JPH1114143A - Hot-water supply - Google Patents

Hot-water supply

Info

Publication number
JPH1114143A
JPH1114143A JP18455997A JP18455997A JPH1114143A JP H1114143 A JPH1114143 A JP H1114143A JP 18455997 A JP18455997 A JP 18455997A JP 18455997 A JP18455997 A JP 18455997A JP H1114143 A JPH1114143 A JP H1114143A
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
heat exchanger
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18455997A
Other languages
Japanese (ja)
Inventor
Shuichi Onodera
修一 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP18455997A priority Critical patent/JPH1114143A/en
Publication of JPH1114143A publication Critical patent/JPH1114143A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stabilize the temperature of warm water taken out again with simple controlling configuration. SOLUTION: The equipment is provided with a normal bypass channel, and an opening and closing bypass channel between a water supplying channel and a hot-water supplying channel of a hot-water supplying heat exchanger. A bypass valve is arranged to the opening and closing bypass channel. A temperature sampling part 17 takes in the temperature of the hot water at the outlet of the hot-water supplying heat exchanger at each sampling time. Opening time computing part 20 calculates the increase of the quantity from the side of opening and closing bypass channel necessary from a adjusting the temperature of the hot water coming out from the hot-water supplying heat exchanger to the hot-water supply set up temperature with the value of the opening time of the bypass valve 14. A valve drive control part 22 opens the bypass valve for the opening time at each sampling time, adds the water from the opening and closing bypass channel to the water from the normal bypass channel, and mixes it with hot-water coming out from the hot-water supplying heat exchanger to supply the stable hot-water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、再出湯湯温の安定
化手段を備えた給湯装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply device provided with means for stabilizing the temperature of re-discharged hot water.

【0002】[0002]

【従来の技術】図5には従来の一般的な給湯装置の模式
構成が示されている。同図において、給湯熱交換器1の
入側には給水通路の給水管2が接続されており、この給
水管2には給水温度を検出する給水温度センサ3と給水
流量(給湯流量)を検出する流量センサ4が設けられて
いる。
2. Description of the Related Art FIG. 5 shows a schematic configuration of a conventional general hot water supply apparatus. In FIG. 1, a water supply pipe 2 of a water supply passage is connected to an inlet side of a hot water supply heat exchanger 1, and a water supply temperature sensor 3 for detecting a water supply temperature and a water supply flow rate (hot water supply flow rate) are connected to the water supply pipe 2. A flow sensor 4 is provided.

【0003】前記給湯熱交換器1の出側には給湯通路と
して機能する給湯管5が接続され、その給湯管5には給
湯熱交換器1からの出湯温度を検出する出湯温度センサ
6が設けられており、給湯管5の給湯先には出湯栓7が
設けられている。
A hot water supply pipe 5 functioning as a hot water supply passage is connected to the outlet side of the hot water supply heat exchanger 1, and a hot water supply temperature sensor 6 for detecting the temperature of hot water from the hot water supply heat exchanger 1 is provided in the hot water supply pipe 5. A hot tap 7 is provided at the hot water supply destination of the hot water supply pipe 5.

【0004】給湯熱交換器1の下方側にはバーナ8が設
けられており、このバーナ8の下方側には給排気を行う
燃焼ファン(図示せず)が設けられている。給湯運転を
制御する制御装置10にはリモコン11が接続されてお
り、このリモコン11には給湯温度を設定する温度設定
器や給湯温度の表示部等が設けられている。
[0004] A burner 8 is provided below the hot water supply heat exchanger 1, and a combustion fan (not shown) for supplying and exhausting air is provided below the burner 8. A remote control 11 is connected to the control device 10 for controlling the hot water supply operation, and the remote control 11 is provided with a temperature setting device for setting the hot water supply temperature, a display unit for the hot water supply temperature, and the like.

【0005】制御装置10は給湯運転を次のように制御
する。出湯栓7が開けられて、流量センサ4により作動
流量以上の流量が検出されたときに、燃焼ファンを回転
し、バーナ8にガスを供給して図示されていない点火手
段を動作させてバーナ燃焼を行う。そして、出湯温度セ
ンサ6で検出される出湯温度がリモコン11で設定され
る給湯設定温度となるようにガスの燃焼熱量(ガスの供
給量)を制御し、設定温度の湯を給湯熱交換器1で作り
出し、その湯を給湯管5を通して台所等の所望の給湯場
所に給湯する。
[0005] The control device 10 controls the hot water supply operation as follows. When the tap 7 is opened and the flow rate sensor 4 detects a flow rate equal to or greater than the operating flow rate, the combustion fan is rotated to supply gas to the burner 8 and operate ignition means (not shown) to burn the burner. I do. Then, the amount of gas combustion heat (gas supply amount) is controlled so that the hot water temperature detected by hot water temperature sensor 6 becomes the hot water supply set temperature set by remote controller 11, and hot water at the set temperature is supplied to hot water supply heat exchanger 1. The hot water is supplied to a desired hot water supply place such as a kitchen through the hot water supply pipe 5.

【0006】湯の使用が終わり出湯栓7が閉められる
と、制御装置10は流量センサ4からオフ信号を受け
て、バーナ8の燃焼を停止し、ポストパージ期間(燃焼
室内の排気ガスが排出されるまで燃焼ファンを継続回転
する期間)が終了したときに燃焼ファンを停止し、次の
出湯に備えるものである。
[0006] When the hot water has been used and the tap 7 is closed, the control device 10 receives the off signal from the flow sensor 4 to stop the combustion of the burner 8, and during the post-purge period (when the exhaust gas in the combustion chamber is exhausted). The combustion fan is stopped when the combustion fan is continuously rotated until the end of the period, and the preparation for the next hot water supply is stopped.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、給湯熱
交換器1に入る給水の温度が低い場合や、給湯の設定温
度が低い場合には、給湯熱交換器1の水管の表面温度が
低くなるため、バーナ8の燃焼によって発生する排気ガ
ス中の水蒸気成分がこの温度の低い水管に触れて、水管
表面に結露が発生するという現象が生じる。
However, when the temperature of the feed water entering the hot water supply heat exchanger 1 is low or when the set temperature of the hot water supply is low, the surface temperature of the water pipe of the hot water supply heat exchanger 1 becomes low. Then, a phenomenon occurs in which water vapor components in the exhaust gas generated by the combustion of the burner 8 touch the water pipe having a low temperature, and dew condensation occurs on the water pipe surface.

