JPH11139826A - Production of laminar compound having interlaminar crosslinked structure - Google Patents

Production of laminar compound having interlaminar crosslinked structure

Info

Publication number
JPH11139826A
JPH11139826A JP9325495A JP32549597A JPH11139826A JP H11139826 A JPH11139826 A JP H11139826A JP 9325495 A JP9325495 A JP 9325495A JP 32549597 A JP32549597 A JP 32549597A JP H11139826 A JPH11139826 A JP H11139826A
Authority
JP
Japan
Prior art keywords
powder
compound
interlaminar
compd
kca
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9325495A
Other languages
Japanese (ja)
Other versions
JP3146351B2 (en
Inventor
Bunpou Jiyoukan
文峰 上官
Akira Yoshida
章 吉田
Kozo Inoue
耕三 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP32549597A priority Critical patent/JP3146351B2/en
Publication of JPH11139826A publication Critical patent/JPH11139826A/en
Application granted granted Critical
Publication of JP3146351B2 publication Critical patent/JP3146351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a laminar compd. useful for a highly functional photocatalyst by enlarging the interlaminar distance of the laminar compd. and carrying out interlaminar modification. SOLUTION: A laminar perovskite type compd. represented by formula K[Ca2 Nan-3 Nbn O3n+1 ] [where (n) is an integer of 3-6 and Nb may be substd. at a ratio of <=10 atom % with at least one kind of a metal selected from among Ni, V, Cu, Cr and W] is treated by a proton exchange, then, long chain alkylamine is intercalated and the resultant compd. is allowed to react with tetraalkoxysilane and fired at 400-600 deg.C in an atmosphere of an oxygen-contg. gas to produce the objective laminar compd. having an interlaminar crosslinked structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒などとして
有用な層間架橋構造を有する層状化合物を、層状ペロブ
スカイト型化合物を用い、インターカレーション反応を
利用して効率よく製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing a layered compound having an interlayer crosslinked structure useful as a photocatalyst or the like by using a layered perovskite type compound and utilizing an intercalation reaction.

【0002】[0002]

【従来の技術】酸化チタンに代表される光応答性半導体
特性を有する金属化合物を利用した半導体光触媒反応
は、半導体電極での水の光分解の発見[「工業化学雑
誌」,第72巻,第108〜113ページ(1969
年)]以来、光エネルギーから化学エネルギーへの交換
の有力な手段として、多くの研究がなされてきており、
様々な分野における潜在的有用性が明らかになりつつあ
る。
2. Description of the Related Art A semiconductor photocatalytic reaction utilizing a metal compound having photoresponsive semiconductor characteristics represented by titanium oxide is disclosed by the discovery of photodecomposition of water at a semiconductor electrode [Industrial Chemistry Magazine, Vol. Pages 108 to 113 (1969
Years)], many studies have been conducted as a promising means of converting light energy into chemical energy.
The potential utility in various fields is emerging.

【0003】この光応答性半導体特性を有する金属化合
物、いわゆる光触媒は、その結晶分子における価電子帯
と伝導帯との間のエネルギーギャップである「禁止帯」
の値以上のエネルギーを有する光を吸収すると、価電子
帯の電子が伝導帯に光励起されて、伝導帯には自由電子
が、価電子帯には正孔が生成し、これらがそれぞれ還元
反応と酸化反応を起こすことによって光触媒反応が進行
する。
A metal compound having photoresponsive semiconductor properties, a so-called photocatalyst, has a "forbidden band" which is an energy gap between a valence band and a conduction band in a crystal molecule.
When light having energy equal to or greater than is absorbed, electrons in the valence band are photoexcited into the conduction band, free electrons are generated in the conduction band, and holes are generated in the valence band. The photocatalytic reaction proceeds by causing the oxidation reaction.

【0004】しかしながら、半導体光触媒によって水の
光分解が起こるためには、半導体のバンド幅が水の電解
圧(理論値1.23V+過電圧0.4V=1.63V)
より大きくなければならず、さらに伝導体の電子が水を
還元でき、かつ価電子帯の正孔が水を酸化できる能力が
なければならない。すなわち、伝導帯の下端が水からの
水素発生電位よりマイナス側に、価電子帯の上端が酸素
発生電位よりプラス側に位置していなくてはならない。
この制約のために、理論的に水を完全分解できる半導体
の種類は限られている。
However, in order for photodecomposition of water to occur by the semiconductor photocatalyst, the bandwidth of the semiconductor must be equal to the electrolytic pressure of water (theoretical value 1.23 V + overvoltage 0.4 V = 1.63 V).
It must be larger, and moreover, the electrons of the conductor must be able to reduce water, and the holes in the valence band must be capable of oxidizing water. That is, the lower end of the conduction band must be located on the minus side of the hydrogen generation potential from water, and the upper end of the valence band must be located on the plus side of the oxygen generation potential.
Due to this limitation, the types of semiconductors that can completely decompose water theoretically are limited.

【0005】ところで、光触媒、例えば金属化合物(T
iO2)を主体とする光触媒の製造方法としては、無機
材料粉末を用いて、直接高温焼結させる方法、化学処理
により、半導体に一層優れた光応答性を付与するため
に、半導体に金属又は金属化合物の水溶液を吸着させた
のち、この半導体に吸着した金属又は金属化合物を酸
化、還元あるいは還元後に一部酸化する方法、ゾル−ゲ
ル方法などがこれまで知られている。
A photocatalyst such as a metal compound (T
As a method for producing a photocatalyst mainly composed of iO 2 ), a method of directly sintering a high temperature using an inorganic material powder, and a method of imparting a more excellent photoresponsiveness to a semiconductor by a chemical treatment by using a metal or metal A method of adsorbing an aqueous solution of a metal compound and then oxidizing, reducing or partially oxidizing the metal or the metal compound adsorbed on the semiconductor, a sol-gel method, and the like have been known.

