JPH11140579A - Silicon nitride composite material and its production - Google Patents

Silicon nitride composite material and its production

Info

Publication number
JPH11140579A
JPH11140579A JP31916197A JP31916197A JPH11140579A JP H11140579 A JPH11140579 A JP H11140579A JP 31916197 A JP31916197 A JP 31916197A JP 31916197 A JP31916197 A JP 31916197A JP H11140579 A JPH11140579 A JP H11140579A
Authority
JP
Japan
Prior art keywords
silicon nitride
composite material
phase
based composite
alloy phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31916197A
Other languages
Japanese (ja)
Inventor
Hidenori Kita
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP31916197A priority Critical patent/JPH11140579A/en
Publication of JPH11140579A publication Critical patent/JPH11140579A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon nitride composite material having high magnetic permeability and excellent in wear resistance as well as in mechanical strength. SOLUTION: In this silicon nitride type composite material, a roundish Fe-Si or Fe-Al-Si alloy phase 13 of >=40 vol.% by volume ratio is dispersed in a base phase 12 of dense silicon nitride. Further, a grain boundary phase 14, containing aluminum(Al), silicon(Si), yttrium(Y), oxygen(O), and nitrogen(N), exists in the boundary part between the base phase 12 and the alloy phase 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高透磁率と耐摩耗性
を有する窒化ケイ素系複合材料とその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride composite material having high magnetic permeability and abrasion resistance and a method for producing the same.

【0002】[0002]

【従来の技術】ゼーベツク効果を利用する熱電素子の材
料には、初透磁率が高く、軟質磁性材料であるケイ化鉄
(FeSi2 )が広く使用されている。しかし、ケイ化鉄
(FeSi2)は脆く、摺動部品に使用する時は摩耗しやす
い。また、ケイ化鉄(FeSi2 )に微量のアルミニウム
(Al)を添加して反応させたセンダスト(Fe-Al-Si)も
透磁率が高いが非常に脆いので、粒径約10μmの粉末
にしたうえ絶縁性接着剤などで固めて圧粉磁心や磁気ヘ
ツドなどに使用されている。しかし、磁気ヘツドなどの
摺動部品には耐摩耗性のより優れた材料が望まれる。
2. Description of the Related Art As a material for a thermoelectric element utilizing the Seebeck effect, iron silicide (FeSi 2 ) which is a soft magnetic material having a high initial magnetic permeability is widely used. However, iron silicide (FeSi 2 ) is brittle and easily wears when used for sliding parts. Also, sendust (Fe-Al-Si), which is obtained by adding a small amount of aluminum (Al) to iron silicide (FeSi 2 ) and reacting the same, has a high magnetic permeability but is very brittle, so that powder having a particle size of about 10 μm was used. In addition, it is used for dust cores and magnetic heads after being hardened with an insulating adhesive. However, for sliding parts such as magnetic heads, materials having better wear resistance are desired.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は上述の
問題に鑑み、透磁率が高く、機械的強度、耐摩耗性に優
れた窒化ケイ素系複合材料とその製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a silicon nitride composite material having high magnetic permeability, excellent mechanical strength, and excellent wear resistance, and a method for producing the same. .

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の構成は緻密な窒化ケイ素(Si3N4 )の母相
に、丸みをもつFe-Si 合金相またはFe-Al-Si合金相が分
散しており、前記母相と前記合金相との境界部分にアル
ミニウム(Al),ケイ素(Si),イツトリウム(Y ),
酸素(O ),窒素(N )を含む粒界相が存在することを
特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, the structure of the present invention is that a dense silicon nitride (Si 3 N 4 ) mother phase is provided with a rounded Fe—Si alloy phase or Fe—Al— phase. Si alloy phase is dispersed, and aluminum (Al), silicon (Si), yttrium (Y),
It is characterized by the presence of a grain boundary phase containing oxygen (O 2) and nitrogen (N 2).