【0008】このように、給湯熱交換器1の水管表面に
結露が生じると、その結露に燃焼ファンから送り込まれ
る空気中のごみ等が付着し、給湯熱交換器1の目詰まり
を加速させるという不具合が生じる。また、排気ガス中
の成分が結露に溶け込み、結露が強酸性の性質を帯び、
給湯熱交換器1の腐蝕を加速し、給湯熱交換器1の寿命
を縮めるという問題が生じる。
As described above, when dew is formed on the surface of the water pipe of the hot water supply heat exchanger 1, dirt and the like in the air sent from the combustion fan adhere to the dew condensation, thereby accelerating the clogging of the hot water supply heat exchanger 1. Failure occurs. In addition, components in the exhaust gas dissolve into the dew condensation, and the dew condensation takes on a strongly acidic property,
There is a problem that corrosion of the hot water supply heat exchanger 1 is accelerated and the life of the hot water supply heat exchanger 1 is shortened.

【0009】このような結露発生の問題を防止するため
に、出願人は、図3に示すようなバイパス通路を設けた
給湯装置を提案している。
In order to prevent such a problem of the occurrence of dew condensation, the applicant has proposed a water heater having a bypass passage as shown in FIG.

【0010】この図3に示す提案装置は、給水通路であ
る給水管2と給湯通路である給湯管5を連通接続する常
時バイパス通路12と開閉バイパス通路13とを設け、
常時バイパス通路12は開閉弁を持たない通路と成し、
開閉バイパス通路13は電磁弁等の通路開閉用のバイパ
ス弁14を持ち、このバイパス弁14により通路13の
開閉を自在としている。
The proposed device shown in FIG. 3 is provided with a constant bypass passage 12 and an open / close bypass passage 13 for connecting and connecting the water supply pipe 2 as the water supply passage and the hot water supply pipe 5 as the hot water supply passage.
The constant bypass passage 12 is a passage having no on-off valve,
The open / close bypass passage 13 has a bypass valve 14 for opening / closing a passage such as an electromagnetic valve, and the bypass valve 14 allows the passage 13 to be freely opened / closed.

【0011】給湯熱交換器1の出口側には給湯熱交換器
1から出る出湯温度を検出する熱交出口温度センサ15
を設け、給湯管5とバイパス通路12,13の接続部よ
りも下流側の給湯管5には給湯熱交換器1側から出る湯
とバイパス通路12,13側から出る水とがミキシング
された給湯温度を検出する給湯温度センサ16を設けて
いる。
On the outlet side of the hot water supply heat exchanger 1, a heat exchange outlet temperature sensor 15 for detecting the temperature of hot water exiting the hot water supply heat exchanger 1 is provided.
The hot water supply pipe 5 downstream of the connection between the hot water supply pipe 5 and the bypass passages 12 and 13 is a hot water supply in which hot water from the hot water supply heat exchanger 1 and water from the bypass passages 12 and 13 are mixed. A hot water supply temperature sensor 16 for detecting a temperature is provided.

【0012】この提案装置では、定常の給湯運転状態で
は、バイパス弁14は閉じた状態にしておき、給湯熱交
換器1から出る湯と常時バイパス通路12から出る水を
ミキシングし、このミキシングされた給湯の温度を給湯
温度センサ16で検出し、制御装置10は給湯温度セン
サ16の検出温度がリモコン11で設定される給湯設定
温度になるようにバーナの燃焼熱量を制御している。
In the proposed apparatus, in a steady hot water supply operation state, the bypass valve 14 is kept closed, and the hot water flowing out of the hot water supply heat exchanger 1 and the water constantly flowing out of the bypass passage 12 are mixed. Hot water supply temperature is detected by hot water supply temperature sensor 16, and control device 10 controls the amount of combustion heat of the burner so that the detected temperature of hot water supply temperature sensor 16 becomes the hot water supply set temperature set by remote controller 11.

【0013】この燃焼運転に際し、給水管2から供給さ
れる水は常時バイパス通路12と給湯熱交換器1側に分岐
して流れるので、給湯熱交換器1側に流れる流量は常時
バイパス通路12を設けない場合よりも減少し、したが
って、必然的に給湯熱交換器1の湯の温度が高くなり、
これに伴い給湯熱交換器1の水管表面の温度も高くなる
ので、水管表面に結露が発生するのを防止でき、従来の
結露発生の問題を解消することができるものである。
In this combustion operation, the water supplied from the water supply pipe 2 always branches off to the bypass passage 12 and the hot water supply heat exchanger 1 side, so that the flow rate flowing to the hot water supply heat exchanger 1 always flows through the bypass passage 12. The temperature of the hot water in the hot water supply heat exchanger 1 is inevitably increased,
Accordingly, the temperature of the water pipe surface of the hot water supply heat exchanger 1 also increases, so that it is possible to prevent the occurrence of dew condensation on the water pipe surface, and to solve the problem of the conventional dew formation.

【0014】ところで、例えば図4のグラフにおいて、
給湯設定温度Tstを40℃としたとき、給湯熱交換器1
の出口の湯の目標温度は46.7℃となる。しかしなが
ら、給湯燃焼の停止直後には、給湯熱交換器1の缶体の
保有する余熱が滞留している給湯熱交換器1内の湯に伝
わり、いわゆる後沸き現象により給湯熱交換器内の滞留
湯水の温度は図4の曲線Aに示すように、給湯熱交換器
1の目標温度よりも上昇し、この状態で、再出湯が開始
されると、図4の曲線Bに示すように、給湯熱交換器1
から出た湯と常時バイパス通路12を通る水とがミキシ
ングされた給湯の実測温度は、給湯設定温度よりも高い
オーバーシュートの湯となり、湯の使用者に不快な思い
をさせるという問題が生じる。
By the way, for example, in the graph of FIG.
When the hot water supply set temperature T st is 40 ° C., the hot water supply heat exchanger 1
The target temperature of the hot water at the outlet is 46.7 ° C. However, immediately after the stop of the hot water supply combustion, the residual heat held by the can body of the hot water supply heat exchanger 1 is transmitted to the retained hot water in the hot water supply heat exchanger 1, and the so-called post-boiling phenomenon causes the remaining heat in the hot water supply heat exchanger. The temperature of the hot water rises above the target temperature of the hot water supply heat exchanger 1 as shown by a curve A in FIG. 4, and in this state, when hot water is re-discharged, as shown by a curve B in FIG. Heat exchanger 1
The actual measured temperature of the hot water supplied by mixing the hot water discharged from the hot water and the water that always passes through the bypass passage 12 becomes an overshoot hot water that is higher than the hot water supply set temperature, causing a problem that the user of the hot water feels unpleasant.