【0006】しかしながら、光応答性半導体特性を有す
る金属化合物を用いた光触媒においては、半導体のバン
ド幅が大きすぎるため、太陽光の可視光部分を吸収でき
ず、ほぼ近紫外光のみが反応に寄与し、また、光エネル
ギーによる励起により生じた電子と正孔が容易に再結合
するために、種々の反応系における反応量子収率が低い
という欠点がある。
However, in a photocatalyst using a metal compound having photoresponsive semiconductor characteristics, the visible light portion of sunlight cannot be absorbed because the bandwidth of the semiconductor is too large, and almost only near-ultraviolet light contributes to the reaction. In addition, since electrons and holes generated by excitation by light energy easily recombine, there is a disadvantage that the reaction quantum yield in various reaction systems is low.

【0007】最近、層状複合酸化物、例えば層状ペロブ
スカイト型のKCa2Nb310などが、光応答性半導体
特性を有する光触媒として提案され、このような層状ペ
ロブスカイト型化合物は、用いる元素に種々の組合わせ
が可能であり、例えばK[Ca2Nan-3Nbn3n+1
で表わされる各種の化合物を調製することができるとい
う利点を有している。
Recently, layered composite oxides such as layered perovskite type KCa 2 Nb 3 O 10 have been proposed as photocatalysts having photoresponsive semiconductor properties. Such layered perovskite type compounds have various elements used. Combinations are possible, for example, K [Ca 2 Na n-3 Nb n O 3n + 1 ]
Has the advantage that various compounds represented by the formula can be prepared.

【0008】一般に、層状化合物を用いて、高機能の光
触媒、例えば可視光による水の水素と酸素への完全分解
触媒を調製する際には、層間をいかに修飾するかが、重
要な問題となるが、層状ペロブスカイトの場合には、層
間電荷密度が高いため、層間距離を拡大しにくく、層間
を修飾することが困難であり、高機能の光触媒が得られ
にくいという欠点がある。
In general, when preparing a highly functional photocatalyst, for example, a catalyst for completely decomposing water into hydrogen and oxygen by visible light using a layered compound, how to modify the layers becomes an important issue. However, in the case of a layered perovskite, the interlayer charge density is high, so that it is difficult to increase the interlayer distance, it is difficult to modify the interlayer, and it is difficult to obtain a highly functional photocatalyst.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、層状化合物の層間距離を拡大して層間を
修飾し、高機能光触媒として有用な層状化合物を効率よ
く製造する方法を提供することを目的としてなされたも
のである。
SUMMARY OF THE INVENTION Under such circumstances, the present invention provides a method for efficiently producing a layered compound useful as a high-performance photocatalyst by increasing the interlayer distance of the layered compound and modifying the layers. The purpose of this is to provide.

【0010】[0010]

【課題を解決するための手段】本発明者らは、層状化合
物の層間を修飾する方法について鋭意研究を重ねた結
果、高温反応により調製した層状ペロブスカイト型化合
物を用い、これをプロトン交換処理したのち、長鎖アル
キルアミンのインターカレーション処理、テトラアルコ
キシシランによる処理及び焼成処理を順次施すことによ
り、層間にシリカの支柱を有する層間架橋構造の層状化
合物が容易に得られることを見出し、この知見に基づい
て本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on a method of modifying the interlayer of a layered compound, and as a result, used a layered perovskite compound prepared by a high-temperature reaction, and subjected to a proton exchange treatment. It has been found that by sequentially performing intercalation treatment of a long-chain alkylamine, treatment with tetraalkoxysilane, and calcination treatment, a layered compound having an interlayer cross-linked structure having pillars of silica between layers can be easily obtained. Based on this, the present invention has been completed.

【0011】すなわち、本発明は、一般式 K[Ca2Nan-3Nbn3n+1] (I) (式中のnは3〜6の数であり、Nbは10原子%以下
の割合でNi、V、Cu、Cr及びWの中から選ばれた
少なくとも1種の金属と置換されていてもよい)で表わ
される層状ペロブスカイト型化合物をプロトン交換処理
したのち、長鎖アルキルアミンをインターカレートし、
次いでテトラアルコキシシランを反応させ、さらに酸素
含有ガス雰囲気下、400〜600℃の温度で焼成処理
して層間にシリカの支柱を形成させることを特徴とする
層間架橋構造を有する層状化合物の製造方法を提供する
ものである。
That is, the present invention relates to a compound represented by the general formula: K [Ca 2 Na n-3 Nb n O 3n + 1 ] (I) wherein n is a number of 3 to 6, and Nb is 10 atom% or less. May be substituted with at least one metal selected from the group consisting of Ni, V, Cu, Cr and W), after proton exchange treatment of the layered perovskite compound represented by Calate and
Next, a method for producing a layered compound having an interlayer crosslinked structure, characterized by reacting tetraalkoxysilane and further baking at a temperature of 400 to 600 ° C. under an oxygen-containing gas atmosphere to form a pillar of silica between layers. To provide.