【0005】さらに、本発明の構成は緻密な窒化ケイ素
(Si3N4 )の母相に、体積率にして40vol% 以上を占
める丸みをもつFe-Si 合金相またはFe-Al-Si合金相が分
散しており、前記母相と前記合金相との境界部分にアル
ミニウム(Al),ケイ素(Si),イツトリウム(Y ),
酸素(O ),窒素(N )を含む粒界相が存在することを
特徴とする。
Further, the constitution of the present invention is that a dense Fe-Si alloy phase or Fe-Al-Si alloy phase having a roundness occupying 40 vol% or more by volume in a dense silicon nitride (Si 3 N 4 ) matrix. Are dispersed, and aluminum (Al), silicon (Si), yttrium (Y),
It is characterized by the presence of a grain boundary phase containing oxygen (O 2) and nitrogen (N 2).

【0006】[0006]

【発明の実施の形態】本発明による窒化ケイ素系複合材
料は鉄または鉄−アルミニウム合金のアトマイズ粉末
と、窒化ケイ素(Si3N4 )粉末と、アルミナ(Al2O
3 )、イツトリア(Y2O3)などの焼結助剤粉末との混合
粉末から成形体を成形し、該成形体を窒素雰囲気などの
不活性雰囲気で焼成する。焼成中に鉄と窒化ケイ素は反
応してFe-Siを生成する。焼成により得られた成形体
は、窒化ケイ素からなる母相の内部に、強固に結合され
たFe-Si が分散相として存在する。連続相である窒化ケ
イ素からなる母相は極めて耐摩耗性に優れ、分散相であ
るFeSi2-Fe3Si5などの鉄のケイ化物は、鉄または鉄合金
のアトマイズ粉末から形成されているので丸みを帯びて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION A silicon nitride-based composite material according to the present invention comprises an atomized powder of iron or an iron-aluminum alloy, silicon nitride (Si 3 N 4 ) powder, and alumina (Al 2 O).
3), and a molded body from a powder mixture of sintering aid powder such as Itsutoria (Y 2 O 3), the molded article is calcined in an inert atmosphere such as nitrogen atmosphere. During firing, iron and silicon nitride react to form Fe-Si. In the compact obtained by firing, a strongly bonded Fe-Si exists as a dispersed phase inside a matrix made of silicon nitride. The matrix phase composed of silicon nitride, which is a continuous phase, has extremely excellent wear resistance, and the silicide of iron, such as FeSi 2 -Fe 3 Si 5 which is a dispersed phase, is formed from atomized powder of iron or an iron alloy. Rounded.

【0007】本発明による窒化ケイ素系複合材料は、窒
化ケイ素の母相に分散する鉄合金(ケイ化鉄)の粒子が
丸みを帯びているので、窒化ケイ素の母相に角ばつた鉄
合金が分散する窒化ケイ素系複合材料に比べて、窒化ケ
イ素系複合材料が外力を受けた時に鉄合金の分散相が母
相に及ぼす応力集中の度合が小さくなり、窒化ケイ素系
複合材料の機械的強度を高める。因みに窒化ケイ素の母
相に角ばつた鉄合金が分散する窒化ケイ素系複合材料で
は、鉄合金の添加量が約 3vol%を超えると、外力を受
けた時に鉄合金の角ばつた部分が、母相に応力集中を及
ぼし、割れが生じる。
In the silicon nitride-based composite material according to the present invention, since iron alloy (iron silicide) particles dispersed in the silicon nitride matrix are rounded, an iron alloy squared in the silicon nitride matrix is used. When the silicon nitride-based composite material is subjected to an external force, the degree of stress concentration exerted by the dispersed phase of the iron alloy on the parent phase is smaller than that of the dispersed silicon nitride-based composite material, and the mechanical strength of the silicon nitride-based composite material is reduced. Enhance. By the way, in a silicon nitride-based composite material in which the squared iron alloy is dispersed in the matrix of silicon nitride, if the addition amount of the iron alloy exceeds about 3 vol%, the squared portion of the iron alloy when exposed to an external force becomes It exerts stress concentration on the phase and cracks occur.

