JPH11140636A - Method for mixing multicomponent powder, and production of sintered target of multicomponent powder - Google Patents

Method for mixing multicomponent powder, and production of sintered target of multicomponent powder

Info

Publication number
JPH11140636A
JPH11140636A JP9308906A JP30890697A JPH11140636A JP H11140636 A JPH11140636 A JP H11140636A JP 9308906 A JP9308906 A JP 9308906A JP 30890697 A JP30890697 A JP 30890697A JP H11140636 A JPH11140636 A JP H11140636A
Authority
JP
Japan
Prior art keywords
powder
sieve
particle size
powders
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9308906A
Other languages
Japanese (ja)
Inventor
Yasushi Hibino
靖 日比野
Hiroyuki Yamada
田 博 之 山
Yasuo Watanabe
辺 泰 男 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP9308906A priority Critical patent/JPH11140636A/en
Publication of JPH11140636A publication Critical patent/JPH11140636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a homogeneous sintered target of multicomponent powder free from the localization of constituents. SOLUTION: The sintered target of multicomponent powder is produced by mixing two or more powders selected from various powders, such as powder of metal as simple substance, powder of metal alloy, powder of metallic compound, and powder of nonmetal, with a powder of metal as simple substance or a powder of metal alloy and then sintering the resultant powder mixture. At this time, the mixing of the powders is performed while regulating the ratio between the maximum grain size and minimum grin size of each powder to <=2 and also regulating the ratio of the maximum grain size of the other powder to the maximum grain size of an arbitrary powder and the ratio of the minimum grain size of the other powder to the minimum grain size of an arbitrary powder to 0.5-2, respectively, and then the resultant powder mixture is sintered. By this method, the sintered target of multicomponent-system powder can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属単体粉末,金
属合金粉末,金属化合物粉末,非金属粉末などの各種粉
末のうちから選ばれる2種以上の比重の異なる粉末を均
一に混合するのに好適な多元系粉末の混合方法に関し、
かつまた、均一に混合した状態の混合粉末を焼結するス
パッタリング用等の多元系粉末焼結ターゲットの製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for uniformly mixing two or more kinds of powders having different specific gravities selected from various kinds of powders such as simple metal powders, metal alloy powders, metal compound powders, and nonmetallic powders. Regarding a preferred method of mixing the multi-component powder,
The present invention also relates to a method for producing a multi-component powder sintered target for sputtering or the like for sintering a mixed powder in a uniformly mixed state.

【0002】[0002]

【従来の技術】従来、2種以上の粉末を混合して得た混
合粉末を焼結して多元系粉末焼結ターゲットを製造する
に際しては、比重および粒径の異なる2種以上の金属粉
末を混合し、この混合粉末を焼結用容器に移し変え、焼
結用容器を真空密封したのち、熱間等方圧圧縮(HI
P)を行うようにしているが、このHIP以前の工程に
おいて、混合粉末は、運搬、焼結用容器への移し変え、
充填などの作業があり、これらの作業の間に上記2種以
上の金属粉末の比重差や粒径差などの影響により2種以
上の金属粉末の偏りや分離が起こってしまうことから、
2種以上の金属粉末が均一に分散したHIP処理を行う
ことができがたく、そのため、構成成分の分布が均一で
ない多元系粉末焼結ターゲットになってしまうこともあ
りうるという問題点があった。
2. Description of the Related Art Conventionally, when producing a multi-component powder sintered target by sintering a mixed powder obtained by mixing two or more powders, two or more metal powders having different specific gravities and particle sizes are used. After mixing, the mixed powder is transferred to a sintering container, the sintering container is vacuum-sealed, and then hot isostatic pressing (HI
P), but in the step before this HIP, the mixed powder is transported, transferred to a sintering container,
There are operations such as filling, and during these operations, the bias or separation of two or more metal powders occurs due to the influence of the specific gravity difference or particle size difference of the two or more metal powders,
It is difficult to perform HIP processing in which two or more kinds of metal powders are uniformly dispersed, and therefore, there is a problem that a multi-component powder sintered target having a non-uniform distribution of components may be obtained. .