【0015】この再出湯時の後沸きによる湯温上昇の問
題を解消するために、出願人は、給湯熱交換器1の出口
側の目標温度よりも高い温度位置にバイパス弁オフ温度
Toff(図4の例では51℃)と、そのオフ温度Toffよ
りも高い温度の位置にバイパス弁オン温度TON(図4の
例では52℃)を設定し、再出湯後、給湯熱交換器1の
出口側で熱交出口温度センサ15により検出される温度
がバイパス弁オン温度を越えるときにバイパス弁14を
開けて水のミキシング量を増加させ、給湯熱交換器1の
出口の湯の温度がバイパス弁オフ温度Toff以下となる
ときにバイパス弁14を閉じるようにして、再出湯湯温
の安定化を図るようにしている。
In order to solve the problem of the rise in hot water temperature due to the post-boiling at the time of re-water supply, the applicant has set the bypass valve off temperature Toff (see FIG. 1) to a temperature position higher than the target temperature on the outlet side of the hot water supply heat exchanger 1. 4, the bypass valve ON temperature T ON (52 ° C. in the example of FIG. 4) is set at a position higher than the OFF temperature Toff, and after the hot water is re-discharged, the outlet of the hot water supply heat exchanger 1 is set. When the temperature detected by the heat exchange outlet temperature sensor 15 on the side exceeds the bypass valve ON temperature, the bypass valve 14 is opened to increase the mixing amount of water, and the temperature of the hot water at the outlet of the hot water supply heat exchanger 1 is changed to the bypass valve. The bypass valve 14 is closed when the temperature becomes equal to or lower than the off-temperature Toff, thereby stabilizing the temperature of the hot water.

【0016】この再出湯湯温の安定化制御により、再出
湯時に、給湯熱交換器1の出口の湯の温度がバイパス弁
オン温度を越えるときにバイパス弁14が開けられて水
のミキシング量が増加することで給湯温度が低下し、バ
イパス弁14を開けたままのときの給湯温度の曲線Cに
沿った温度状態となり、給湯熱交換器1の出口の湯の温
度がバイパス弁オフ温度以下に低下したときにバイパス
弁14が閉じられる結果、ミキシングされる水量が減少
し、給湯温度は上昇し、バイパス弁14が閉じたままの
状態のときのBの温度曲線に沿った温度パターンDの曲
線となる。出湯栓7から実際に出る湯の温度パターン
は、湯と水がミキシングされた後、出湯栓7に至るまで
の管路長を通る間に水と湯の攪拌が促進されて、時間的
温度変化が緩やかな曲線Eのパターンの温度となり、バ
イパス弁14による動作を行わない曲線Bの温度パター
ンに比べ、後沸きによる温度上昇の影響が少なくなり、
再出湯湯温の安定化が改善される。
By this stabilization control of the hot water temperature, when the hot water temperature at the outlet of the hot water supply heat exchanger 1 exceeds the bypass valve on temperature, the bypass valve 14 is opened to reduce the mixing amount of water. As the temperature increases, the hot water supply temperature decreases, and the temperature becomes along the curve C of the hot water supply temperature when the bypass valve 14 is kept open, so that the temperature of the hot water at the outlet of the hot water supply heat exchanger 1 becomes lower than the bypass valve off temperature. When the bypass valve 14 is closed, as a result, the amount of water to be mixed decreases, the hot water supply temperature rises, and a curve of a temperature pattern D follows the temperature curve B when the bypass valve 14 remains closed. Becomes The temperature pattern of the hot water actually flowing out of the tap 7 is such that after the hot water and the water are mixed, the stirring of the water and the hot water is promoted while passing through the pipe length to the hot tap 7, and the temporal temperature change Has a gentle curve E pattern temperature, and is less affected by the temperature rise due to the after-boiling than the curve B temperature pattern in which the operation by the bypass valve 14 is not performed.
Stabilization of the temperature of the hot water is improved.

【0017】しかしながら、バイパス弁オン温度TON
オフ温度Toffを与えてバイパス弁14を開閉制御する
方式は、確かに再出湯湯温の安定化に寄与するが、その
再出湯湯温を示す曲線Eに示されるように、まだ給湯設
定温度に対する上下のばらつき変動が大きく、十分に満
足できる再出湯湯温の安定化は達成されておらず、その
改善が望まれるところである。
However, the method of controlling the opening and closing of the bypass valve 14 by giving the bypass valve ON temperature TON and the OFF temperature Toff certainly contributes to the stabilization of the refilling hot water temperature. As shown in E, the fluctuation in the vertical direction with respect to the hot water supply set temperature is still large, and a sufficiently satisfactory stabilization of the reheated hot water temperature has not yet been achieved, and improvement thereof is desired.

【0018】本発明は上記課題を解決するためになされ
たものであり、その目的は、バイパス弁14を利用し
て、より精度の良い再出湯湯温の安定化制御を行うこと
が可能な給湯装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a hot water supply system capable of performing more accurate stabilization control of re-discharged hot water temperature by using a bypass valve 14. It is to provide a device.