【0008】ケイ化鉄(Fe-Si )は優れた熱電特性を有
するので、本発明による窒化ケイ素系複合材料を摺動面
に配して熱電素子を形成すると、熱電素子は摺動面の摩
擦熱によりベーチツク効果に基づく起電力を発生する。
[0008] Since iron silicide (Fe-Si) has excellent thermoelectric properties, when the silicon nitride-based composite material according to the present invention is arranged on a sliding surface to form a thermoelectric element, the thermoelectric element has a friction of the sliding surface. The heat generates an electromotive force based on the baking effect.

【0009】[0009]

【実施例】本発明に係る窒化ケイ素系複合材料の組織を
模式的に示す断面図である。本発明による窒化ケイ素系
複合材料は、緻密な窒化ケイ素(Si3N4 )の母相12
に、体積率にして40vol% 以上を占める丸みをもつFe
-Si またはFe-Al-Si合金相13が分散しており、母相1
2と合金相13との境界部分に焼結助剤の成分であるア
ルミニウム(Al),ケイ素(Si),イツトリウム(Y
),酸素(O ),窒素(N )を含む粒界相14が存在
する。合金相13の組成はFe3Si5,FeSi2 ,FeSi2-Fe3S
i5などのケイ化鉄である。母相12の窒化ケイ素の粒子
サイズは5〜50μm、合金相13のケイ化鉄の粒子は
丸みのあるものであり、粒径が10〜100μmであ
る。粒界相14はガラス状をなす。
FIG. 1 is a cross-sectional view schematically showing the structure of a silicon nitride-based composite material according to the present invention. The silicon nitride-based composite material according to the present invention comprises a dense silicon nitride (Si 3 N 4 ) matrix 12.
In addition, rounded Fe occupying more than 40vol% by volume
-Si or Fe-Al-Si alloy phase 13 is dispersed,
At the boundary between the alloy phase 2 and the alloy phase 13, aluminum (Al), silicon (Si), yttrium (Y
), Oxygen (O 2), and nitrogen (N 2). The composition of the alloy phase 13 is Fe 3 Si 5 , FeSi 2 , FeSi 2 -Fe 3 S
i 5 silicified iron, such as. The particle size of silicon nitride in the mother phase 12 is 5 to 50 μm, and the particles of iron silicide in the alloy phase 13 are round and have a particle size of 10 to 100 μm. The grain boundary phase 14 is glassy.

【0010】本発明による窒化ケイ素系複合材料は、鉄
を含む原料をアトマイズ処理して丸みを帯びたアトマイ
ズ粒子を生成し、焼結助剤を含有する窒化ケイ素粉末に
アトマイズ粒子を添加してなる混合物から成形体を成形
し、該成形体を温度1400℃以上の不活性雰囲気で焼
成すると、窒化ケイ素粉末とアトマイズ粒子とが反応し
てFe3Si5,FeSi2 ,FeSi2-Fe3Si5などのケイ化鉄を生成
する。
[0010] The silicon nitride composite material according to the present invention is obtained by atomizing a raw material containing iron to produce rounded atomized particles, and adding the atomized particles to a silicon nitride powder containing a sintering aid. When a compact is formed from the mixture and the compact is fired in an inert atmosphere at a temperature of 1400 ° C. or higher, the silicon nitride powder reacts with the atomized particles to cause Fe 3 Si 5 , FeSi 2 , FeSi 2 —Fe 3 Si 5 Produce iron silicide.

