JP3146351B2 - Method for producing layered compound having interlayer crosslinked structure - Google Patents

Method for producing layered compound having interlayer crosslinked structure

Info

Publication number
JP3146351B2
JP3146351B2 JP32549597A JP32549597A JP3146351B2 JP 3146351 B2 JP3146351 B2 JP 3146351B2 JP 32549597 A JP32549597 A JP 32549597A JP 32549597 A JP32549597 A JP 32549597A JP 3146351 B2 JP3146351 B2 JP 3146351B2
Authority
JP
Japan
Prior art keywords
powder
interlayer
kca
compound
layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32549597A
Other languages
Japanese (ja)
Other versions
JPH11139826A (en
Inventor
文峰 上官
章 吉田
耕三 井上
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP32549597A priority Critical patent/JP3146351B2/en
Publication of JPH11139826A publication Critical patent/JPH11139826A/en
Application granted granted Critical
Publication of JP3146351B2 publication Critical patent/JP3146351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒などとして
有用な層間架橋構造を有する層状化合物を、層状ペロブ
スカイト型化合物を用い、インターカレーション反応を
利用して効率よく製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing a layered compound having an interlayer crosslinked structure useful as a photocatalyst or the like by using a layered perovskite type compound and utilizing an intercalation reaction.

【0002】[0002]

【従来の技術】酸化チタンに代表される光応答性半導体
特性を有する金属化合物を利用した半導体光触媒反応
は、半導体電極での水の光分解の発見[「工業化学雑
誌」,第72巻,第108〜113ページ(1969
年)]以来、光エネルギーから化学エネルギーへの交換
の有力な手段として、多くの研究がなされてきており、
様々な分野における潜在的有用性が明らかになりつつあ
る。
2. Description of the Related Art A semiconductor photocatalytic reaction utilizing a metal compound having photoresponsive semiconductor characteristics represented by titanium oxide is disclosed by the discovery of photodecomposition of water at a semiconductor electrode [Industrial Chemistry Magazine, Vol. Pages 108 to 113 (1969
Years)], many studies have been conducted as a promising means of converting light energy into chemical energy.
The potential utility in various fields is emerging.

【0003】この光応答性半導体特性を有する金属化合
物、いわゆる光触媒は、その結晶分子における価電子帯
と伝導帯との間のエネルギーギャップである「禁止帯」
の値以上のエネルギーを有する光を吸収すると、価電子
帯の電子が伝導帯に光励起されて、伝導帯には自由電子
が、価電子帯には正孔が生成し、これらがそれぞれ還元
反応と酸化反応を起こすことによって光触媒反応が進行
する。
A metal compound having photoresponsive semiconductor properties, a so-called photocatalyst, has a "forbidden band" which is an energy gap between a valence band and a conduction band in a crystal molecule.
When light having energy equal to or greater than is absorbed, electrons in the valence band are photoexcited into the conduction band, free electrons are generated in the conduction band, and holes are generated in the valence band. The photocatalytic reaction proceeds by causing the oxidation reaction.

【0004】しかしながら、半導体光触媒によって水の
光分解が起こるためには、半導体のバンド幅が水の電解
圧(理論値1.23V+過電圧0.4V=1.63V)
より大きくなければならず、さらに伝導帯の電子が水を
還元でき、かつ価電子帯の正孔が水を酸化できる能力が
なければならない。すなわち、伝導帯の下端が水からの
水素発生電位よりマイナス側に、価電子帯の上端が酸素
発生電位よりプラス側に位置していなくてはならない。
この制約のために、理論的に水を完全分解できる半導体
の種類は限られている。
However, in order for photodecomposition of water to occur by the semiconductor photocatalyst, the bandwidth of the semiconductor must be equal to the electrolytic pressure of water (theoretical value 1.23 V + overvoltage 0.4 V = 1.63 V).
It must be larger, moreover, electrons in the conduction band must be able to reduce water and holes in the valence band must be capable of oxidizing water. That is, the lower end of the conduction band must be located on the minus side of the hydrogen generation potential from water, and the upper end of the valence band must be located on the plus side of the oxygen generation potential.
Due to this limitation, the types of semiconductors that can completely decompose water theoretically are limited.

【0005】ところで、光触媒、例えば金属化合物(T
iO)を主体とする光触媒の製造方法としては、無機
材料粉末を用いて、直接高温焼結させる方法、化学処理
により、半導体に一層優れた光応答性を付与するため
に、半導体に金属又は金属化合物の水溶液を吸着させた
のち、この半導体に吸着した金属又は金属化合物を酸
化、還元あるいは還元後に一部酸化する方法、ゾル−ゲ
ル方法などがこれまで知られている。
A photocatalyst such as a metal compound (T
As a method for producing a photocatalyst mainly composed of iO 2 ), a method of directly sintering a high temperature using an inorganic material powder or a chemical treatment to impart more excellent photoresponsiveness to the semiconductor by chemical treatment, A method of adsorbing an aqueous solution of a metal compound and then oxidizing, reducing or partially oxidizing the metal or the metal compound adsorbed on the semiconductor, a sol-gel method, and the like have been known.