【0019】[0019]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のような手段を講じている。すなわち、
本発明は、給湯熱交換器の入側に給水通路が接続され、
給湯熱交換器の出側に給湯通路が接続され、給水通路か
ら供給される水を給湯熱交換器で加熱して湯にし、この
湯を給湯通路を通して出湯する給湯装置において、前記
給水通路と給湯通路を連通接続する常時バイパス通路
と、同じく給水通路と給湯通路を連通接続し通路開閉用
のバイパス弁を持った開閉バイパス通路と、前記給湯熱
交換器へ供給される給水の温度を検出する給水温度セン
サと、給湯熱交換器の出口の湯の温度を検出する熱交出
口温度センサと、給湯熱交換器から出る湯とバイパス通
路を通る水とを混合して得られる給湯の設定温度を設定
する温度設定器と、予め与えられるサンプリング時間ご
とに熱交出口温度センサの検出温度を取り込む温度サン
プリング部と、給湯設定温度と給湯熱交換器の出口の湯
の温度と給水温度と全給水量に対するバイパス通路側の
流量比であるバイパス流量比と開閉バイパス通路に設け
られたバイパス弁の開時間との演算関係式が記憶されて
いるデータ格納部と、前記温度サンプリング部によって
給湯熱交換器の出口の湯の温度情報が取り込まれるごと
にその取り込まれた給湯熱交換器の出口の湯の温度と給
水温度センサによって検出される給水温度と温度設定器
によって設定された給湯設定温度と予め与えられるバイ
パス流量比のデータに基づき前記演算関係式を用いてバ
イパス弁の開時間を求める開時間演算部と、この開時間
演算部により開時間が求められるごとにその開時間だけ
前記バイパス弁をサンプリング時間内で開駆動する弁駆
動制御部とを有する構成をもって課題を解決する手段と
している。
In order to achieve the above object, the present invention takes the following measures. That is,
In the present invention, a water supply passage is connected to the inlet side of the hot water supply heat exchanger,
A hot water supply passage is connected to the outlet side of the hot water supply heat exchanger, and the water supplied from the water supply passage is heated by the hot water supply heat exchanger into hot water, and the hot water is discharged through the hot water supply passage. A continuous bypass passage connecting and connecting the passages, an open / close bypass passage having a bypass valve for opening and closing the passage, which also connects the water supply passage and the hot water supply passage, and a water supply for detecting a temperature of water supplied to the hot water supply heat exchanger A temperature sensor, a heat exchange outlet temperature sensor for detecting the temperature of the hot water at the outlet of the hot water supply heat exchanger, and a set temperature of the hot water supply obtained by mixing the hot water discharged from the hot water supply heat exchanger and the water passing through the bypass passage. A temperature setting unit to perform, a temperature sampling unit that captures the temperature detected by the heat exchange outlet temperature sensor at every predetermined sampling time, A data storage unit storing an arithmetic relational expression between a bypass flow ratio which is a flow ratio of the bypass passage to the supply water amount and an opening time of a bypass valve provided in the open / close bypass passage, and hot water supply heat exchange by the temperature sampling unit. Each time the temperature information of the hot water at the outlet of the water heater is taken in, the temperature of the hot water at the outlet of the hot water supply heat exchanger taken in, the feed water temperature detected by the feed water temperature sensor, the hot water set temperature set by the temperature setting device, and the An open time calculation unit for calculating the open time of the bypass valve using the calculation relational expression based on the data of the given bypass flow ratio; and each time the open time is calculated by the open time calculation unit, the open valve is operated by the open time. This is a means for solving the problem with a configuration having a valve drive control section that opens and drives within the sampling time.

【0020】上記構成の本発明において、再出湯の燃焼
が開始された後、予め与えられる所定のサンプリング時
間ごとに、給湯熱交換器の出口の湯の温度が熱交出口温
度センサにより検出され、その検出温度の情報は温度サ
ンプリング部によりサンプリングされる。そして、その
サンプリングされた給湯熱交換器の出口の湯の温度と、
給水温度と、バイパス流量比と、給湯の設定温度とのデ
ータに基づき、給湯設定温度のミキシングの湯を作り出
すために要するバイパス弁の開時間を予め与えられる演
算関係式を用いて開時間演算部により求められる。そし
て、この演算結果に基づき、弁駆動制御部は、その開時
間だけバイパス弁を開駆動する結果、給湯設定温度にす
る適切な水量が給湯熱交換器から出る後沸きの湯にミキ
シングされることとなり、このミキシング動作はサンプ
リング時間ごとに行われるので、後沸きの湯がほぼ出終
わるまで適切なミキシング制御が行われることとなり、
再出湯湯温の安定化精度が格段に高められ、湯温変動の
極めて小さい安定した湯を再出湯させることが可能とな
る。
In the present invention having the above structure, the temperature of the hot water at the outlet of the hot water supply heat exchanger is detected by the heat exchange outlet temperature sensor at every predetermined sampling time after the start of the reheating hot water combustion. The information on the detected temperature is sampled by the temperature sampling unit. And, the temperature of the hot water at the outlet of the sampled hot water supply heat exchanger,
Based on the data of the feed water temperature, the bypass flow rate ratio, and the set temperature of the hot water supply, the open time calculating unit using an arithmetic relational expression that gives in advance the open time of the bypass valve required to produce the hot water for mixing the hot water set temperature. Required by Then, based on the calculation result, the valve drive control unit opens and drives the bypass valve for the opening time, so that an appropriate amount of water for setting the hot water supply temperature is mixed with the hot water that flows out of the hot water supply heat exchanger. Since this mixing operation is performed at every sampling time, appropriate mixing control is performed until almost the post-boiled water has been discharged,
The accuracy of stabilizing the temperature of the hot water is remarkably improved, and the hot water with extremely small fluctuations in the hot water temperature can be discharged again.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施形態例を図面
に基づき説明する。この実施形態例における給湯装置の
システム構成は前記図3に示すものと同様であり、同一
の部分には同一符号を使用し、その重複説明は省略す
る。この実施形態例において特徴的なことは、バイパス
弁14のオン温度TONや、オフ温度Toffを設けること
なくバイパス弁14を特有な構成のもとでオンオフ駆動
する制御手段を設けたことである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The system configuration of the hot water supply apparatus in this embodiment is the same as that shown in FIG. 3, and the same reference numerals are used for the same parts, and the duplicated description is omitted. What is characteristic in this embodiment is that a control means for driving the bypass valve 14 on and off under a specific configuration without providing the on-temperature T ON and the off-temperature Toff of the bypass valve 14 is provided. .

【0022】図1にはその本実施形態例において特徴的
な制御構成が示されている。この特徴的な制御構成は、
温度サンプリング部17と、タイマ18と、開時間演算
部20と、データ格納部21と、弁駆動制御部22とを
有して構成されている。
FIG. 1 shows a control structure characteristic of this embodiment. This characteristic control configuration
It comprises a temperature sampling unit 17, a timer 18, an open time calculation unit 20, a data storage unit 21, and a valve drive control unit 22.