【0011】[実施例1]粒子サイズが5〜10μmの
窒化ケイ素(Si3N4 )粉末を92wt%と、アルミナ(Al
2O3 )粉末を3wt%と、イツトリア(Y2O3)粉末を5wt
%とを配合した第1の混合粉末をつくり、第1の混合粉
末60部(容積)と粒径が50μm以下(好ましくは4
0〜50μm)の鉄(Fe)のアトマイズ粉末40部(容
積)とを配合して第2の混合粉末を得た。第2の混合粉
末から成形体を成形し、該成形体を温度約1800℃、
100気圧の窒素雰囲気で約6時間焼成した。
[Example 1] 92 wt% of silicon nitride (Si 3 N 4 ) powder having a particle size of 5 to 10 μm and alumina (Al
2 O 3) and 3 wt% of the powder, Itsutoria (Y 2 O 3) 5 wt powder
% Of the first mixed powder, and 60 parts (volume) of the first mixed powder and a particle diameter of 50 μm or less (preferably 4 μm).
(0 to 50 μm) and 40 parts (by volume) of atomized powder of iron (Fe) to obtain a second mixed powder. A molded body is formed from the second mixed powder, and the molded body is heated at a temperature of about 1800 ° C.
It was fired in a nitrogen atmosphere at 100 atm for about 6 hours.

【0012】得られた焼成体つまり本発明による窒化ケ
イ素系複合材料をX線回折法により観察したところ、本
発明による窒化ケイ素系複合材料は焼成中に原料である
鉄(Fe)の内部にSi(ケイ素)が拡散し、FeSi2-Fe3Si5
が生成されていることが確認された。また、本発明によ
る窒化ケイ素系複合材料の組織を透過型電子顕微鏡によ
り観察したところ、母相12と合金相13との境界部分
にアルミニウム(Al),ケイ素(Si),イツトリウム
(Y ),酸素(O ),窒素(N )を含む粒界相14が存
在し、該粒界相14が母相12と合金相13とを固く結
合していることが分かつた。
When the obtained fired body, that is, the silicon nitride-based composite material of the present invention was observed by X-ray diffraction, the silicon nitride-based composite material of the present invention contained Si (Fe) as a raw material during firing. (Silicon) is diffused and FeSi 2 -Fe 3 Si 5
Was generated. When the structure of the silicon nitride-based composite material according to the present invention was observed with a transmission electron microscope, it was found that aluminum (Al), silicon (Si), yttrium (Y), oxygen It was found that a grain boundary phase 14 containing (O 2) and nitrogen (N 2) was present, and the grain boundary phase 14 firmly bonds the mother phase 12 and the alloy phase 13.

【0013】本発明による窒化ケイ素系複合材料は、表
1に示すような摩耗量、強度、熱起電力などの物性を有
する。
The silicon nitride-based composite material according to the present invention has physical properties such as the amount of wear, strength, and thermoelectromotive force as shown in Table 1.

【0014】 [表1] 本発明品 従来品(センタ゛スト) 比摩耗量(mm3/N・m) 1.0 4.5 強度(MPa) 750 320 ビツカース硬度 Hv 1200 650 800℃での熱起電力(mV) 15 24 初透磁率 10500 16200 実施例1の配合比の原料からスリーブ状の成形体を成形
し、同様の方法で焼成して、図2に示すように、本発明
による窒化ケイ素系複合材料からなる外径20mm、内
径15mm、長さ20mmのスリーブ状体2を作成し
た。
[Table 1] Product of the present invention Conventional product (center dust) Specific wear (mm3 / N · m) 1.0 4.5 Strength (MPa) 750 320 Vickers hardness Hv 1200 650 Thermal electromotive force at 800 ° C. ( mV) 15 24 Initial permeability 10500 16200 A sleeve-like molded body was formed from the raw materials having the compounding ratio of Example 1 and fired in the same manner, and as shown in FIG. 2, the silicon nitride-based composite material according to the present invention. A sleeve 2 having an outer diameter of 20 mm, an inner diameter of 15 mm, and a length of 20 mm was prepared.