【0003】[0003]

【発明の目的】本発明は、このような従来の問題点にか
んがみてなされたものであって、2種以上の粉末を各々
の比重差にかかわらず均一に混合することが可能であ
り、構成成分の分布が均一である焼結体を得ることが可
能である多元系粉末の混合方法および多元系粉末焼結タ
ーゲットの製造方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and it is possible to uniformly mix two or more kinds of powders regardless of their specific gravity differences. It is an object of the present invention to provide a method of mixing a multi-component powder and a method of manufacturing a multi-component powder sintered target capable of obtaining a sintered body having a uniform distribution of components.

【0004】[0004]

【課題を解決するための手段】本発明に係わる多元系粉
末の混合方法は、請求項1に記載しているように、金属
単体粉末,金属合金粉末,金属化合物粉末,非金属粉末
などの各種粉末のうちから選ばれる2種以上の比重の異
なる粉末を混合するに際し、個々の粉末種の最大粒径と
最小粒径の比を2以下とし、任意の粉末種の最大粒径に
対する他の粉末種の最大粒径の比および任意の粉末種の
最小粒径に対する他の粉末種の最小粒径の比をそれぞれ
0.5ないし2の範囲にそろえて混合するようにしたこ
とを特徴としている。
According to the first aspect of the present invention, there is provided a method for mixing a multi-component powder, such as a single metal powder, a metal alloy powder, a metal compound powder, and a non-metal powder. When mixing two or more powders having different specific gravities selected from powders, the ratio of the maximum particle size to the minimum particle size of each powder type is set to 2 or less, and other powders with respect to the maximum particle size of any powder type The ratio of the maximum particle size of the species and the ratio of the minimum particle size of the other powder type to the minimum particle size of an arbitrary powder type are set to be in the range of 0.5 to 2, respectively.

【0005】そして、本発明に係わる多元系粉末の混合
方法の実施態様においては、請求項2に記載しているよ
うに、金属単体粉末,金属合金粉末,金属化合物粉末,
非金属粉末などの各種粉末のうちから選ばれる2種以上
の比重の異なる粉末を混合するに際し、ふるいの目の開
き寸法が異なる2種のふるいを用い、ふるいの目の開き
寸法の大きい方のふるいを通過しかつふるいの目の開き
寸法の小さい方のふるいは通過せずに残留した粉末にお
いて、大きい方のふるいの目の開き寸法をその粉末の最
大粒径とし、小さい方のふるいの目の開き寸法をその粉
末の最小粒径としてそれぞれの粉末の粒径をそろえるよ
うにしたことを特徴としている。
[0005] In an embodiment of the method for mixing multi-component powders according to the present invention, as set forth in claim 2, a simple metal powder, a metal alloy powder, a metal compound powder,
When mixing two or more kinds of powders having different specific gravities selected from various powders such as non-metallic powders, two kinds of sieves having different sieve opening sizes are used, and the larger sieve opening size is used. For powder remaining after passing through the sieve and not passing through the smaller sieve with the smaller sieve opening size, the larger sieve opening size shall be the maximum particle size of the powder, and the smaller sieve opening The opening size of each powder is set as the minimum particle size of the powder, and the particle size of each powder is made uniform.

【0006】本発明に係わる多元系粉末焼結ターゲット
の製造方法は、請求項3に記載しているように、金属単
体粉末もしくは金属合金粉末と、金属単体粉末,金属合
金粉末,金属化合物粉末,非金属粉末などの各種粉末の
うちから選ばれる1種以上の粉末を混合し焼結して多元
系粉末焼結ターゲットを製造するに際し、個々の粉末種
の最大粒径と最小粒径の比を2以下とし、任意の粉末種
の最大粒径に対する他の粉末種の最大粒径の比および任
意の粉末種の最小粒径に対する他の粉末種の最小粒径の
比をそれぞれ0.5ないし2の範囲にそろえて混合し焼
結するようにしたことを特徴としている。
According to a third aspect of the present invention, there is provided a method for producing a multi-element powder sintered target, comprising a simple metal powder or a metal alloy powder, a simple metal powder, a metal alloy powder, a metal compound powder, In producing a multi-component powder sintered target by mixing and sintering one or more kinds of powders selected from various powders such as non-metallic powders, the ratio of the maximum particle size to the minimum particle size of each powder type is determined. 2 or less, and the ratio of the maximum particle size of another powder type to the maximum particle size of any powder type and the ratio of the minimum particle size of another powder type to the minimum particle size of any powder type are 0.5 to 2 respectively. And mixed and sintered.

