigerating machine oil are mixed. In the conventional refrigeration cycle using R22, which is an HCFC-based refrigerant as the refrigerant, and alkylbenzene oil + mineral oil as the refrigeration oil, the relative permittivity of the refrigerant itself is lower than that of the HFC-based refrigerant. Under the condition where the ratio is small, the relative dielectric constant when the refrigerant and the refrigerating machine oil are mixed is low.

【0025】図9より、冷凍機油温のスーパーヒートが
付く運転条件下では、冷媒の冷凍機油への溶解率が低い
ため、図5で示すとおり、冷媒・冷凍機油混合時の比誘
電率はHFC系冷媒を使用したものより低い。しかし、
図9より、冷凍機油温のスーパーヒートが少なくなる
と、冷媒の冷凍機油への溶解量が増大するため、冷媒・
冷凍機油混合時の比誘電率は増加し、圧縮機のモータ部
の使用される圧力条件下で圧縮機の安全性が確保可能な
冷凍機油温のスーパーヒート10degを確保するため
には、図3から冷凍機油中に溶解する冷媒の重量溶解率
が30%であり、その時の冷媒・冷凍機油混合時の比誘
電率は3.5程度となる。
According to FIG. 9, under the operating condition in which the refrigerating machine oil temperature is superheated, the dissolution rate of the refrigerant in the refrigerating machine oil is low. Therefore, as shown in FIG. It is lower than that using a system refrigerant. But,
From FIG. 9, when the superheat of the refrigerating machine oil temperature decreases, the amount of the refrigerant dissolved in the refrigerating machine oil increases.
The relative permittivity at the time of mixing of the refrigerating machine oil increases, and in order to secure the superheat of the refrigerating machine oil temperature of 10 deg which can ensure the safety of the compressor under the pressure conditions used in the motor part of the compressor, FIG. Thus, the weight dissolution rate of the refrigerant dissolved in the refrigerating machine oil is 30%, and the relative dielectric constant when the refrigerant and the refrigerating machine oil are mixed at that time is about 3.5.

【0026】冷媒としてR410A、冷凍機油としてア
ルキルベンゼン油を使用した場合、図4の様に冷凍機油
中に溶解する冷媒の重量溶解率が15%以下とすること
で、図5で示すようにこれまでの冷媒循環装置で実績の
ある比誘電率を越えることなく、高い効率の冷媒循環シ
ステムを得ることができる。
When R410A is used as the refrigerant and alkylbenzene oil is used as the refrigerating machine oil, the weight dissolution rate of the refrigerant dissolved in the refrigerating machine oil is set to 15% or less as shown in FIG. , A highly efficient refrigerant circulation system can be obtained without exceeding the relative permittivity that has been proven in the refrigerant circulation device.

【0027】[0027]

【発明の効果】以上のとおり、この発明によれば供給電
圧を元電源を平滑した電圧より大きくできると共に回転
速度を制御可能なインバータ駆動回路によりモータ部を
制御する圧縮機、熱源側熱交換器、絞り機構、利用側熱
交換器を冷媒配管により連結し、冷媒としてハイドロフ
ルオロカーボンを主成分とするものを用い、前記圧縮機
に封入された冷凍機油として、冷媒に対して相互溶解性
がないか或は弱溶解性のものを用いたので、比誘電率の
高い冷媒を冷凍機中にほとんど含んでいないため、モー
タに高い電圧が供給されている状態においても、モータ
に付着した油を介して漏れる電流を低減できる効果が得
られる。
As described above, according to the present invention, the compressor and the heat source side heat exchanger which control the motor unit by the inverter drive circuit capable of controlling the rotation speed while making the supply voltage higher than the voltage obtained by smoothing the original power supply. The throttle mechanism and the use-side heat exchanger are connected by a refrigerant pipe, and a refrigerant mainly containing hydrofluorocarbon is used as a refrigerant, and as a refrigerating machine oil sealed in the compressor, is there any mutual solubility in the refrigerant? Alternatively, since a refrigerant having a low solubility is used, a refrigerant having a high relative dielectric constant is hardly contained in the refrigerator, and therefore, even when a high voltage is supplied to the motor, the refrigerant adheres to the motor via oil attached thereto. The effect of reducing the leakage current can be obtained.