【0015】[比較例]実施例1で述べた窒化ケイ素粉
末92wt%とアルミナ粉末3wt%とイツトリア粉末5wt
%とからなる第1の混合粉末と、鉄のアトマイズ粉末と
の配合割合を種々変えた第2の混合粉末からスリーブ状
の成形体を成形し、該成形体を実施例と同様の方法で焼
成して、外径20mm、内径15mm、長さ20mmの
多数のスリーブ状体2を作成した。
Comparative Example 92 wt% of silicon nitride powder, 3 wt% of alumina powder and 5 wt% of yttria powder described in Example 1
% Of the first mixed powder and the second mixed powder in which the mixing ratio of the atomized powder of iron is variously changed, and the molded body is fired in the same manner as in the example. Thus, a large number of sleeve-like bodies 2 having an outer diameter of 20 mm, an inner diameter of 15 mm, and a length of 20 mm were prepared.

【0016】図2に示すように、実施例1と比較例の各
スリーブ状体2の外周面を平滑に仕上げ加工した後、ス
リーブ状体2の外周面3にP形の半導体とN形の半導体
とを介装した電極層4と吸熱層5をろう付けした。スリ
ーブ状体2からなる滑り軸受6に嵌挿支持した回転軸7
の回転数と電極層4に発生した起電力とを測定したとこ
ろ、図3に示すように、窒化ケイ素系複合材料を構成す
る窒化ケイ素からなる母相12に占めるFe-Si またはFe
-Al-Si合金相13の割合が40vol% を超えると、窒化
ケイ素の母相に占める合金相の割合が40vol% 以下の
ものよりも起電力が著しく増加することが分かつた。
As shown in FIG. 2, after the outer peripheral surface of each sleeve 2 of the embodiment 1 and the comparative example is finished smoothly, the outer peripheral surface 3 of the sleeve 2 is provided with a P-type semiconductor and an N-type. The electrode layer 4 with the semiconductor interposed and the heat absorbing layer 5 were brazed. Rotary shaft 7 fitted and supported in a slide bearing 6 made of a sleeve-like body 2
When the number of rotations and the electromotive force generated in the electrode layer 4 were measured, as shown in FIG. 3, Fe—Si or Fe occupied in the matrix 12 composed of silicon nitride constituting the silicon nitride-based composite material.
It was found that when the proportion of the -Al-Si alloy phase 13 exceeds 40 vol%, the electromotive force is significantly increased as compared with the case where the proportion of the alloy phase in the silicon nitride mother phase is 40 vol% or less.

【0017】図4に示すように、回転軸7の回転数を高
くすると、摩擦熱の量が多くなり、起電力が増加するこ
とが分る。
As shown in FIG. 4, when the rotational speed of the rotating shaft 7 is increased, the amount of frictional heat is increased, and the electromotive force is increased.

【0018】なお、回転軸7を長時間回転すると、滑り
軸受6は徐々に摩耗が進行し、これに伴つて摩擦熱が少
くなり、熱起電力も小さくなる。したがつて、熱起電力
の大きさから摩耗量が分かり、滑り軸受の交換時期を知
ることができる。
When the rotating shaft 7 is rotated for a long time, the sliding bearing 6 gradually wears, and accordingly, the frictional heat is reduced and the thermoelectromotive force is also reduced. Therefore, the wear amount can be known from the magnitude of the thermoelectromotive force, and the time for replacing the slide bearing can be known.