【0007】そして、本発明に係わる多元系粉末焼結タ
ーゲットの製造方法の実施態様においては、請求項4に
記載しているように、金属単体粉末もしくは金属合金粉
末と、金属単体粉末,金属合金粉末,金属化合物粉末,
非金属粉末などの各種粉末のうちから選ばれる1種以上
の粉末を混合し焼結して多元系粉末焼結ターゲットを製
造するに際し、ふるいの目の開き寸法が異なる2種のふ
るいを用い、ふるいの目の開き寸法の大きい方のふるい
を通過しかつふるいの目の開き寸法の小さい方のふるい
は通過せずに残留した粉末において、大きい方のふるい
の目の開き寸法をその粉末の最大粒径とし、小さい方の
ふるいの目の開き寸法をその粉末の最小粒径としてそれ
ぞれの粉末の粒径をそろえるようにしたことを特徴とし
ている。
According to an embodiment of the method for producing a multi-component powder sintered target according to the present invention, as set forth in claim 4, a single metal powder or a metal alloy powder, a single metal powder, a metal alloy Powder, metal compound powder,
In producing a multi-component powder sintered target by mixing and sintering one or more powders selected from various powders such as non-metallic powders, using two kinds of sieves having different sieve opening sizes, For powder remaining after passing through the sieve with the larger opening size of the sieve and not passing through the smaller sieve with the smaller opening size of the sieve, the opening size of the larger sieve is set to the maximum It is characterized in that the particle size is set, and the opening size of the smaller sieve is set as the minimum particle size of the powder so that the particle size of each powder is uniform.

【0008】[0008]

【発明の作用】本発明に係わる多元系粉末の混合方法お
よび多元系粉末焼結ターゲットの製造方法では、鉄粉
(比重約7.86),銅粉(比重約8.92),錫粉
(比重約7.28),クロム粉(比重約7.20),チ
タン粉(比重約4.54),亜鉛粉(比重約7.1
2),ケイ素粉(比重約2.34),コバルト粉(比重
約8.8),鉛粉(比重約11.34),ニッケル粉
(比重約8.85)などの金属単体粉末や、鉄基合金,
銅基合金,チタン基合金,コバルト基合金,ニッケル基
合金などの金属合金粉末や、アルミナ(比重約4.
0),ジルコニア(比重約5.49),チタニア(比重
約4.93),酸化クロム(比重約5.21),その他
の酸化物,窒化物,炭化物(例えば、BN,TiN,W
C,MoC,TiC等々の硬質粒子と称されるものをも
含む)などの金属化合物粉末や、各種非金属粉末などの
うちから選ばれる2種以上の粉末の混合体において、そ
れらの比重差にかかわらず均一な混合・分散状態が得ら
れるようにしたものである。
According to the method of mixing a multi-component powder and the method of manufacturing a multi-component powder sintered target according to the present invention, iron powder (specific gravity of about 7.86), copper powder (specific gravity of about 8.92), tin powder ( Specific gravity of about 7.28), chromium powder (specific gravity of about 7.20), titanium powder (specific gravity of about 4.54), zinc powder (specific gravity of about 7.1)
2), simple metal powders such as silicon powder (specific gravity of about 2.34), cobalt powder (specific gravity of about 8.8), lead powder (specific gravity of about 11.34), nickel powder (specific gravity of about 8.85), and iron Base alloy,
Metal alloy powders such as copper-based alloys, titanium-based alloys, cobalt-based alloys, nickel-based alloys, and alumina (specific gravity of about 4.
0), zirconia (specific gravity of about 5.49), titania (specific gravity of about 4.93), chromium oxide (specific gravity of about 5.21), other oxides, nitrides, and carbides (for example, BN, TiN, W
C, MoC, TiC, etc.), and a mixture of two or more powders selected from various non-metallic powders. Regardless, a uniform mixed / dispersed state is obtained.

【0009】そして、このための手法は、個々の粉末種
の最大粒径と最小粒径の比を2以下とし、任意の粉末種
の最大粒径に対する他の粉末種の最大粒径の比および任
意の粉末種の最小粒径に対する他の粉末種の最小粒径の
比をそれぞれ0.5ないし2の範囲にそろえて混合する
ようにしたことを特徴とするものであり、このような条
件を満たさない場合には粉末の均一混合状態を安定して
得ることができないこともありうる。
The method for this purpose is to set the ratio of the maximum particle size to the minimum particle size of each powder type to 2 or less, and to set the ratio of the maximum particle size of another powder type to the maximum particle size of any powder type and The ratio of the minimum particle size of the other powder type to the minimum particle size of the arbitrary powder type is adjusted to be in the range of 0.5 to 2, respectively, and mixing is performed. If not, it may not be possible to stably obtain a uniform mixing state of the powder.