【0012】[0012]

【発明の実施の形態】本発明方法においては、層状化合
物として、前記一般式(I)で表わされる層状ペロブス
カイト型化合物が用いられるが、この層状ペロブスカイ
ト型化合物は、1150〜1350℃の高温反応によっ
て調製したものが好ましい。一般式(I)におけるNb
は、10原子%以下の割合でNi、V、Cu、Cr又は
W、あるいはこれらを2種以上組み合わせたものと置換
されていてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, a layered perovskite compound represented by the general formula (I) is used as a layered compound. Those prepared are preferred. Nb in the general formula (I)
May be substituted with Ni, V, Cu, Cr or W or a combination of two or more of them at a ratio of 10 atomic% or less.

【0013】前記一般式(I)で表わされる層状ペロブ
スカイト型化合物は、通常用いられている方法、例えば
酸化ニオブ粉末、炭酸カルシウム粉末、炭酸カリウム粉
末及び場合により用いられる炭酸ナトリウム粉末を、そ
れぞれ所定の割合で混合し、この粉末混合物を、空気な
どの酸素含有ガス雰囲気下に、前記範囲の温度で焼成す
ることにより調製される。なお、一般式(I)におい
て、nが3より大きく6以下の化合物(ナトリウムを含
む化合物)を調製する場合には、NaNbO3とKCa2
Nb310をあらかじめ調製しておき、これらを所望の
割合で含有する粉末混合物を、空気などの酸素含有ガス
雰囲気下に、前記範囲の温度で焼成することにより、調
製するのが有利である。
The layered perovskite compound represented by the general formula (I) can be prepared by a commonly used method such as a niobium oxide powder, a calcium carbonate powder, a potassium carbonate powder, and a sodium carbonate powder optionally used, respectively. The powder mixture is prepared by baking at a temperature within the above range under an atmosphere containing an oxygen-containing gas such as air. In the case of preparing a compound (compound containing sodium) in which n is greater than 3 and 6 or less in the general formula (I), NaNbO 3 and KCa 2
It is advantageous to prepare Nb 3 O 10 in advance, and calcinate a powder mixture containing these at a desired ratio in an atmosphere of an oxygen-containing gas such as air at a temperature in the above range. .

【0014】本発明方法においては、このようにして調
製された前記一般式(I)で表わされる層状ペロブスカ
イト型化合物に対し、まず、プロトン交換処理を施すこ
とが必要である。このプロトン交換処理は、酸溶液例え
ば適当な濃度の硝酸水溶液中で該層状ペロブスカイト型
化合物を、常温にて50〜100時間程度かきまぜるこ
とにより行うことができる。この処理により、層状ペロ
ブスカイト型化合物は、一般式 H[Ca2Nan-3Nbn3n+1] (II) 又は電子価を考慮した場合、 H+[Ca2Nan-3Nbn3n+1- (II′) (式中のnは前記と同じ意味をもつ)で表わされる化合
物に変換される。
In the method of the present invention, it is necessary to first subject the layered perovskite compound represented by the general formula (I) thus prepared to a proton exchange treatment. This proton exchange treatment can be carried out by stirring the layered perovskite compound in an acid solution, for example, an aqueous solution of nitric acid of an appropriate concentration at room temperature for about 50 to 100 hours. By this treatment, the layered perovskite compound is converted into a compound represented by the general formula H [Ca 2 Na n-3 Nb n O 3n + 1 ] (II) or H + [Ca 2 Nan -3 Nb n O 3n + 1 ] - (II ') (wherein n has the same meaning as described above).

【0015】次いで、このプロトン交換層状化合物に長
鎖アルキルアミンをインターカレートする。この際用い
られる長鎖アルキルアミンとしては、炭素数5〜15程
度のものが好ましく、特にn‐ヘキシルアミンが好適で
ある。このインターカレーション反応は、低級アルコー
ルなどの適当な溶媒中において、長鎖アルキルアミンと
前記プロトン変換層状化合物とを常温で50〜200時
間程度接触させることにより、行うことができる。この
反応により、層状化合物の層間に、長鎖アルキルアミン
がインターカレートされ、層間距離が拡大する。
Next, a long-chain alkylamine is intercalated into the proton exchange layered compound. As the long-chain alkylamine used at this time, one having about 5 to 15 carbon atoms is preferable, and n-hexylamine is particularly preferable. This intercalation reaction can be performed by contacting the long-chain alkylamine with the above-mentioned proton conversion layered compound in a suitable solvent such as a lower alcohol at room temperature for about 50 to 200 hours. By this reaction, a long-chain alkylamine is intercalated between the layers of the layered compound, and the interlayer distance is increased.

【0016】次に、このようにして長鎖アルキルアミン
がインターカレートされた層状化合物にテトラアルコキ
シシランを反応させる。この際用いられるテトラアルコ
キシシランとしては、アルコキシル基がメトキシ基、エ
トキシ基、n‐プロポキシ基、イソプロポキシ基などの
低級アルコキシル基であるものが好ましく、特にテトラ
エトキシシランが好適である。この反応は、一般に40
〜80℃程度の温度において50〜200時間程度行わ
れる。
Next, a tetraalkoxysilane is reacted with the layered compound in which the long-chain alkylamine has been intercalated as described above. As the tetraalkoxysilane used at this time, those in which the alkoxyl group is a lower alkoxyl group such as a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group are preferable, and tetraethoxysilane is particularly preferable. This reaction generally takes 40
This is performed at a temperature of about 80 ° C. for about 50 to 200 hours.