【0019】[実施例2]鉄の代りに鉄・アルミニウム
(Fe-Al )合金のアトマイズ粉末を用いて、実施例1と
同様の条件にて窒化ケイ素を母相とする窒化ケイ素系複
合材料を作製した。すなわち、窒化ケイ素(Si3N4 )粉
末を92wt%と、アルミナ(Al2O3 )粉末を3wt%と、
イツトリア(Y2O3)粉末を5wt%とを配合した第1の混
合粉末をつくり、第1の混合粉末60部(容積)と鉄・
アルミニウム合金のアトマイズ粉末40部(容積)とを
配合して第2の混合粉末を得た。第2の混合粉末から成
形体を成形し、該成形体を温度約1800℃、100気
圧の窒素雰囲気で約6時間焼成した。
[Example 2] A silicon nitride-based composite material having silicon nitride as a mother phase was prepared under the same conditions as in Example 1 except that atomized powder of an iron-aluminum (Fe-Al) alloy was used instead of iron. Produced. That is, 92 wt% of silicon nitride (Si 3 N 4 ) powder, 3 wt% of alumina (Al 2 O 3 ) powder,
A first mixed powder containing 5 wt% of yttria (Y 2 O 3 ) powder was prepared, and 60 parts (volume) of the first mixed powder and iron
A second mixed powder was obtained by mixing 40 parts (volume) of atomized powder of an aluminum alloy. A compact was formed from the second mixed powder, and the compact was fired at a temperature of about 1800 ° C. in a nitrogen atmosphere at 100 atm for about 6 hours.

【0020】図5に示すように、得られた窒化ケイ素系
複合材料から磁気ヘツドを製作した。磁気ヘツドはシー
ルド板26により互いに隔絶されるフエライトからなる
磁心21,22に、消去用コイル23と録音用コイル2
4をそれぞれ巻装し、各磁心21,22の端部、つまり
磁気テープと滑り接触する部分に、本発明による窒化ケ
イ素系複合材料からなる薄板25を配設したものであ
る。
As shown in FIG. 5, a magnetic head was manufactured from the obtained silicon nitride composite material. The magnetic heads are provided on magnetic cores 21 and 22 made of ferrite, which are separated from each other by a shield plate 26.
4 are wound, and a thin plate 25 made of the silicon nitride composite material according to the present invention is disposed at the end of each of the magnetic cores 21 and 22, that is, at the portion that comes into sliding contact with the magnetic tape.

【0021】本発明による窒化ケイ素系複合材料を用い
た磁気ヘツドと、センダスト(Fe-Al-Si)を用いた従来
の磁気ヘツドとを、磁気テープに接触させて滑らせる滑
り摩擦試験を行つたところ、図6に示すように、本発明
による窒化ケイ素系複合材料を用いた磁気ヘツドは従来
のものよりも耐摩耗性に優れていることが確かめられ
た。
A sliding friction test was conducted in which a magnetic head using the silicon nitride-based composite material according to the present invention and a conventional magnetic head using Sendust (Fe-Al-Si) were brought into contact with a magnetic tape to slide. However, as shown in FIG. 6, it was confirmed that the magnetic head using the silicon nitride-based composite material according to the present invention had better wear resistance than the conventional one.

【0022】[0022]

【発明の効果】本発明は上述のように、緻密な窒化ケイ
素の母相に、体積率にして40vol%以上の丸みをもつF
e-Si またはFe-Al-Si合金相が分散しており、前記母相
と前記合金相との境界部分にアルミニウム(Al),ケイ
素(Si),イツトリウム(Y ),酸素(O ),窒素(N
)を含む粒界相が存在するものであり、特にアトマイ
ズ処理を施した鉄または鉄合金の粉末を用いることによ
り、緻密な窒化ケイ素の母相に鉄または鉄合金が丸みの
あるケイ化物粒子として分散するので、機械的強度が高
く、しかも透磁率、耐摩耗性に優れ、磁気ヘツド、耐熱
性滑り軸受などに適した窒化ケイ素系複合材料が得られ
る。
According to the present invention, as described above, a dense silicon nitride matrix having a volume fraction of more than 40 vol%
e-Si or Fe-Al-Si alloy phase is dispersed, and aluminum (Al), silicon (Si), yttrium (Y), oxygen (O 2), nitrogen (N
), And particularly by using atomized iron or iron alloy powder, iron or iron alloy is converted into rounded silicide particles in a dense silicon nitride matrix. Since it is dispersed, a silicon nitride-based composite material having high mechanical strength, excellent magnetic permeability and wear resistance, and suitable for a magnetic head, a heat-resistant slide bearing, and the like can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る窒化ケイ素系複合材料の組織を模
式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a structure of a silicon nitride-based composite material according to the present invention.