【0023】温度サンプリング部17にはサンプリング
時間のデータが予め与えられており、給湯燃焼の開始
後、そのサンプリング時間ごとに給湯熱交換器1内の湯
温情報を熱交出口温度センサ15から取り込む。温度サ
ンプリング部17に与えられるサンプリング時間は、熱
交出口温度センサ15の応答性とバイパス弁14の応答
性を考慮した最小細分時間によって与えられている。
The temperature sampling section 17 is provided with data on the sampling time in advance, and after the start of hot water supply combustion, the hot water temperature information in the hot water supply heat exchanger 1 is taken in from the heat exchange outlet temperature sensor 15 at each sampling time. . The sampling time given to the temperature sampling unit 17 is given by the minimum subdivision time in consideration of the responsiveness of the heat exchange outlet temperature sensor 15 and the responsiveness of the bypass valve 14.

【0024】すなわち、熱交出口温度センサ15は、温
度変化を検出する際に、実際の温度変化が生じてから、
その温度変化を正確に検出できるまでの応答時間があ
り、同様に、バイパス弁14にも、該バイパス弁の開閉
信号が出されたときに、実際にバイパス弁14が開閉し
終わるのに必要な応答時間がある。本実施形態例では、
このような熱交出口温度センサ15とバイパス弁14の
応答時間を考慮し、その応答時間が確保される時間のう
ち、できるだけ最少時間とした最小細分時間をサンプリ
ング時間に設定して与えている。
That is, when detecting the temperature change, the heat exchange outlet temperature sensor 15 sets the temperature after the actual temperature change occurs.
There is a response time until the temperature change can be accurately detected. Similarly, the bypass valve 14 is required to completely open and close the bypass valve 14 when an open / close signal for the bypass valve is output. There is a response time. In the present embodiment,
The response time of the heat exchange outlet temperature sensor 15 and the bypass valve 14 is taken into consideration, and the minimum subdivision time, which is the shortest possible time, is set as the sampling time.

【0025】この温度サンプリング部17は、タイマ1
8を利用し、給湯燃焼の開始後、サンプリング時間が経
過するごとに熱交出口温度センサ15の温度検出情報を
取り込み、その取り込みデータを開時間演算部20に加
える。
The temperature sampling section 17 is provided with a timer 1
8, the temperature detection information of the heat exchange outlet temperature sensor 15 is fetched every time the sampling time elapses after the start of hot water supply combustion, and the fetched data is added to the open time calculation unit 20.

【0026】データ格納部21には給湯設定温度T
stと、給湯熱交換器1内の湯の温度TOUTと、給水温度
INと、全給水量(全給水流量)に対するバイパス通路
側の流量比であるバイパス流量比Bと、バイパス弁14
の開時間Δtと、サンプリング時間tsとの関係を示す
次の(1)式で示す演算関係式が格納されている。な
お、バイパス流量比Bのデータとしてデータ格納部21
には、バイパス弁14が閉の状態のときのバイパス流量
比Boffのデータと、バイパス弁14が開状態のときの
バイパス流量比BONのデータが予め格納されている。な
お、バイパス流量比Boffは、全給水流量に対する常時
バイパス通路12を通る流量の割合のデータであり、B
ONは全給水流量に対する常時バイパス通路12と開閉バ
イパス通路13を通るバイパス側のトータル流量の割合
を示すものである。
The hot water supply set temperature T is stored in the data storage section 21.
st , a temperature T OUT of hot water in the hot water supply heat exchanger 1, a water supply temperature T IN , a bypass flow ratio B which is a flow ratio on the bypass passage side to a total water supply amount (a total water supply flow rate), and a bypass valve 14.
The following equation (1), which indicates the relationship between the open time Δt and the sampling time t s , is stored. The data of the bypass storage ratio B is stored in the data storage unit 21.
, The data of the bypass flow rate ratio Boff when the bypass valve 14 is in the closed state, the bypass valve 14 is data of the bypass flow rate ratio B ON when the open state is stored in advance. The bypass flow rate ratio Boff is data of the ratio of the flow rate that always passes through the bypass passage 12 to the total feedwater flow rate.
ON indicates the ratio of the total flow rate on the bypass side passing through the constant bypass passage 12 and the open / close bypass passage 13 to the total supply water flow rate.

【0027】 Tst={(ts−Δt)/ts}{TOUT(1−Boff)+TIN・Boff}+(Δ t/ts){TOUT(1−BON)+TIN・BON}・・・・・(1)[0027] T st = {(t s -Δt ) / t s} {T OUT (1-Boff) + T IN · Boff} + (Δ t / t s) {T OUT (1-B ON) + T IN · B ON } ... (1)

【0028】開時間演算部20は、温度サンプリング部
17から熱交出口温度センサ15の検出情報が加えられ
るごとに、つまり、サンプリング時間tsごとに、温度
サンプリング部17から加えられる熱交出口温度センサ
15の検出値TOUTと、給水温度センサ16で検出され
る給水温度TINと、リモコン11の温度設定器で設定さ
れた給湯設定温度Tstと、データ格納部21に格納され
ているバイパス流量比Boff,BONと、サンプリング時
間tsのデータを取り込み、データ格納部21に格納さ
れている前記(1)式を用いてバイパス弁14の開時間
Δtを演算により求め、その演算結果を弁駆動制御部2
2に加える。
The open time calculating section 20 calculates the temperature of the heat exchange outlet temperature added from the temperature sampling section 17 every time the detection information of the heat exchange outlet temperature sensor 15 is added from the temperature sampling section 17, that is, every sampling time t s. The detected value T OUT of the sensor 15, the feed water temperature T IN detected by the feed water temperature sensor 16, the hot water set temperature T st set by the temperature setting device of the remote controller 11, and the bypass stored in the data storage unit 21. flow ratio Boff, and B oN, captures the data of the sampling time t s, determined by calculation an opening time Δt of the bypass valve 14 by using the stored in the data storage section 21 (1), the calculation result Valve drive control unit 2
Add to 2.

【0029】弁駆動制御部22は、開時間演算部20か
ら加えられる開時間Δtだけサンプリング時間内でバイ
パス弁14を開駆動する。
The valve drive control section 22 drives the bypass valve 14 to open within the sampling time for the open time Δt added from the open time calculation section 20.

【0030】図2は本実施形態例における再出湯湯温の
安定化特性を示すもので、曲線Aは前記図4に示すグラ
フの曲線Aと同じものであり、この曲線Aは再出湯開始
時からの給湯熱交換器1の出口の湯の温度を示してい
る。
FIG. 2 shows the stabilization characteristic of the temperature of the tap water in this embodiment. The curve A is the same as the curve A in the graph shown in FIG. 2 shows the temperature of the hot water at the outlet of the hot water supply heat exchanger 1 from.