【0017】最後に、空気などの酸素含有ガス雰囲気下
に、400〜600℃の範囲の温度において焼成処理
し、層間中の有機物を燃焼させる。この焼成処理によ
り、一般式 SiO2−Ca2Nan-3Nbn3n+1 (III) (式中のnは前記と同じ意味をもつ)で表わされ、層間
にシリカの支柱を有する層間架橋構造の層状化合物が得
られる。このものは多孔体であって、大きな表面積を有
するとともに、高温安定性も良好である。
Finally, in an oxygen-containing gas atmosphere such as air, a baking treatment is performed at a temperature in the range of 400 to 600 ° C. to burn organic substances in the interlayer. By this calcination treatment, it is represented by the general formula SiO 2 —Ca 2 Na n-3 Nb n O 3n + 1 (III) (in the formula, n has the same meaning as described above), and has silica pillars between the layers. A layered compound having an interlayer crosslinked structure is obtained. This is a porous body, has a large surface area, and has good high-temperature stability.

【0018】[0018]

【発明の効果】本発明によれば、層状ペロブスカイト型
化合物を用い、インターカレーション反応を利用して、
層間にシリカの支柱を有する層間架橋構造の層状化合物
からなる多孔体を効率よく製造することができる。この
ものは、高機能光触媒として、例えば光化学変換や光を
用いた合成化学分野、あるいは光触媒反応を利用した環
境汚染物質の除去処理分野などに有用である。
According to the present invention, a layered perovskite type compound is used, and an intercalation reaction is used.
A porous body composed of a layered compound having an interlayer crosslinked structure having silica pillars between layers can be efficiently produced. This is useful as a highly functional photocatalyst, for example, in the field of synthetic chemistry using photochemical conversion or light, or in the field of removal of environmental pollutants using photocatalysis.

【0019】[0019]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0020】参考例1 KCa2Nb310の調製 酸化ニオブ(V)粉末[和光純薬工業(株)製、純度9
9.9%]0.03モル、炭酸カルシウム粉末[和光純
薬工業(株)製、試薬特級]0.04モル及び炭酸カリ
ウム粉末[片山化学工業(株)製、試薬一級]0.01
1モルをよく混合したのち、空気中で1200℃にて7
時間焼成して得られたものを粉砕し、再び空気中で12
00℃にて7時間焼成した。次いで、これを蒸留水で十
分に洗浄したのち、110℃で乾燥処理して、KCa2
Nb310粉末を調製した。このもののX線回折図を図
1にaとして示す。
Reference Example 1 Preparation of KCa 2 Nb 3 O 10 Niobium (V) oxide powder [purity 9 manufactured by Wako Pure Chemical Industries, Ltd.]
9.9%] 0.03 mol, calcium carbonate powder [manufactured by Wako Pure Chemical Industries, Ltd., reagent grade] 0.04 mol and potassium carbonate powder [Katayama Chemical Industry Co., Ltd., reagent first grade] 0.01
After thoroughly mixing 1 mol, the mixture was heated at 1200 ° C in air for 7 minutes.
The product obtained by firing for hours is crushed,
It was baked at 00 ° C. for 7 hours. Next, this was sufficiently washed with distilled water, and then dried at 110 ° C. to obtain KCa 2
Nb 3 O 10 powder was prepared. The X-ray diffraction pattern of this is shown in FIG.

【0021】参考例2 KCa2NaNb413の調製 酸化ニオブ(V)粉末[和光純薬工業(株)製、純度9
9.9%]0.045モル、炭酸カルシウム粉末[和光
純薬工業(株)製、試薬特級]0.06モル及び炭酸カ
リウム粉末[片山化学工業(株)製、試薬一級]0.1
65モルをよく混合したのち、空気中で1000℃にて
20時間焼成して得られたものを粉砕し、再び空気中で
1000℃にて20時間焼成した。次いで、これを蒸留
水で十分に洗浄したのち、500℃で3時間乾燥処理し
て、KCa2Nb310粉末を調製した。一方、酸化ニオ
ブ(V)粉末[和光純薬工業(株)製、純度99.9
%]0.02モルと炭酸ナトリウム粉末[和光純薬工業
(株)製、試薬一級]0.02モルとをよく混合したの
ち、空気中で1050℃にて6時間焼成してNaNbO
3粉末を得た。このようにして得られたKCa2Nb3
10粉末0.025モルとNaNbO3粉末0.025モ
ルとをよく混合したのち、空気中で1230℃にて10
時間焼成して、KCa2NaNb413粉末を調製した。
このもののX線回折図を図1にbとして示す。
Reference Example 2 Preparation of KCa 2 NaNb 4 O 13 Niobium (V) oxide powder [purity 9 manufactured by Wako Pure Chemical Industries, Ltd.]
9.9%] 0.045 mol, calcium carbonate powder [manufactured by Wako Pure Chemical Industries, Ltd., reagent grade] 0.06 mol and potassium carbonate powder [Katayama Chemical Industry Co., Ltd., reagent first grade] 0.1
After well mixing 65 moles, the mixture was calcined in air at 1000 ° C. for 20 hours, and the resultant was pulverized and calcined again in air at 1000 ° C. for 20 hours. Next, this was sufficiently washed with distilled water and then dried at 500 ° C. for 3 hours to prepare a KCa 2 Nb 3 O 10 powder. On the other hand, niobium (V) oxide powder [manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9]
%] And 0.02 mol of sodium carbonate powder [Wako Pure Chemical Industries, Ltd., first class reagent] are mixed well, and then calcined in air at 1050 ° C. for 6 hours to obtain NaNbO.
3 powders were obtained. The thus obtained KCa 2 Nb 3 O
After thoroughly mixing 0.025 mol of 10 powder and 0.025 mol of NaNbO 3 powder, 10
After calcining for hours, a KCa 2 NaNb 4 O 13 powder was prepared.
The X-ray diffraction pattern of this is shown as b in FIG.