【0010】本発明の実施の形態においては、ふるいの
目の開き寸法が異なる2種のふるいを用い、ふるいの目
の開き寸法の大きい方のふるいを通過しかつふるいの目
の開き寸法の小さい方のふるいは通過せずに残留した粉
末において、大きい方のふるいの目の開き寸法をその粉
末の最大粒径とし、小さい方のふるいの目の開き寸法を
その粉末の最小粒径としてそれぞれの粉末の粒径をそろ
えるようになすことができる。
In the embodiment of the present invention, two types of sieves having different sieve openings are used, and the sieve passes through the sieve having the larger sieve opening and has a smaller sieve opening size. In the powder remaining without passing through the sieve, the opening size of the larger sieve is defined as the maximum particle size of the powder, and the opening size of the smaller sieve is defined as the minimum particle size of the powder. The particle size of the powder can be made uniform.

【0011】また、個々の粉末の粒径をそろえるに際し
ては、表1に示す「JIS,ASTM,Tylerのふ
るいの対照表」を基準にして行うようになすこともでき
る。
In order to make the particle diameters of the individual powders uniform, it is also possible to use the "JIS, ASTM, Tyler sieve comparison table" shown in Table 1 as a reference.

【0012】[0012]

【表1】 [Table 1]

【0013】このようにすることによって、2種以上の
粉末がそれらの比重の相違にかかわらず均一に混合した
混合粉末を得ることが可能であり、例えば、混合粉末を
焼結して多元系粉末焼結ターゲットを得る場合におい
て、焼結用の熱間等方圧圧縮(HIP)装置への運搬、
焼結用容器への移し変え、充填等の工程を伴うときで
も、混合粉末を構成する粉末の比重差と関係なしに、構
成粉末の偏りや分離を生じることがなくなる。
[0013] By doing so, it is possible to obtain a mixed powder in which two or more powders are uniformly mixed irrespective of the difference in their specific gravities. When obtaining a sintered target, transport to a hot isostatic pressing (HIP) device for sintering,
Even when steps such as transfer to a sintering container and filling are involved, there is no occurrence of bias or separation of the constituent powders regardless of the specific gravity difference of the powders constituting the mixed powder.

【0014】そして、HIP装置による焼結後には、構
成成分が均一に分散した多元系粉末焼結ターゲットを得
ることができるようになる。
After the sintering by the HIP apparatus, a multi-component powder sintered target in which the constituent components are uniformly dispersed can be obtained.

【0015】[0015]

【実施例】Cr85Ti15の組成よりなる二元系粉末
焼結ターゲットを製造するに際し、原料粉末として、粒
径が60〜100メッシュ(246〜147μm)のC
r粉末(破砕粉であって比重は約7.20のもの)と、
粒径が同じく60〜100メッシュ(246〜147μ
m)のTi粉末(球状粉であって比重は約4.54のも
の)とを原子比でCr:Ti=85:15となる割合で
配合してスクリュー型混合機で混合することによって混
合粉末を得た。
Upon EXAMPLES producing binary powder sintered target consisting of the composition of the Cr 85 Ti 15, as raw material powder, C having a particle size of 60 to 100 mesh (246~147μm)
r powder (crushed powder having a specific gravity of about 7.20);
Particle size is also 60-100 mesh (246-147μ)
m) is mixed with a Ti powder (spherical powder having a specific gravity of about 4.54) in an atomic ratio of Cr: Ti = 85: 15 and mixed by a screw type mixer. I got

【0016】次いで、この混合粉末を直径120mm,
高さ220mmの焼結用容器の中に振動充填機を用いて
充填し、その後、HIP処理装置にて、処理圧力120
0atm,温度1060℃で時間120分間のHIP処
理を行うことによって、Cr85Ti15よりなる粉末
焼結ターゲットを得た。
Next, this mixed powder was immersed in a powder having a diameter of 120 mm.
A sintering container having a height of 220 mm is filled with a vibration filling machine, and then a processing pressure of 120 is applied by a HIP processing apparatus.
By performing HIP processing at 0 atm and a temperature of 1060 ° C. for 120 minutes, a powder sintered target made of Cr 85 Ti 15 was obtained.