【0031】同様に、曲線Bはバイパス弁14がオフ状
態のときの湯と水のミキシング給湯温度を示し、曲線C
はバイパス弁14が開状態時における湯と水のミキシン
グ給湯温度を示し、これら曲線B,Cは前述した図4の
曲線B,Cと同様のものである。
Similarly, a curve B shows the mixing hot water supply temperature when the bypass valve 14 is off, and a curve C
Indicates the mixing hot water supply temperature when the bypass valve 14 is open, and these curves B and C are similar to the curves B and C in FIG. 4 described above.

【0032】図2の曲線Fは開時間演算部20により求
められた開時間Δtだけ、各サンプリング時間ごとに弁
駆動制御部22によりバイパス弁14が開駆動制御され
たときの湯と水のミキシング給湯温度を示している。図
2に示すように、給湯熱交換器1の後沸きの温度は再出
湯開始後、時間の経過と共に増加して給湯熱交換器1の
出口の湯の温度が上昇していくのに伴い、バイパス弁1
4の開駆動時間はそれに伴い増加していき、給湯熱交換
器1の出口の湯のピークが過ぎるに従い、その温度T
OUTは低下していくので、バイパス弁14の開時間Δt
も減少していき、最終的には、バイパス弁14は閉状態
を維持するようになる。
The curve F in FIG. 2 is a mixture of hot and cold water when the bypass valve 14 is opened and controlled by the valve drive control unit 22 for each sampling time for the open time Δt obtained by the open time calculation unit 20. Shows the hot water supply temperature. As shown in FIG. 2, the post-boil temperature of the hot water supply heat exchanger 1 increases with time after the start of re-water supply, and the temperature of the hot water at the outlet of the hot water supply heat exchanger 1 increases. Bypass valve 1
4 is increased accordingly, and as the hot water peak at the outlet of the hot water supply heat exchanger 1 passes, its temperature T
Since OUT decreases, the opening time Δt of the bypass valve 14
Eventually, and the bypass valve 14 finally maintains the closed state.

【0033】曲線Fに示す如く、湯と水のミキシング給
湯温度は、給湯設定温度である40℃に対して上下に変
動するが、出湯栓7に至る管路を通るうちに、湯と水の
攪拌が促進されて、時間の経過に伴う温度変化が緩やか
となり、図2の曲線Gに示すように、給湯設定温度に対
して上下の温度変化が小さく、かつ、その変化が緩やか
な温度となって出湯栓7から出湯することとなり、図4
に示す曲線Eと比べると明らかな如く、極めて湯温変動
の小さい安定した再出湯湯温を得ることが可能となり、
再出湯湯温の制御精度を格段に高めることが可能となっ
た。
As shown by the curve F, the hot water and hot water supply temperature fluctuates up and down with respect to the set hot water supply temperature of 40 ° C. The agitation is promoted, and the temperature change over time becomes gradual, and as shown by curve G in FIG. 2, the temperature change above and below the hot water supply set temperature is small, and the change becomes a gradual temperature. The hot water is supplied from tap water tap 7, and FIG.
As is clear from comparison with the curve E shown in FIG.
It became possible to remarkably improve the control accuracy of the temperature of the hot water.

【0034】すなわち、前記(1)式を用いて求められ
るバイパス弁14の開時間Δtは各サンプリング時間ご
とに熱交出口温度センサ15で検出される温度の湯が給
湯熱交換器1の出口から出る場合に、その湯を給湯設定
温度にするのに要する水量の増加分を得る時間として求
められることになり、このことは、常時バイパス通路1
2と開閉バイパス通路13のトータル水量を給湯熱交換
器1から出る湯に混合することにより、給湯設定温度の
湯が得られることを意味し、その水量のうち、開閉バイ
パス通路13から出る水は、サンプリング時間ごとにバ
イパス弁14が開いて間欠的に供給される結果、図2の
曲線Fに示すような給湯設定温度に対して上下に変動し
た湯温となってミキシング位置から送り出されるが、前
記の如く、出湯栓7に至る管路を通るうちに、湯と水の
攪拌が促進される結果、曲線Gに示す如く、湯温変動の
小さいほぼ給湯設定温度に近い再出湯湯温が得られるの
である。この図2の例では、サンプリング時間tsは1
秒である。
That is, the opening time Δt of the bypass valve 14 obtained by using the above equation (1) is determined by the temperature of the hot water detected by the heat exchange outlet temperature sensor 15 at each sampling time from the outlet of the hot water supply heat exchanger 1. When the hot water exits, the time required to increase the amount of water required to bring the hot water to the hot water supply set temperature is obtained as a time.
2 and the total amount of water in the opening / closing bypass passage 13 is mixed with the hot water flowing out of the hot water supply heat exchanger 1 to obtain hot water at a set hot water supply temperature. As a result of opening the bypass valve 14 intermittently for each sampling time, the hot water temperature fluctuates up and down with respect to the hot water supply set temperature as shown by the curve F in FIG. 2 and is sent out from the mixing position. As described above, the hot water and the stirring of water are promoted while passing through the pipeline leading to the tap 7, and as a result, as shown by the curve G, the re-starting hot water temperature with a small fluctuation in the hot water temperature and almost close to the set hot water supply temperature is obtained. It is done. In the example of FIG. 2, the sampling time t s is 1
Seconds.

【0035】なお、給湯運転時の燃焼制御は、給湯熱交
換器1から出る湯とバイパス通路12,13から出る水
のミキシング給湯湯温を給湯温度センサ16で検出し、
その検出温度がリモコン11で設定される給湯設定温度
になるようにバーナの燃焼熱量を制御するフィードバッ
ク制御が追加されることにより、より正確に行われる。
In the combustion control during the hot water supply operation, the temperature of the hot water supplied from the hot water supply heat exchanger 1 and the temperature of the mixed hot water supplied from the bypass passages 12 and 13 are detected by the hot water supply temperature sensor 16.
By adding feedback control for controlling the amount of combustion heat of the burner so that the detected temperature becomes the hot water supply set temperature set by the remote controller 11, more accurate control is performed.