【図2】本発明による窒化ケイ素系複合材料を用いた滑
り軸受を示す斜視図である。
FIG. 2 is a perspective view showing a sliding bearing using the silicon nitride-based composite material according to the present invention.

【図3】同滑り軸受の窒化ケイ素系複合材料に含まれる
ケイ化鉄の分散量と熱起電力との関係を表す線図であ
る。
FIG. 3 is a diagram showing a relationship between a dispersion amount of iron silicide contained in a silicon nitride-based composite material of the sliding bearing and a thermoelectromotive force.

【図4】同滑り軸受が支持する軸の回転数と熱起電力と
の関係を表す線図である。
FIG. 4 is a diagram showing a relationship between a rotational speed of a shaft supported by the sliding bearing and a thermoelectromotive force.

【図5】本発明による窒化ケイ素系複合材料を用いた磁
気ヘツドの平面断面図である。
FIG. 5 is a plan sectional view of a magnetic head using a silicon nitride-based composite material according to the present invention.

【図6】同磁気ヘツドの滑り摩擦試験の結果を表す線図
である。
FIG. 6 is a diagram showing a result of a sliding friction test of the magnetic head.

【符号の説明】[Explanation of symbols]

2:スリーブ状体 3:外周面 4:電極層 5:吸熱
層 6:軸受 7:回転軸 12:母相 13:合金相
14:粒界相 21:磁心 22:磁心 23:消去
用コイル 24:録音用コイル 25:薄板 26:シ
ールド板
2: sleeve-like body 3: outer peripheral surface 4: electrode layer 5: endothermic layer 6: bearing 7: rotating shaft 12: mother phase 13: alloy phase 14: grain boundary phase 21: magnetic core 22: magnetic core 23: erasing coil 24: Recording coil 25: Thin plate 26: Shield plate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】緻密な窒化ケイ素(Si3N4 )の母相に、丸
みをもつFe-Si 合金相またはFe-Al-Si合金相が分散して
おり、前記母相と前記合金相との境界部分にアルミニウ
ム(Al),ケイ素(Si),イツトリウム(Y ),酸素
(O ),窒素(N )を含む粒界相が存在することを特徴
とする、窒化ケイ素系複合材料。
A rounded Fe-Si alloy phase or Fe-Al-Si alloy phase is dispersed in a dense silicon nitride (Si 3 N 4 ) mother phase, and the mother phase and the alloy phase are separated from each other. A silicon nitride-based composite material, characterized in that a grain boundary phase containing aluminum (Al), silicon (Si), yttrium (Y), oxygen (O 2), and nitrogen (N 2) exists at a boundary portion of the silicon nitride composite material.
【請求項2】緻密な窒化ケイ素(Si3N4 )の母相に、体
積率にして40vol% 以上を占める丸みをもつFe-Si 合
金相またはFe-Al-Si合金相が分散しており、前記母相と
前記合金相との境界部分にアルミニウム(Al),ケイ素
(Si),イツトリウム(Y ),酸素(O ),窒素(N )
を含む粒界相が存在することを特徴とする、窒化ケイ素
系複合材料。
2. A dense Fe-Si alloy phase or Fe-Al-Si alloy phase having a volume fraction of 40 vol% or more is dispersed in a dense silicon nitride (Si 3 N 4 ) matrix. Aluminum (Al), silicon (Si), yttrium (Y), oxygen (O), nitrogen (N) at the boundary between the mother phase and the alloy phase.
A silicon nitride-based composite material, characterized by having a grain boundary phase containing:
【請求項3】前記合金相の組成はFe3Si5またはFeSi2
表される、請求項1に記載の窒化ケイ素系複合材料。
3. The silicon nitride composite material according to claim 1, wherein the composition of the alloy phase is represented by Fe 3 Si 5 or FeSi 2 .
【請求項4】前記複合材料が磁気ヘツドに使用されるも
のである、請求項1に記載の窒化ケイ素系複合材料。
4. The silicon nitride-based composite material according to claim 1, wherein said composite material is used for a magnetic head.
【請求項5】前記複合材料からなる板状体または円筒体
の一方の面を摺動面とし、他方の面に電極層と吸熱層を
結合し、摩擦熱による前記摺動面と前記吸熱層との間の
温度差を電力に変換する、請求項1に記載の窒化ケイ素
系複合材料。
5. A plate-like body or a cylindrical body comprising said composite material, wherein one surface is a sliding surface and the other surface is connected to an electrode layer and a heat-absorbing layer. The silicon nitride-based composite material according to claim 1, wherein the temperature difference between the composite material and the electric power is converted into electric power.
【請求項6】鉄を含む原料をアトマイズ処理して丸みを
帯びたアトマイズ粒子を生成する工程と、焼結助剤を含
有する窒化ケイ素粉末に前記アトマイズ粒子を添加して
なる混合物から成形体を成形する工程と、前記成形体を
温度1400℃以上の不活性雰囲気で焼成して、前記窒
化ケイ素粉末と前記アトマイズ粒子とを反応させてケイ
化鉄を生成する工程とを含むことを特徴とする、窒化ケ
イ素系複合材料の製造方法。
6. A step of atomizing a raw material containing iron to produce rounded atomized particles, and forming a molded body from a mixture obtained by adding the atomized particles to silicon nitride powder containing a sintering aid. Forming, and firing the formed body in an inert atmosphere at a temperature of 1400 ° C. or more, and reacting the silicon nitride powder and the atomized particles to generate iron silicide. And a method for producing a silicon nitride-based composite material.
JP31916197A 1997-11-06 1997-11-06 Silicon nitride composite material and its production Pending JPH11140579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31916197A JPH11140579A (en) 1997-11-06 1997-11-06 Silicon nitride composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31916197A JPH11140579A (en) 1997-11-06 1997-11-06 Silicon nitride composite material and its production