【0022】参考例3 KCa2Na2Nb516の調製 参考例2で得たKCa2NaNb413粉末0.01モル
と参考例2で得たNaNbO3粉末0.01モルとをよ
く混合して、空気中で1260℃にて15時間焼成した
のち、粉砕し、再度空気中で1300℃にて10時間焼
成して、KCa2Na2Nb516粉末を調製した。このも
ののX線回折図を図1にcとして示す。
Reference Example 3 Preparation of KCa 2 Na 2 Nb 5 O 16 0.01 mol of KCa 2 NaNb 4 O 13 powder obtained in Reference Example 2 and 0.01 mol of NaNbO 3 powder obtained in Reference Example 2 were well mixed. After mixing and firing in air at 1260 ° C. for 15 hours, the mixture was pulverized and fired again in air at 1300 ° C. for 10 hours to prepare KCa 2 Na 2 Nb 5 O 16 powder. The X-ray diffraction pattern of this is shown as c in FIG.

【0023】参考例4 KCa2Na3Nb619の調製 参考例2で得たKCa2NaNb413粉末0.01モル
と参考例2で得たNaNbO3粉末0.02モルとをよ
く混合して、空気中で1320℃にて5時間焼成したの
ち、粉砕し、再度空気中で1320℃にて5時間焼成し
て、KCa2Na3Nb619粉末を調製した。このもの
のX線回折図を図1にdとして示す。
Reference Example 4 Preparation of KCa 2 Na 3 Nb 6 O 19 0.01 mol of the KCa 2 NaNb 4 O 13 powder obtained in Reference Example 2 and 0.02 mol of the NaNbO 3 powder obtained in Reference Example 2 were well mixed. After mixing and calcining in air at 1320 ° C. for 5 hours, it was pulverized and calcined again in air at 1320 ° C. for 5 hours to prepare KCa 2 Na 3 Nb 6 O 19 powder. The X-ray diffraction pattern of this is shown in FIG. 1 as d.

【0024】上記参考例1〜4から、一般式(I)で示
されるK[Ca2Nan-3Nbn3n+1](n=3〜6)に
おいて、骨格の[Ca2Nan-3Nbn3n+1]部分と層
間のK部分を組み合わせて層状ペロブスカイト型化合物
になり、nを増加すると骨格部分の厚みが増加する。X
線回折により同定したところ、nが3から4,5,6に
なると、層間距離は、それぞれ2.94nm、3.72
nm、4.47nm及び5.24nmの順に増加したこ
とが分かった。すなわち、参考例で得られた層状ペロブ
スカイト型化合物は、その骨格の修飾を可能にするもの
である。
From the above Reference Examples 1-4, in K [Ca 2 Na n-3 Nb n O 3n + 1 ] (n = 3-6) represented by the general formula (I), the skeleton of [Ca 2 Na n] -3 Nb n O 3n + 1] by combining the partial and K portion of the interlayer becomes a layered perovskite type compound, the thickness of the skeletal portion is increased when increasing n. X
As a result of identification by line diffraction, when n changes from 3 to 4, 5, and 6, the interlayer distances are 2.94 nm and 3.72, respectively.
nm, 4.47 nm, and 5.24 nm. That is, the layered perovskite-type compound obtained in the reference example allows modification of its skeleton.

【0025】実施例1 参考例1で調製したKCa2Nb3102.5gを6規定
硝酸[和光純薬工業(株)製、試薬特級]水溶液100
ml中に入れて、室温でかきまぜながら、3日間プロト
ン交換させたのち、ろ過、洗浄及び乾燥処理してHCa
2Nb310粉末を得た。
Example 1 2.5 g of KCa 2 Nb 3 O 10 prepared in Reference Example 1 was treated with 6N nitric acid [Wako Pure Chemical Industries, Ltd., reagent grade] aqueous solution 100
The mixture was proton-exchanged for 3 days while stirring at room temperature, and then filtered, washed and dried to give HCa.
2 Nb 3 O 10 powder was obtained.

【0026】このようにして得たHCa2Nb310粉末
2.2gを、n‐ヘキシルアミン[和光純薬工業(株)
製、試薬一級]50mlとエタノール[和光純薬工業
(株)製、試薬特級]25mlとの混合溶液中に入れ、
室温でかきまぜながら7日間反応させたのち、ろ過、洗
浄及び乾燥処理して[C613NH3][Ca2Nb
310]粉末を得た。
2.2 g of the HCa 2 Nb 3 O 10 powder thus obtained was mixed with n-hexylamine [Wako Pure Chemical Industries, Ltd.]
, Reagent first grade] 50 ml and ethanol [Wako Pure Chemical Industries, Ltd., reagent special grade] 25 ml mixed solution,
After reacting for 7 days while stirring at room temperature, the mixture was filtered, washed and dried to obtain [C 6 H 13 NH 3 ] [Ca 2 Nb].
[3 O 10 ] powder was obtained.