【0036】本発明は上記実施形態例に限定されること
はなく、様々な実施の形態を採り得る。例えば、上記実
施形態例では、バイパス弁14付きの開閉バイパス通路
13は1個(1本)設けたが、これを複数設けたもので
もよい。特に常時バイパス通路12の水量に大きな水量
を増量する必要がある場合には、開閉バイパス通路13
を複数設けることによって、容易に対応することができ
る。また、開閉バイパス通路13を複数設けた場合に
は、各開閉バイパス通路13の通水使用を順番に行い、
各開閉バイパス通路13のバイパス弁14の稼動を平均
化し、各通路13のバイパス弁14の寿命の片寄りを防
止することも可能である。
The present invention is not limited to the above-described embodiment, but can adopt various embodiments. For example, in the above embodiment, one (one) opening / closing bypass passage 13 with the bypass valve 14 is provided, but a plurality of opening / closing bypass passages 13 may be provided. In particular, when it is necessary to increase a large amount of water to the amount of water in the bypass passage 12 at all times, the open / close bypass passage 13
Can be easily handled by providing a plurality of. Further, when a plurality of open / close bypass passages 13 are provided, the water use of each open / close bypass passage 13 is performed in order,
It is also possible to equalize the operation of the bypass valves 14 of the opening / closing bypass passages 13 and prevent the life of the bypass valves 14 of the passages 13 from being biased.

【0037】さらに、上記実施形態例では、バイパス弁
14を電磁弁によって構成したが、このバイパス弁14
は通路の開閉が制御信号により可能であれば、電磁弁以
外の通路開閉手段(例えばダイアフラム等の弾性部材を
用いて通路を開閉する弁)を用いて構成することが可能
である。
Further, in the above embodiment, the bypass valve 14 is constituted by an electromagnetic valve.
If the opening and closing of the passage can be controlled by a control signal, the opening and closing means other than the electromagnetic valve (for example, a valve for opening and closing the passage using an elastic member such as a diaphragm) can be used.

【0038】さらに、上記実施形態例では常時バイパス
通路12を1個(1本)設けたが、これを複数設けたも
のでもよい。
Further, in the above embodiment, one (one) bypass passage 12 is always provided, but a plurality of bypass passages may be provided.

【0039】さらに、給湯装置のシステム構成は必ずし
も図3に示したものに限定されず、給湯熱交換器1に対
して並列に常時バイパス通路と開閉バイパス通路が設け
られているものであればよく、他の構成は問わない。
Further, the system configuration of the hot water supply apparatus is not necessarily limited to that shown in FIG. 3, but may be any as long as a bypass path and an open / close bypass path are always provided in parallel with the hot water supply heat exchanger 1. However, other configurations do not matter.

【0040】[0040]

【発明の効果】本発明は、給湯熱交換器の出口の湯の温
度をサンプリング時間ごとに検出し、この給湯熱交換器
から出る湯を給湯設定温度の湯にするのに要する水のミ
キシング量の増加分を開閉バイパス通路に設けたバイパ
ス弁の開時間によって制御する構成としたので、たと
え、再出湯時に、後沸きによって給湯熱交換器から出る
湯の温度が高温となっても、その後沸きを解消する最適
なミキシング水量の増加分がバイパス弁の開時間として
求められ、その開時間だけバイパス弁が開駆動制御され
ることで、給湯設定温度の湯を得るミキシング水量が正
確に供給制御されることとなる。そして、この水量が給
湯熱交換器から出る湯にミキシングされ、湯の給湯先に
至る管路を通る間に、その湯と水の攪拌混合が促進され
て時間的な温度変動の小さい湯となり、これにより、再
出湯時の後沸きを解消し、給湯設定温度に近く、湯温変
動の少ない安定した再出湯湯温を得ることが可能とな
り、再出湯湯温の制御精度を格段に高めることが可能と
なる。
According to the present invention, the temperature of hot water at the outlet of the hot water supply heat exchanger is detected at every sampling time, and the mixing amount of water required to make the hot water flowing out of the hot water supply heat exchanger to the hot water supply temperature. Is controlled by the opening time of the bypass valve provided in the opening / closing bypass passage. Therefore, even if the temperature of hot water coming out of the hot water supply heat exchanger due to post-boiling becomes high at the time of re-hot water, The optimum increase of the mixing water amount for solving the problem is obtained as the opening time of the bypass valve, and the bypass valve is opened and controlled for the opening time, so that the mixing water amount for obtaining the hot water at the hot water supply set temperature is accurately supplied and controlled. The Rukoto. Then, this amount of water is mixed with the hot water coming out of the hot water supply heat exchanger, and while passing through the pipeline leading to the hot water supply destination, the hot water and the stirring and mixing of the water are promoted to become hot water with a small temperature fluctuation over time, This eliminates post boiling at the time of re-hot water, makes it possible to obtain a stable re-hot water temperature close to the set hot water supply temperature and with little fluctuation of the hot water temperature, and can significantly improve the control accuracy of the re-hot water temperature. It becomes possible.

【0041】しかも、この再出湯湯温安定化の制御構成
は、開閉バイパス通路に設けたバイパス弁の開時間を制
御するだけでよいので、その制御構成は簡易となり、本
発明の優れた性能を有する給湯装置を安価に提供できる
という効果が得られる。
Further, the control structure for stabilizing the re-discharged hot water temperature only needs to control the opening time of the bypass valve provided in the open / close bypass passage, so that the control structure is simplified, and the superior performance of the present invention is improved. The effect of being able to provide the hot water supply device at a low cost is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例の要部構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing a main configuration of an embodiment of the present invention.

【図2】本実施形態例の制御動作とその湯温安定化特性
を示す説明図である。
FIG. 2 is an explanatory diagram showing a control operation and a hot water temperature stabilizing characteristic of the embodiment.

【図3】本実施形態例における給湯装置のシステム説明
図である。
FIG. 3 is an explanatory diagram of a system of a hot water supply device according to the embodiment.

【図4】出願人が提案したバイパス弁のオン温度とオフ
温度を用いて再出湯湯温の安定化を行ったときの湯温特
性の説明図である。
FIG. 4 is an explanatory diagram of hot water temperature characteristics when stabilization of hot water is performed using the on-temperature and off-temperature of a bypass valve proposed by the applicant.

【図5】従来の一般的な給湯装置の模式説明図である。FIG. 5 is a schematic explanatory view of a conventional general hot water supply apparatus.