【0017】次に、ここで得た粉末焼結ターゲットの元
素分散状況をEPMAにより測定したところ、図1に示
すように、構成成分であるCrおよびTiの不均一状態
は認められなかった。
Next, when the element dispersion state of the powder sintered target obtained here was measured by EPMA, as shown in FIG. 1, no heterogeneous state of the constituent components Cr and Ti was observed.

【0018】比較のため、原料粉末として、粒径が60
〜100メッシュ(246〜147μm)のCr粉末
(破砕粉であって比重は約7.20のもの)と、粒径が
200〜325メッシュ(74〜43μm)のTi粉末
(球状粉であって比重は約4.54のもの)とを原子比
でCr:Ti=85:15となる割合で配合してスクリ
ュー型混合機で混合することによって混合粉末を得た。
For comparison, a raw material powder having a particle size of 60
Cr powder (crushed powder having a specific gravity of about 7.20) of 100 to 100 mesh (246 to 147 μm) and Ti powder (spherical powder having a specific gravity of 200 to 325 mesh (74 to 43 μm)) Was about 4.54) in an atomic ratio of Cr: Ti = 85: 15 and mixed with a screw mixer to obtain a mixed powder.

【0019】次いで、この混合粉末を直径120mm,
高さ220mmの焼結用容器の中に振動充填機を用いて
充填し、その後、同様の条件でHIP処理を行うことに
よって、Cr85Ti15よりなる粉末焼結ターゲット
を得た。
Next, this mixed powder was weighed 120 mm,
A 220 mm high sintering vessel was filled using a vibration filling machine, and then subjected to HIP treatment under the same conditions to obtain a powder sintered target made of Cr 85 Ti 15 .

【0020】次に、ここで得た粉末焼結ターゲットの元
素分散状況をEPMAにより測定したところ、図2に示
すように、構成成分であるCrの不均一状態を生じてい
ることが認められた。
Next, when the element dispersion state of the powder sintered target obtained here was measured by EPMA, it was found that as shown in FIG. .

【0021】[0021]

【発明の効果】本発明による多元系粉末の混合方法で
は、請求項1に記載しているように、金属単体粉末,金
属合金粉末,金属化合物粉末,非金属粉末などの各種粉
末のうちから選ばれる2種以上の比重の異なる粉末を混
合するに際し、個々の粉末種の最大粒径と最小粒径の比
を2以下とし、任意の粉末種の最大粒径に対する他の粉
末種の最大粒径の比および任意の粉末種の最小粒径に対
する他の粉末種の最小粒径の比をそれぞれ0.5ないし
2の範囲にそろえて混合するようにしたから、2種以上
の比重の異なる粉末を各々の比重差にかかわらず均一に
混合することが可能であるという著しく優れた効果がも
たらされる。
According to the method for mixing multicomponent powders according to the present invention, as described in claim 1, the powder is selected from various powders such as a powder of a simple metal, a powder of a metal alloy, a powder of a metal compound, and a powder of a nonmetal. When mixing two or more types of powders having different specific gravities, the ratio of the maximum particle size to the minimum particle size of each powder type is set to 2 or less, and the maximum particle size of another powder type with respect to the maximum particle size of any powder type And the ratio of the minimum particle size of the other powder type to the minimum particle size of any powder type is mixed in the range of 0.5 to 2, respectively, so that two or more powders having different specific gravities can be mixed. A remarkably excellent effect that uniform mixing can be achieved regardless of the specific gravity difference of each.

【0022】そして、請求項2に記載しているように、
ふるいの目の開き寸法が異なる2種のふるいを用い、ふ
るいの目の開き寸法の大きい方のふるいを通過しかつふ
るいの目の開き寸法の小さい方のふるいは通過せずに残
留した粉末において、大きい方のふるいの目の開き寸法
をその粉末の最大粒径とし、小さい方のふるいの目の開
き寸法をその粉末の最小粒径としてそれぞれの粉末の粒
径をそろえるようになすことによって、粒径の測定が困
難である粉末の場合においても2種以上の比重の異なる
粉末の混合を均一なものにすることが可能であるという
著しく優れた効果がもたらされる。
And, as described in claim 2,
Two types of sieves having different sieve openings are used, and the powder that passes through the sieve with the larger sieve opening and the smaller sieve with the smaller sieve opening does not pass through the remaining powder By setting the opening size of the larger sieve to the maximum particle size of the powder, and setting the opening size of the smaller sieve to the minimum particle size of the powder so that the particle size of each powder is uniform, Even in the case of a powder whose particle size is difficult to measure, a remarkably excellent effect that two or more powders having different specific gravities can be uniformly mixed can be obtained.