【0027】このようにして得た[C613NH3][C
2Nb310]粉末2.0gをテトラエトキシシラン
[和光純薬工業(株)製、試薬特級]50ml中に入
れ、65℃でかきまぜながら3日間反応させたのち、ろ
過し、エタノールで洗浄後、乾燥した。これによりテト
ラエトキシシランを層間に導入することができた。次い
で、これを空気中で500℃にて焼成することにより、
層間にシリカの支柱を形成させ、層間架橋構造の層状化
合物であるSiO2−Ca2Nb310を製造した。な
お、n‐ヘキシルアミンによるインターカレーション反
応を行うと層間距離が1.47nmから2.87nmに
なり、さらにテトラエトキシシランにより支柱を形成さ
せると、層間距離は3.03nmになった。
[C 6 H 13 NH 3 ] [C
a 2 Nb 3 O 10 ] powder in 50 ml of tetraethoxysilane [Wako Pure Chemical Industries, Ltd., reagent grade] was stirred at 65 ° C. for 3 days, followed by filtration and ethanol. After washing, it was dried. Thereby, tetraethoxysilane could be introduced between the layers. Next, by firing this at 500 ° C. in air,
Silica pillars were formed between the layers to produce SiO 2 —Ca 2 Nb 3 O 10 , which is a layered compound having an interlayer crosslinked structure. When an intercalation reaction with n-hexylamine was performed, the interlayer distance was changed from 1.47 nm to 2.87 nm, and when pillars were formed using tetraethoxysilane, the interlayer distance was 3.03 nm.

【0028】実施例2 参考例2で調製したKCa2NaNb413粉末を用い、
実施例1と同様の方法により、層間にシリカの支柱を形
成させ、層間架橋構造の層間化合物であるSiO2−Ca
2NaNb413を調製した。なお、n‐ヘキシルアミン
によるインターカレーション反応を行うと層間距離が
1.86nmから3.30nmになり、テトラエトキシ
シランにより支柱を形成させると、層間距離は3.40
nmになった。
Example 2 Using the KCa 2 NaNb 4 O 13 powder prepared in Reference Example 2,
In the same manner as in Example 1, silica pillars were formed between the layers, and SiO 2 —Ca as an interlayer compound having an interlayer crosslinking structure was formed.
2 NaNb 4 O 13 was prepared. When an intercalation reaction with n-hexylamine is performed, the interlayer distance is changed from 1.86 nm to 3.30 nm, and when pillars are formed with tetraethoxysilane, the interlayer distance is 3.40.
nm.

【0029】実施例3 酸化ニオブ(V)粉末[和光純薬工業(株)製、純度9
9.9%]0.029モル、炭酸カルシウム粉末[和光
純薬工業(株)製、試薬特級]0.04モル、炭酸カリ
ウム粉末[片山化学工業(株)製、試薬一級]0.01
1モル及び硝酸クロム9水和物[Cr(NO33・9H
2O]粉末[片山化学工業(株)製、試薬特級]0.0
02モルを蒸留水100mlに加え、かき混ぜながら蒸
発乾固した。得られた固形物を110℃で乾燥させたの
ち、空気中で1200℃にて5時間焼成して得られたも
のを粉砕した。この粉砕物を空気中で1200℃にて1
0時間焼成し、蒸留水で十分に洗浄後、110℃で乾燥し
て、KCa2Nb2.9Cr0.110粉末を調製した。
Example 3 Niobium (V) oxide powder [purity 9 manufactured by Wako Pure Chemical Industries, Ltd.]
9.9%] 0.029 mol, calcium carbonate powder [Wako Pure Chemical Industries, Ltd., reagent grade] 0.04 mol, potassium carbonate powder [Katayama Chemical Industry Co., Ltd., reagent first grade] 0.01
1 mol of chromium nitrate nonahydrate [Cr (NO 3) 3 · 9H
2 O] powder [Katayama Chemical Industry Co., Ltd., reagent grade] 0.0
02 mol was added to 100 ml of distilled water and evaporated to dryness while stirring. After the obtained solid was dried at 110 ° C., it was baked in air at 1200 ° C. for 5 hours, and the obtained solid was pulverized. This pulverized material is placed in air at 1200 ° C. for 1 hour.
After baking for 0 hour, washing sufficiently with distilled water, and drying at 110 ° C., KCa 2 Nb 2.9 Cr 0.1 O 10 powder was prepared.