【0028】また、冷凍機油としてアルキルベンゼン系
油又は鉱油を用いたので、比誘電率の高い冷媒を冷凍機
中にほとんど含まないため、圧縮機モータ部からの漏洩
電流を低減できる効果が得られる。
Further, since an alkylbenzene-based oil or a mineral oil is used as the refrigerating machine oil, a refrigerant having a high relative dielectric constant is hardly contained in the refrigerating machine, so that the effect of reducing the leakage current from the compressor motor can be obtained.

【0029】また、冷凍機油として、圧縮機のモータ部
の使用される圧力条件下における冷媒の飽和温度に対し
10deg以上の温度範囲において、冷凍機油中に溶解
している冷媒の飽和重量溶解率を15%以下としたの
で、冷凍機油温のスーパーヒートが少ない領域において
も、モータに付着した油を介して漏れる電流を低減でき
る効果が得られる。
In addition, as the refrigerating machine oil, the saturation weight dissolution rate of the refrigerant dissolved in the refrigerating machine oil in the temperature range of 10 deg or more with respect to the saturation temperature of the refrigerant under the pressure condition in which the motor section of the compressor is used is determined. Since it is 15% or less, the effect of reducing the current leaking through the oil attached to the motor can be obtained even in a region where the superheat of the refrigerator oil temperature is small.

【0030】また、冷媒としてR410Aを用いると共
に、冷凍機油としてアルキルベンゼン系油を用いたの
で、冷凍機油温のスーパーヒートが少ない領域において
も、モータに付着した油を介して漏れる電流を低減でき
る効果が得られる。
Further, since R410A is used as the refrigerant and an alkylbenzene-based oil is used as the refrigerating machine oil, even in a region where the superheat of the refrigerating machine oil temperature is small, it is possible to reduce the current leaking through the oil adhering to the motor. can get.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1における冷媒循環シ
ステムを示す冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circulation system according to Embodiment 1 of the present invention.

【図2】 図1の冷媒循環システムの動作を示す圧力−
エンタルピー線図である。
FIG. 2 is a pressure diagram showing the operation of the refrigerant circulation system of FIG.
It is an enthalpy diagram.

【図3】 R22,(アルキルベンゼン系油+鉱油)の
溶解度曲線図である。
FIG. 3 is a solubility curve diagram of R22, (alkylbenzene-based oil + mineral oil).

【図4】 R410A,アルキルベンゼン系油の溶解度
曲線である。
FIG. 4 is a solubility curve of R410A, an alkylbenzene-based oil.

【図5】 冷凍機油温のスーパーヒートと漏洩電流の関
係を示す相関図である。
FIG. 5 is a correlation diagram showing a relationship between superheat of refrigerator oil temperature and leakage current.

【図6】 従来の冷媒循環システムを示す冷媒回路図で
ある。
FIG. 6 is a refrigerant circuit diagram showing a conventional refrigerant circulation system.

【図7】 冷凍機油中の冷媒溶解率と漏洩電流の関係を
示す相関図である。
FIG. 7 is a correlation diagram showing a relationship between a refrigerant dissolution rate in refrigerating machine oil and a leakage current.

【図8】 冷媒・冷凍機油混合時の比誘電率を示す相関
図である。
FIG. 8 is a correlation diagram showing a relative dielectric constant when a refrigerant and a refrigerating machine oil are mixed.

【図9】 冷凍機油温のスーパーヒートと冷凍機油の粘
度の関係を示す相関図(冷媒:R22,冷凍機油:アル
キルベンゼン油+鉱油)である。
FIG. 9 is a correlation diagram (refrigerant: R22, refrigeration oil: alkylbenzene oil + mineral oil) showing the relationship between the superheat of the refrigeration oil temperature and the viscosity of the refrigeration oil.

【符号の説明】[Explanation of symbols]