【0023】本発明による多元系粉末焼結ターゲットの
製造方法では、請求項3に記載しているように、金属単
体粉末もしくは金属合金粉末と、金属単体粉末,金属合
金粉末,金属化合物粉末,非金属粉末などの各種粉末の
うちから選ばれる1種以上の粉末を混合し焼結して多元
系粉末焼結ターゲットを製造するに際し、個々の粉末種
の最大粒径と最小粒径の比を2以下とし、任意の粉末種
の最大粒径に対する他の粉末種の最大粒径の比および任
意の粉末種の最小粒径に対する他の粉末種の最小粒径の
比をそれぞれ0.5ないし2の範囲にそろえて混合し焼
結するようにしたから、2種以上の金属粉末の焼結体か
らなる多元系粉末焼結ターゲットにおいて、構成成分の
偏りや粗密などを生じがたく、均一なターゲットを得る
ことが可能であって、このターゲットを用いて形成され
たスパッタリング膜等の膜の均一性を十分に高めること
が可能であるという著しく優れた効果がもたらされる。
In the method for producing a multi-component powder sintered target according to the present invention, as described in claim 3, a simple metal powder or a metal alloy powder, a simple metal powder, a metal alloy powder, a metal compound powder, In producing a multi-component powder sintered target by mixing and sintering one or more kinds of powders selected from various powders such as metal powders, the ratio of the maximum particle size to the minimum particle size of each powder type is set at 2%. The ratio of the maximum particle size of another powder type to the maximum particle size of any powder type and the ratio of the minimum particle size of another powder type to the minimum particle size of any powder type are 0.5 to 2 respectively. Since it is mixed and sintered in the range, a multi-component powder sintered target consisting of a sintered body of two or more types of metal powders is not likely to cause unevenness or density of constituent components, and a uniform target It is possible to get Significantly excellent effect that the uniformity of the film of the sputtered film or the like formed by using this target can be sufficiently increased is provided.

【0024】そして、請求項4に記載しているように、
ふるいの目の開き寸法が異なる2種のふるいを用い、ふ
るいの目の開き寸法の大きい方のふるいを通過しかつふ
るいの目の開き寸法の小さい方のふるいは通過せずに残
留した粉末において、大きい方のふるいの目の開き寸法
をその粉末の最大粒径とし、小さい方のふるいの目の開
き寸法をその粉末の最小粒径としてそれぞれの粉末の粒
径をそろえるようになすことによって、粒径の測定が困
難である粉末の場合においても2種以上の比重の異なる
粉末の混合を均一なものにすることが可能であり、これ
らの粉末を素材とする均一成分の粉末焼結ターゲットを
得ることが可能であるという著しく優れた効果がもたら
される。
And, as described in claim 4,
Two types of sieves having different sieve openings are used, and the powder that passes through the sieve with the larger sieve opening and the smaller sieve with the smaller sieve opening does not pass through the remaining powder By setting the opening size of the larger sieve to the maximum particle size of the powder, and setting the opening size of the smaller sieve to the minimum particle size of the powder so that the particle size of each powder is uniform, Even in the case of powders whose particle size is difficult to measure, it is possible to mix two or more kinds of powders having different specific gravities uniformly. A remarkably excellent effect is obtained that it can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による多元系粉末焼結ターゲッ
トの元素分散状況の測定結果を示す説明図である。
FIG. 1 is an explanatory diagram showing measurement results of element dispersion states of a multi-component powder sintered target according to an example of the present invention.