【0030】このようにして得たKCa2Nb2.9Cr
0.110粉末4.0gを6規定の硝酸[和光純薬工業
(株)製、試薬特級]水溶液150ml中に入れ、室温
でかきまぜながら3日間プロトン交換させたのち、ろ
過、洗浄、乾燥して、HCa2Nb2.9Cr0.110粉末を
得た。次いで、このHCa2Nb2.9Cr0.110粉末
2.8gを、n‐ヘキシルアミン[和光純薬工業(株)
製、試薬一級]80mlとエタノール[和光純薬工業
(株)製、試薬特級]40mlとの混合溶液中に入れ、
室温でかきまぜながら7日間反応させたのち、ろ過、洗
浄及び乾燥処理して[C613NH3][Ca2Nb2.9Cr
0.110]粉末を得た。次に、この[C613NH3
[Ca2Nb2.9Cr0.110]粉末2.0gをテトラエ
トキシシラン[和光純薬工業(株)製、試薬特級]50
ml中に入れ、65℃でかきまぜながら7日間(その間
にテトラエトキシシラン20mlを2回添加した)反応
させたのち、ろ過し、エタノールで洗浄後、乾燥した。
次いで、空気中で500℃に焼成することにより、層間
にシリカの支柱を形成させ、層間架橋構造の層状化合物
であるSiO2−Ca2Nb2.9Cr0.110を製造した。
なお、n‐ヘキシルアミンによるインターカレーション
反応を行うと層間距離が1.46nmから2.73nm
になり、さらにテトラエトキシシランにより支柱を形成
させると、層間距離は2.95nmになった。また、温
度を変え、400℃、500℃及び600℃で焼成する
と、層間距離は、それぞれ2.61nm、2.45n
m、2.39nmとなり、有機物を燃焼させることでや
や小さくなったことが認められたが、高表面積(500
℃で焼成したものは292m2/g)を有し、かつ高温
安定性も認められた。以上の各実施例で得たX線回折図
を図2及び図3に示す。図2は、KCa2Nb310につ
いての未処理物(a)、(a)を6N硝酸水溶液で処理
したもの(b)、(b)をヘキシルアミンを用いてイン
ターカレートしたもの(c)、(c)のヘキシルアミン
をテトラエトキシシランで置換したもの(d)、(d)
を330℃で焼成したもの(e)及び(d)を500℃
で焼成したもの(f)である。また、図3は、KCa2
NaNb413についての未処理物(a)、(a)を6
N硝酸水溶液で処理したもの(b)、(b)をヘキシル
アミンを用いてインターカレートしたもの(c)、
(c)のヘキシルアミンをテトラエトキシシランで置換
したもの(d)、(d)を330℃で焼成したもの
(e)及び(d)を500℃で焼成したもの(f)であ
る。
The thus obtained KCa 2 Nb 2.9 Cr
4.0 g of 0.1 O 10 powder was placed in 150 ml of 6N nitric acid [Wako Pure Chemical Industries, Ltd., reagent grade] aqueous solution, and stirred at room temperature for 3 days for proton exchange, followed by filtration, washing and drying. And HCa 2 Nb 2.9 Cr 0.1 O 10 powder. Next, 2.8 g of the HCa 2 Nb 2.9 Cr 0.1 O 10 powder was added to n-hexylamine [Wako Pure Chemical Industries, Ltd.
, Reagent first grade] 80 ml and ethanol [Wako Pure Chemical Industries, Ltd., reagent special grade] 40 ml mixed solution,
After reacting for 7 days while stirring at room temperature, the mixture was filtered, washed and dried to obtain [C 6 H 13 NH 3 ] [Ca 2 Nb 2.9 Cr].
0.1 O 10 ] powder was obtained. Next, this [C 6 H 13 NH 3 ]
2.0 g of [Ca 2 Nb 2.9 Cr 0.1 O 10 ] powder was mixed with tetraethoxysilane [reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.] 50
The reaction mixture was stirred for 7 days (while 20 ml of tetraethoxysilane was added twice) while stirring at 65 ° C., filtered, washed with ethanol and dried.
Next, by firing at 500 ° C. in air, pillars of silica were formed between the layers to produce SiO 2 —Ca 2 Nb 2.9 Cr 0.1 O 10 , which is a layered compound having an interlayer crosslinked structure.
When an intercalation reaction with n-hexylamine is performed, the interlayer distance becomes 1.46 nm to 2.73 nm.
Then, when pillars were formed with tetraethoxysilane, the interlayer distance became 2.95 nm. When the temperature is changed and firing is performed at 400 ° C., 500 ° C., and 600 ° C., the interlayer distances are 2.61 nm and 2.45 n, respectively.
m and 2.39 nm, which was recognized to be slightly reduced by burning the organic matter.
℃ those fired at has a 292m 2 / g), and was also observed high temperature stability. FIGS. 2 and 3 show X-ray diffraction diagrams obtained in the above examples. FIG. 2 shows an untreated product of KCa 2 Nb 3 O 10 (a), (a) treated with 6N nitric acid aqueous solution (b), and (b) intercalated with hexylamine (c) ), (C) wherein hexylamine is substituted with tetraethoxysilane (d), (d)
(E) and (d) fired at 330 ° C. at 500 ° C.
(F). FIG. 3 shows KCa 2
Untreated products (a) and (a) for NaNb 4 O 13
(B) treated with an N nitric acid aqueous solution, (b) intercalated with hexylamine (c),
(C) is hexylamine substituted with tetraethoxysilane (d), (d) baked at 330 ° C, (e) and (d) baked at 500 ° C (f).

【図面の簡単な説明】[Brief description of the drawings]

【図1】 参考例1〜4で得た層状ペロブスカイト型化
合物のX線回折図。
FIG. 1 is an X-ray diffraction diagram of a layered perovskite compound obtained in Reference Examples 1 to 4.

【図2】 KCa2Nb310及びその処理物のX線回折
図。
FIG. 2 is an X-ray diffraction diagram of KCa 2 Nb 3 O 10 and a processed product thereof.

【図3】 KCa2NaNb413及びその処理物のX線
回折図。
FIG. 3 is an X-ray diffraction diagram of KCa 2 NaNb 4 O 13 and a processed product thereof.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式 K[Ca2Nan-3Nbn3n+1] (式中のnは3〜6の数であり、Nbは10原子%以下
の割合でNi、V、Cu、Cr及びWの中から選ばれた
少なくとも1種の金属と置換されていてもよい)で表わ
される層状ペロブスカイト型化合物をプロトン交換処理
したのち、長鎖アルキルアミンをインターカレートし、
次いでテトラアルコキシシランを反応させ、さらに酸素
含有ガス雰囲気下、400〜600℃の温度で焼成処理
して層間にシリカの支柱を形成させることを特徴とする
層間架橋構造を有する層状化合物の製造方法。
1. The general formula K [Ca 2 Na n-3 Nb n O 3n + 1 ] (wherein n is a number from 3 to 6, and Nb is Ni, V, Cu at a ratio of 10 atomic% or less. , Cr and W) may be substituted with at least one metal selected from the group consisting of :), a proton-exchange treatment of a layered perovskite compound represented by the formula:
A method for producing a layered compound having an interlayer cross-linking structure, comprising reacting tetraalkoxysilane and baking at a temperature of 400 to 600 ° C. in an oxygen-containing gas atmosphere to form pillars of silica between layers.
【請求項2】 層状ペロブスカイト型化合物が、NaN
bO3とKCa2Nb310とを1150〜1350℃の
温度で反応させることにより調製されたものである請求
項1記載の製造方法。
2. The method according to claim 1, wherein the layered perovskite compound is NaN.
bO 3 and KCa 2 Nb 3 O 10 and the manufacturing method according to claim 1, wherein those prepared by reacting at a temperature of from 1150 to 1,350 ° C. a.
JP32549597A 1997-11-10 1997-11-10 Method for producing layered compound having interlayer crosslinked structure Expired - Lifetime JP3146351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32549597A JP3146351B2 (en) 1997-11-10 1997-11-10 Method for producing layered compound having interlayer crosslinked structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32549597A JP3146351B2 (en) 1997-11-10 1997-11-10 Method for producing layered compound having interlayer crosslinked structure