1 圧縮機、 2 四方弁、 3 室外熱交換器、 4
絞り機構、 5 室内熱交換器、 11 圧縮機駆動
装置。
1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 4
Throttling mechanism, 5 indoor heat exchanger, 11 compressor drive.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 供給電圧を元電源を平滑した電圧より大
きくできると共に回転速度を制御可能なインバータ駆動
回路によりモータ部を制御する圧縮機、熱源側熱交換
器、絞り機構、利用側熱交換器を冷媒配管により連結
し、冷媒としてハイドロフルオロカーボン(HFC)を
主成分とするものを用い、前記圧縮機に封入された冷凍
機油として、冷媒に対して相互溶解性がないか或は弱溶
解性のものを用いたことを特徴とする冷媒循環システ
ム。
1. A compressor, a heat source side heat exchanger, a throttle mechanism, and a use side heat exchanger that control a motor unit by an inverter drive circuit capable of controlling a rotation speed while controlling a supply voltage to be higher than a voltage obtained by smoothing a source power supply. Are connected by a refrigerant pipe, and a refrigerant mainly containing hydrofluorocarbon (HFC) is used as a refrigerant, and as a refrigerating machine oil sealed in the compressor, there is no mutual solubility or weak solubility in the refrigerant. A refrigerant circulation system characterized by using a refrigerant.
【請求項2】 冷凍機油としてアルキルベンゼン系油又
は鉱油を用いたことを特徴とする請求項1記載の冷媒循
環システム。
2. The refrigerant circulation system according to claim 1, wherein an alkylbenzene-based oil or a mineral oil is used as the refrigerating machine oil.
【請求項3】 冷凍機油として、圧縮機のモータ部の使
用される圧力条件下における冷媒の飽和温度に対し10
deg以上の温度範囲において、冷凍機油中に溶解して
いる冷媒の飽和重量溶解率を15%以下としたことを特
徴とする請求項1記載の冷媒循環システム。
3. The refrigerating machine oil has a saturation temperature of 10% for a refrigerant under a pressure condition in which a motor portion of a compressor is used.
The refrigerant circulation system according to claim 1, wherein the saturated weight dissolution rate of the refrigerant dissolved in the refrigerating machine oil is set to 15% or less in a temperature range of deg or more.
【請求項4】 冷媒としてR410Aを用いると共に、
冷凍機油としてアルキルベンゼン系油を用いたことを特
徴とする請求項3記載の冷媒循環システム。
4. Using R410A as a refrigerant,
The refrigerant circulation system according to claim 3, wherein an alkylbenzene-based oil is used as the refrigerating machine oil.
JP30399397A 1997-11-06 1997-11-06 Refrigerant circulation system Pending JPH11142006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30399397A JPH11142006A (en) 1997-11-06 1997-11-06 Refrigerant circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30399397A JPH11142006A (en) 1997-11-06 1997-11-06 Refrigerant circulation system

Publications (1)

Publication Number Publication Date
JPH11142006A true JPH11142006A (en) 1999-05-28

Family

ID=17927766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30399397A Pending JPH11142006A (en) 1997-11-06 1997-11-06 Refrigerant circulation system

Country Status (1)

Country Link
JP (1) JPH11142006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065954A (en) * 1999-08-27 2001-03-16 Mitsubishi Electric Corp Wall-hanging type air conditioner
US9903629B2 (en) 2012-06-20 2018-02-27 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065954A (en) * 1999-08-27 2001-03-16 Mitsubishi Electric Corp Wall-hanging type air conditioner
US9903629B2 (en) 2012-06-20 2018-02-27 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer

Similar Documents

Publication Publication Date Title
CN111201411B (en) Refrigerating device
JP3598809B2 (en) Refrigeration cycle device
EP2669597B1 (en) Air conditioner
EP2669599B1 (en) Air conditioner
EP3217115B1 (en) Air conditioning apparatus
JP2001194015A (en) Freezing apparatus
JP5908183B1 (en) Air conditioner
JPH11182951A (en) Refrigerating device
JPH10325622A (en) Refrigerating cycle device
EP2808622B1 (en) Air-conditioning device
JP2001241780A (en) Refrigerating air conditioner
JP6080939B2 (en) Air conditioner
JP4488712B2 (en) Air conditioner
JP2004012127A (en) Refrigerator using inflammable refrigerant
US9599380B2 (en) Refrigerant charging method for air-conditioning apparatus and air-conditioning apparatus
JP2004069295A (en) Refrigerator using inflammable refrigerant
JP4999531B2 (en) Air conditioner
JPWO2019021464A1 (en) Air conditioner
JPH10325624A (en) Refrigerating cycle device
JP2001241784A (en) Refrigerator using combustible refrigerant
JPH11142006A (en) Refrigerant circulation system
JP2000283568A (en) Refrigerating device and control method therefor
WO2017145243A1 (en) Refrigeration cycle apparatus
WO2015140950A1 (en) Air conditioner
JPH11142005A (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A02