【図2】本発明の比較例による多元系粉末焼結ターゲッ
トの元素分散状況の測定結果を示す説明図である。
FIG. 2 is an explanatory diagram showing measurement results of element dispersion states of a multi-component powder sintered target according to a comparative example of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属単体粉末,金属合金粉末,金属化合
物粉末,非金属粉末などの各種粉末のうちから選ばれる
2種以上の比重の異なる粉末を混合するに際し、個々の
粉末種の最大粒径と最小粒径の比を2以下とし、任意の
粉末種の最大粒径に対する他の粉末種の最大粒径の比お
よび任意の粉末種の最小粒径に対する他の粉末種の最小
粒径の比をそれぞれ0.5ないし2の範囲にそろえて混
合することを特徴とする多元系粉末の混合方法。
When mixing two or more kinds of powders having different specific gravities selected from various kinds of powders, such as a simple metal powder, a metal alloy powder, a metal compound powder, and a nonmetal powder, the maximum particle size of each powder type And the ratio of the minimum particle size of any powder type to the maximum particle size of any powder type, and the ratio of the minimum particle size of another powder type to the minimum particle size of any powder type And mixing them in the range of 0.5 to 2 respectively.
【請求項2】 金属単体粉末,金属合金粉末,金属化合
物粉末,非金属粉末などの各種粉末のうちから選ばれる
2種以上の比重の異なる粉末を混合するに際し、ふるい
の目の開き寸法が異なる2種のふるいを用い、ふるいの
目の開き寸法の大きい方のふるいを通過しかつふるいの
目の開き寸法の小さい方のふるいは通過せずに残留した
粉末において、大きい方のふるいの目の開き寸法をその
粉末の最大粒径とし、小さい方のふるいの目の開き寸法
をその粉末の最小粒径としてそれぞれの粉末の粒径をそ
ろえることを特徴とする請求項1に記載の多元系粉末の
混合方法。
2. A sieve having a different opening size when mixing two or more kinds of powders having different specific gravities selected from various kinds of powders such as a metal simple powder, a metal alloy powder, a metal compound powder, and a non-metallic powder. Using two types of sieves, the sieve with the larger sieve opening size passed through the larger sieve opening sieve and the smaller sieve opening size sieve did not pass through, 2. The multi-component powder according to claim 1, wherein the opening size is the maximum particle size of the powder, and the opening size of the smaller sieve is the minimum particle size of the powder, and the particle sizes of the respective powders are equalized. Mixing method.
【請求項3】 金属単体粉末もしくは金属合金粉末と、
金属単体粉末,金属合金粉末,金属化合物粉末,非金属
粉末などの各種粉末のうちから選ばれる1種以上の粉末
を混合し焼結して多元系粉末焼結ターゲットを製造する
に際し、個々の粉末種の最大粒径と最小粒径の比を2以
下とし、任意の粉末種の最大粒径に対する他の粉末種の
最大粒径の比および任意の粉末種の最小粒径に対する他
の粉末種の最小粒径の比をそれぞれ0.5ないし2の範
囲にそろえて混合し焼結することを特徴とする多元系粉
末焼結ターゲットの製造方法。
3. A metal simple substance powder or a metal alloy powder,
At the time of producing a multi-component powder sintered target by mixing and sintering at least one kind of powder selected from various kinds of powders such as a metal simple powder, a metal alloy powder, a metal compound powder, and a non-metallic powder, individual powders are mixed. The ratio between the maximum particle size and the minimum particle size of the seed is 2 or less, and the ratio of the maximum particle size of the other powder type to the maximum particle size of any powder type and the ratio of the other powder type to the minimum particle size of any powder type A method for producing a multi-component powder sintered target, comprising mixing and sintering with the ratio of the minimum particle diameters in the range of 0.5 to 2, respectively.
【請求項4】 金属単体粉末もしくは金属合金粉末と、
金属単体粉末,金属合金粉末,金属化合物粉末,非金属
粉末などの各種粉末のうちから選ばれる1種以上の粉末
を混合し焼結して多元系粉末焼結ターゲットを製造する
に際し、ふるいの目の開き寸法が異なる2種のふるいを
用い、ふるいの目の開き寸法の大きい方のふるいを通過
しかつふるいの目の開き寸法の小さい方のふるいは通過
せずに残留した粉末において、大きい方のふるいの目の
開き寸法をその粉末の最大粒径とし、小さい方のふるい
の目の開き寸法をその粉末の最小粒径としてそれぞれの
粉末の粒径をそろえることを特徴とする請求項3に記載
の多元系粉末焼結ターゲットの製造方法。
4. A metal simple powder or a metal alloy powder,
When producing a multi-component powder sintered target by mixing and sintering at least one kind of powder selected from various powders such as a simple metal powder, a metal alloy powder, a metal compound powder, and a non-metallic powder, a sieve is used. Using two types of sieves having different opening sizes, the sieve that passed through the sieve with the larger opening size of the sieve and the sieve with the smaller opening size of the sieve did not pass through the larger sieve 4. The method of claim 3, wherein the opening size of the sieve is the maximum particle size of the powder, and the opening size of the smaller sieve is the minimum particle size of the powder. A method for producing the multicomponent powder sintered target according to the above.
JP9308906A 1997-11-11 1997-11-11 Method for mixing multicomponent powder, and production of sintered target of multicomponent powder Pending JPH11140636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9308906A JPH11140636A (en) 1997-11-11 1997-11-11 Method for mixing multicomponent powder, and production of sintered target of multicomponent powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9308906A JPH11140636A (en) 1997-11-11 1997-11-11 Method for mixing multicomponent powder, and production of sintered target of multicomponent powder