Publications (1)

Publication Number Publication Date
JPH11140579A true JPH11140579A (en) 1999-05-25

Family

ID=18107122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31916197A Pending JPH11140579A (en) 1997-11-06 1997-11-06 Silicon nitride composite material and its production

Country Status (1)

Country Link
JP (1) JPH11140579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021169073A1 (en) * 2020-02-28 2021-09-02 深圳市新星轻合金材料股份有限公司 Silicon-aluminum alloy and preparation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021169073A1 (en) * 2020-02-28 2021-09-02 深圳市新星轻合金材料股份有限公司 Silicon-aluminum alloy and preparation method therefor

Similar Documents

Publication Publication Date Title
US7498080B2 (en) Ferromagnetic powder for dust core
JPH0421739A (en) Composite and its manufacture
KR100344268B1 (en) Pressed body of amorphous magnetically soft alloy powder and process for producing same
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
WO2015019576A1 (en) Composite magnetic material, coil component using same, and power supply device
JP2009117651A (en) High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
JPH01247503A (en) Magnetic particles and production thereof
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2009246256A (en) High-strength high-resistivity low loss composite soft magnetic material, its method for manufacturing, and electromagnetic circuit component
JP2006097124A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP2006241583A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM, AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JPS6139918A (en) Slider for thin magnetic head
JPH11140579A (en) Silicon nitride composite material and its production
JP2009141346A (en) High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP4479998B2 (en) Method for producing composite soft magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
JP2006089791A (en) Method for manufacturing composite soft-magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
JP4761836B2 (en) Mg-containing iron oxide coated iron powder
JP2001267113A (en) Method of manufacturing soft magnetic material
CN113228205B (en) Sintered body and method for producing same
JP2004156102A (en) Production method for high-density high-resistance composite soft magnetic sintered material
JPS6043643B2 (en) Manufacturing method of MnZn ferrite with high magnetic permeability in high frequency band
JP2006339356A (en) Compound soft magnetic powder and its production process