【符号の説明】[Explanation of symbols]

12 常時バイパス通路 13 開閉バイパス通路 14 バイパス弁 15 熱交出口温度センサ 17 温度サンプリング部 20 開時間演算部 21 データ格納部 22 弁駆動制御部 12 Constant bypass passage 13 Open / close bypass passage 14 Bypass valve 15 Heat exchange outlet temperature sensor 17 Temperature sampling unit 20 Open time calculation unit 21 Data storage unit 22 Valve drive control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 給湯熱交換器の入側に給水通路が接続さ
れ、給湯熱交換器の出側に給湯通路が接続され、給水通
路から供給される水を給湯熱交換器で加熱して湯にし、
この湯を給湯通路を通して出湯する給湯装置において、
前記給水通路と給湯通路を連通接続する常時バイパス通
路と、同じく給水通路と給湯通路を連通接続し通路開閉
用のバイパス弁を持った開閉バイパス通路と、前記給湯
熱交換器へ供給される給水の温度を検出する給水温度セ
ンサと、給湯熱交換器の出口の湯の温度を検出する熱交
出口温度センサと、給湯熱交換器から出る湯とバイパス
通路を通る水とを混合して得られる給湯の設定温度を設
定する温度設定器と、予め与えられるサンプリング時間
ごとに熱交出口温度センサの検出温度を取り込む温度サ
ンプリング部と、給湯設定温度と給湯熱交換器の出口の
湯の温度と給水温度と全給水量に対するバイパス通路側
の流量比であるバイパス流量比と開閉バイパス通路に設
けられたバイパス弁の開時間との演算関係式が記憶され
ているデータ格納部と、前記温度サンプリング部によっ
て給湯熱交換器の出口の湯の温度情報が取り込まれるご
とにその取り込まれた給湯熱交換器の出口の湯の温度と
給水温度センサによって検出される給水温度と温度設定
器によって設定された給湯設定温度と予め与えられるバ
イパス流量比のデータに基づき前記演算関係式を用いて
バイパス弁の開時間を求める開時間演算部と、この開時
間演算部により開時間が求められるごとにその開時間だ
け前記バイパス弁をサンプリング時間内で開駆動する弁
駆動制御部とを有する給湯装置。
A hot water supply passage is connected to an inlet side of a hot water supply heat exchanger, a hot water supply passage is connected to an outlet side of the hot water supply heat exchanger, and water supplied from the hot water supply passage is heated by the hot water supply heat exchanger. West,
In a hot water supply device that discharges this hot water through a hot water supply passage,
A continuous bypass passage that connects and connects the water supply passage and the hot water supply passage; an open / close bypass passage that similarly connects the water supply passage and the hot water supply passage and has a bypass valve for opening and closing the passage; and a water supply supplied to the hot water supply heat exchanger. A hot water supply temperature sensor that detects the temperature, a heat exchange outlet temperature sensor that detects the temperature of hot water at the outlet of the hot water supply heat exchanger, and a hot water supply obtained by mixing hot water exiting from the hot water supply heat exchanger and water passing through the bypass passage. A temperature setter for setting a set temperature of the temperature, a temperature sampling unit for taking in the detected temperature of the heat exchange outlet temperature sensor at every predetermined sampling time, a hot water supply set temperature, a hot water temperature at the outlet of the hot water supply heat exchanger, and a water supply temperature. And a data storage storing a relational expression between a bypass flow ratio, which is a flow ratio of the bypass passage to the total water supply amount, and an opening time of a bypass valve provided in the open / close bypass passage. Each time temperature information of the hot water at the outlet of the hot water supply heat exchanger is taken in by the temperature sampling unit, the temperature of the hot water at the outlet of the hot water supply heat exchanger taken in and the feed water temperature and temperature setting detected by the feed water temperature sensor. Opening time calculating unit for obtaining the opening time of the bypass valve using the above-mentioned relational expression based on the hot water supply set temperature set by the heater and the data of the bypass flow ratio given in advance, and the opening time is obtained by the opening time calculating unit. And a valve drive control unit that drives the bypass valve to open within the sampling time for each opening time.
JP18455997A 1997-06-25 1997-06-25 Hot-water supply Pending JPH1114143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18455997A JPH1114143A (en) 1997-06-25 1997-06-25 Hot-water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18455997A JPH1114143A (en) 1997-06-25 1997-06-25 Hot-water supply

Publications (1)

Publication Number Publication Date
JPH1114143A true JPH1114143A (en) 1999-01-22

Family

ID=16155334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18455997A Pending JPH1114143A (en) 1997-06-25 1997-06-25 Hot-water supply

Country Status (1)

Country Link
JP (1) JPH1114143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361614A (en) * 2020-11-20 2021-02-12 珠海格力电器股份有限公司 Control method and device for outlet water temperature of water heater, water heater and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361614A (en) * 2020-11-20 2021-02-12 珠海格力电器股份有限公司 Control method and device for outlet water temperature of water heater, water heater and storage medium
CN112361614B (en) * 2020-11-20 2021-12-03 珠海格力电器股份有限公司 Control method and device for outlet water temperature of water heater, water heater and storage medium

Similar Documents

Publication Publication Date Title
JP2003074838A (en) Combustion control device
JPH1114143A (en) Hot-water supply
JPS6144111Y2 (en)
JPH1114145A (en) Hot-water supply
JPH09318153A (en) Hot-water supplier
JPH081329B2 (en) Water heater controller
KR930004524B1 (en) Controller for combustion device
JP3384855B2 (en) Hot water heater and its hot water temperature control method
JP2889815B2 (en) Water heater
JP2850582B2 (en) Hot water outlet temperature control method
CN112923553A (en) Gas water heating equipment and water flow control method and readable storage medium thereof
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve
JP3129863B2 (en) Carbonated water heater
JPH0271048A (en) Controller for hot water supplying apparatus
JP2624032B2 (en) Post purge control method
JPH10300223A (en) Water heater with hot water mixture controller
JPH1123058A (en) Combustion machine
JPH0450498B2 (en)
JPH09244752A (en) Hot water/water mix type hot water supply device
JPH1038374A (en) Hot water feeder and method for controlling combustion during re-feeding of hot water
JPH085059A (en) Hot water supply system
JPH0718588B2 (en) Water heater controller
JPH1163664A (en) Hot water supply device provided with bypass passage
JPH0618023A (en) Device for controlling blower in hot-water heater
JPH0814540A (en) Hot-water supplier