Publications (1)

Publication Number Publication Date
JPH11140636A true JPH11140636A (en) 1999-05-25

Family

ID=17986706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9308906A Pending JPH11140636A (en) 1997-11-11 1997-11-11 Method for mixing multicomponent powder, and production of sintered target of multicomponent powder

Country Status (1)

Country Link
JP (1) JPH11140636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293108A (en) * 2008-06-09 2009-12-17 Kobelco Kaken:Kk METHOD FOR PRODUCING Al-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2010261107A (en) * 2010-07-01 2010-11-18 Sanyo Special Steel Co Ltd Method for producing high density solidified compact
JP2012201913A (en) * 2011-03-24 2012-10-22 Hyogo Prefecture Method for forming corrosion-resistant alloy film on substrate surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293108A (en) * 2008-06-09 2009-12-17 Kobelco Kaken:Kk METHOD FOR PRODUCING Al-BASED ALLOY SPUTTERING TARGET MATERIAL
WO2009151032A1 (en) * 2008-06-09 2009-12-17 株式会社コベルコ科研 Manufacturing method for aluminum-based alloy sputtering target
JP2010261107A (en) * 2010-07-01 2010-11-18 Sanyo Special Steel Co Ltd Method for producing high density solidified compact
JP2012201913A (en) * 2011-03-24 2012-10-22 Hyogo Prefecture Method for forming corrosion-resistant alloy film on substrate surface

Similar Documents

Publication Publication Date Title
CN103890204B (en) By using resonance sound mixer to manufacture hard alloy or the method for metal ceramic powder
CN104105812B (en) Ferromagnetic sputtering target with minimized particle generation
CN107488804A (en) A kind of superhigh intensity, hardness and corrosion-resistant CrMnFeVTi high-entropy alloys and preparation method thereof
US20180088011A1 (en) A mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium
JP6883103B2 (en) Calcogenide sputtering target and its manufacturing method
KR20050110046A (en) Method for preparing pt-co based sputtering targets, and the sputtering targets thus obtained
CN104032270A (en) Large-sized ruthenium-based alloy sputtering target and preparation method thereof
Collins et al. The influence of the enthalpy of mixing during the laser deposition of complex titanium alloys using elemental blends
JP2012036452A (en) Target for magnetron sputtering, and method of manufacturing the same
CN106164329B (en) Include the sputtering target and its manufacturing method of Al-Te-Cu-Zr alloys
Cordova et al. Powder characterization and optimization for additive manufacturing
JPH11140636A (en) Method for mixing multicomponent powder, and production of sintered target of multicomponent powder
EP3674683B1 (en) Evaluation method of powder for laminate molding
TWI540220B (en) Target for magnetron sputtering and its manufacturing method
US5858460A (en) Metal matrices reinforced with silver coated boron carbide particles
US4873148A (en) Coated metallic particles and process for producing same
JP6027699B1 (en) Mn—Zn—W—O-based sputtering target and method for producing the same
JP5863411B2 (en) Magnetron sputtering target and method for manufacturing the same
Zhang et al. Effect of Cr3C2 addition on the microstructure, magnetic and mechanical properties of TiC–TiN–WC–C–Ni cermets
US20200234730A1 (en) Sputtering target and method for producing same, and method for producing magnetic recording medium
Krasnova et al. Properties of Ti–6Al–4V Alloy Powders for Selective Electron-Beam Additive Manufacturing of Products
Marcu et al. Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy
Johnson et al. Influence of mechanical agitation on the conformal coating of powders
JP2005220384A (en) Cu-BASED SPUTTERING TARGET MATERIAL
JPH108171A (en) Production of wear resistant composite cobalt alloy powder and sintered composite cobalt alloy