Publications (2)

Publication Number Publication Date
JPH11139826A true JPH11139826A (en) 1999-05-25
JP3146351B2 JP3146351B2 (en) 2001-03-12

Family

ID=18177524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32549597A Expired - Lifetime JP3146351B2 (en) 1997-11-10 1997-11-10 Method for producing layered compound having interlayer crosslinked structure

Country Status (1)

Country Link
JP (1) JP3146351B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425024B1 (en) * 2001-11-01 2004-03-27 주식회사 성원인더스트리 Hybrid material with multifunctional properties
JP2011184273A (en) * 2010-03-11 2011-09-22 National Institute For Materials Science Organic solvent dispersion in which flaky perovskite oxide particle is blended and method for producing the same, and perovskite oxide thin film using the organic solvent dispersion and method for producing the same
WO2012157740A1 (en) * 2011-05-19 2012-11-22 独立行政法人物質・材料研究機構 High dielectric nanosheet laminate, high dielectric element and method for manufacturing high dielectric element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425024B1 (en) * 2001-11-01 2004-03-27 주식회사 성원인더스트리 Hybrid material with multifunctional properties
JP2011184273A (en) * 2010-03-11 2011-09-22 National Institute For Materials Science Organic solvent dispersion in which flaky perovskite oxide particle is blended and method for producing the same, and perovskite oxide thin film using the organic solvent dispersion and method for producing the same
WO2012157740A1 (en) * 2011-05-19 2012-11-22 独立行政法人物質・材料研究機構 High dielectric nanosheet laminate, high dielectric element and method for manufacturing high dielectric element
JP2012240884A (en) * 2011-05-19 2012-12-10 National Institute For Materials Science High dielectric nanosheet laminate, high dielectric element, and method for manufacturing high dielectric thin film element

Also Published As

Publication number Publication date
JP3146351B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
Yang et al. Hollow β-Bi2O3@ CeO2 heterostructure microsphere with controllable crystal phase for efficient photocatalysis
Yu et al. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process
Ha et al. 3DOM-LaSrCoFeO 6− δ as a highly active catalyst for the thermal and photothermal reduction of CO 2 with H 2 O to CH 4
Kominami et al. Synthesis of brookite-type titanium oxide nano-crystals in organic media
CN107149932B (en) Synthesis of bismuth vanadate photocatalyst with controllable crystal face proportion, catalyst and application
Phadtare et al. Crystalline LaCoO3 perovskite as a novel catalyst for glycerol transesterification
KR101146899B1 (en) Photocatalyst having titanium dioxide and a metal tungsten oxide junction structure and preparation method thereof
CN105366720B (en) A kind of method of room temperature solid-state reaction carbonate synthesis oxygen bismuth nanometer sheet
WO2022021506A1 (en) Preparation of ultrathin porous carbon nitride nano-photocatalyst and applications thereof in photocatalytically oxidizing fructose to synthesize lactic acid
CN112023938B (en) Bimetallic ion doped nano composite photocatalyst and preparation method thereof
Yin et al. In situ FTIR spectra investigation of the photocatalytic degradation of gaseous toluene over a novel hedgehog-like CaFe2O4 hollow-structured materials
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
CN110745864B (en) Perovskite type lanthanum titanate material and preparation method and application thereof
JP5892478B2 (en) BiVO4 particles and method for producing the same
JP2003126695A (en) Potassium niobate photocatalyst and manufacturing method therefor
Yanagisawa et al. Synthesis and photocatalytic properties of titania pillared H4Nb6O17 using titanyl acylate precursor
Yang et al. Boosted carbon resistance of ceria-hexaaluminate by in-situ formed CeFexAl1− xO3 as oxygen pool for chemical looping dry reforming of methane
JP2001002419A (en) Process for soft synthesis of bismuth vanadate and bismuth vanadate produced by the process
CN111151238B (en) Bismuth vanadate heterojunction BiVO4/Bi25VO40Material, preparation method and application thereof
JP3146351B2 (en) Method for producing layered compound having interlayer crosslinked structure
Xu et al. Intercalation of layered HMMoO6 (M= Ta, Nb) with oligomeric polyhydroxyacetato-Cr (III) species and propping up of HMMoO6 with chromium oxide as pillars
JP3049312B2 (en) Crosslinked titanium-niobium layered composite oxide
JPH0889799A (en) Photocatalyst
CN114308034A (en) Strontium titanate semiconductor catalyst co-doped with (III) and (V) valence double transition metal ions and preparation method thereof
CN111790418A (en) Calcium-titanium composite material and preparation method and application thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term