【0006】しかしながら、光応答性半導体特性を有す
る金属化合物を用いた光触媒においては、半導体のバン
ド幅が大きすぎるため、太陽光の可視光部分を吸収でき
ず、ほぼ近紫外光のみが反応に寄与し、また、光エネル
ギーによる励起により生じた電子と正孔が容易に再結合
するために、種々の反応系における反応量子収率が低い
という欠点がある。
However, in a photocatalyst using a metal compound having photoresponsive semiconductor characteristics, the visible light portion of sunlight cannot be absorbed because the bandwidth of the semiconductor is too large, and almost only near-ultraviolet light contributes to the reaction. In addition, since electrons and holes generated by excitation by light energy easily recombine, there is a disadvantage that the reaction quantum yield in various reaction systems is low.

【0007】最近、層状複合酸化物、例えば層状ペロブ
スカイト型のKCaNb10が、光応答性半導体
特性を有する光触媒として提案されている。このような
層状ペロブスカイト型化合物は、用いる元素に種々の組
合わせが可能であり、例えばK[CaNan−3Nb
3n+1]で表わされる各種の化合物を調製するこ
とができるという利点を有している。
Recently, a layered composite oxide, for example, layered perovskite type KCa 2 Nb 3 O 10 has been proposed as a photocatalyst having photoresponsive semiconductor properties. Such a layered perovskite compound can be variously combined with the element to be used, for example, K [Ca 2 Nan - 3Nb
It has the advantage that the n O 3n + 1] Various compounds represented by may be prepared.

【0008】一般に、層状化合物を用いて、高機能の光
触媒、例えば可視光による水の水素と酸素への完全分解
触媒を調製する際には、層間をいかに修飾するかが、重
要な問題となるが、層状ペロブスカイトの場合には、層
間電荷密度が高いため、層間距離を拡大しにくく、層間
を修飾することが困難であり、高機能の光触媒が得られ
にくいという欠点がある。
In general, when preparing a highly functional photocatalyst, for example, a catalyst for completely decomposing water into hydrogen and oxygen by visible light using a layered compound, how to modify the layers becomes an important issue. However, in the case of a layered perovskite, the interlayer charge density is high, so that it is difficult to increase the interlayer distance, it is difficult to modify the interlayer, and it is difficult to obtain a highly functional photocatalyst.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、層状化合物の層間距離を拡大して層間を
修飾し、高機能光触媒として有用な層状化合物を効率よ
く製造する方法を提供することを目的としてなされたも
のである。
SUMMARY OF THE INVENTION Under such circumstances, the present invention provides a method for efficiently producing a layered compound useful as a high-performance photocatalyst by increasing the interlayer distance of the layered compound and modifying the layers. The purpose of this is to provide.

【0010】[0010]

【課題を解決するための手段】本発明者らは、層状化合
物の層間を修飾する方法について鋭意研究を重ねた結
果、NaNbOとKCaNb10とを高温で反
応させて調製した層状ペロブスカイト型化合物を用い、
これをプロトン交換処理したのち、長鎖アルキルアミン
のインターカレーション処理、テトラアルコキシシラン
による処理及び焼成処理を順次施すことにより、層間に
シリカの支柱を有する層間架橋構造の層状化合物が容易
に得られることを見出し、この知見に基づいて本発明を
完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for modifying the interlayer of a layered compound, and as a result, have found that a layered layer prepared by reacting NaNbO 3 and KCa 2 Nb 3 O 10 at a high temperature. Using a perovskite compound,
After this is subjected to a proton exchange treatment, a long-chain alkylamine intercalation treatment, a treatment with tetraalkoxysilane, and a calcination treatment are sequentially performed, whereby a layered compound having an interlayer crosslinked structure having silica pillars between layers can be easily obtained. This led to the completion of the present invention based on this finding.

【0011】すなわち、本発明は、NaNbOとKC
Nb10とを1150〜1350℃の温度で反
応させて、一般式 K[CaNan−3Nb3n+1] (I) (式中のnは4〜6の数であり、Nbは10原子%以下
の割合でNi、V、Cu、Cr及びWの中から選ばれた
少なくとも1種の金属と置換されていてもよい)で表わ
される層状ペロブスカイト型化合物を調製し、これをプ
ロトン交換処理したのち、長鎖アルキルアミンをインタ
ーカレートし、次いでテトラアルコキシシランを反応さ
せ、さらに酸素含有ガス雰囲気下、400〜600℃の
温度で焼成処理して層間にシリカの支柱を形成させるこ
とを特徴とする層間架橋構造を有する層状化合物の製造
方法を提供するものである。
[0011] That is, the present invention relates to NaNbO 3 and KC
a 2 Nb 3 O 10 is reacted at a temperature of 1150 to 1350 ° C. to obtain a general formula K [Ca 2 Na n-3 Nb n O 3n + 1 ] (I) (where n is a number of 4 to 6) , Nb may be substituted with at least one metal selected from Ni, V, Cu, Cr and W at a ratio of 10 atomic% or less) to prepare a layered perovskite compound represented by the formula: After proton exchange treatment, intercalate the long-chain alkylamine, then react with tetraalkoxysilane, and further calcine at 400-600 ° C under an oxygen-containing gas atmosphere to form silica pillars between layers. It is intended to provide a method for producing a layered compound having an interlayer crosslinked structure, characterized in that the method comprises:

【0012】[0012]

【発明の実施の形態】本発明方法においては、層状化合
物として、前記一般式(I)で表わされる層状ペロブス
カイト型化合物が用いられるが、この層状ペロブスカイ
ト型化合物は、NaNbOとKCaNb10
を1150〜1350℃の高温で反応させることにより
調製される。一般式(I)におけるNbは、10原子%
以下の割合でNi、V、Cu、Cr又はW、あるいはこ
れらを2種以上組み合わせたものと置換されていてもよ
い。
In DETAILED DESCRIPTION OF THE INVENTION The present invention method, as layered compound, the generally formula layered perovskite compound represented by (I) is used, the layered perovskite type compound, NaNbO 3 and KCa 2 Nb 3 O 10 at a high temperature of 1150-1350 ° C. Nb in the general formula (I) is 10 atomic%.
Ni, V, Cu, Cr or W or a combination of two or more thereof may be substituted at the following ratio.

【0013】前記一般式(I)で表わされる層状ペロブ
スカイト型化合物は、通常用いられている方法、例えば
酸化ニオブ粉末、炭酸カルシウム粉末、炭酸カリウム粉
末及び場合により用いられる炭酸ナトリウム粉末の中か
ら選ばれる金属化合物を、それぞれ所定の割合で混合
し、この粉末混合物を、空気などの酸素含有ガス雰囲気
下に、前記範囲の温度で焼成することによりNaNbO
とKCaNb10とを別々に調製し、次いで両
者を所定の割合で混合し焼成することによって調製され
る。このようにして得られる層状ペロブスカイト型化合
物においては、一般式(I)中のnが4から6まで増加
するに従って、層間距離が拡大する。
The layered perovskite compound represented by the general formula (I) is selected from commonly used methods, for example, niobium oxide powder, calcium carbonate powder, potassium carbonate powder and optionally used sodium carbonate powder. The metal compounds are mixed at a predetermined ratio, and this powder mixture is calcined in an atmosphere containing oxygen such as air at a temperature within the above range to obtain NaNbO.
3 and KCa 2 Nb 3 O 10 are separately prepared, and then both are mixed at a predetermined ratio and fired. In the layered perovskite compound thus obtained, the interlayer distance increases as n in the general formula (I) increases from 4 to 6.

【0014】本発明方法においては、このようにして調
製された前記一般式(I)で表わされる層状ペロブスカ
イト型化合物に対し、続いて、プロトン交換処理を施す
ことが必要である。このプロトン交換処理は、酸溶液例
えば適当な濃度の硝酸水溶液中で該層状ペロブスカイト
型化合物を、常温にて50〜100時間程度かきまぜる
ことにより行うことができる。この処理により、層状ペ
ロブスカイト型化合物は、一般式 H[CaNan−3Nb3n+1] (II) 又は電子価を考慮した場合、 H[CaNan−3Nb3n+1 (II′) (式中のnは前記と同じ意味をもつ)で表わされる化合
物に変換される。
In the method of the present invention, it is necessary that the layered perovskite compound represented by the general formula (I) thus prepared is subsequently subjected to a proton exchange treatment. This proton exchange treatment can be carried out by stirring the layered perovskite compound in an acid solution, for example, an aqueous solution of nitric acid of an appropriate concentration at room temperature for about 50 to 100 hours. This process, the layered perovskite type compound represented by the general formula H [Ca 2 Na n-3 Nb n O 3n + 1] (II) or considering the electronic value, H + [Ca 2 Na n -3 Nb n O 3n + 1] - (II ') wherein n has the same meaning as described above.

【0015】次いで、このプロトン交換層状化合物に長
鎖アルキルアミンをインターカレートする。この際用い
られる長鎖アルキルアミンとしては、炭素数5〜15程
度のものが好ましく、特にn‐ヘキシルアミンが好適で
ある。このインターカレーション反応は、低級アルコー
ルなどの適当な溶媒中において、長鎖アルキルアミンと
前記プロトン変換層状化合物とを常温で50〜200時
間程度接触させることにより、行うことができる。この
反応により、層状化合物の層間に、長鎖アルキルアミン
がインターカレートされ、層間距離が拡大する。
Next, a long-chain alkylamine is intercalated into the proton exchange layered compound. As the long-chain alkylamine used at this time, one having about 5 to 15 carbon atoms is preferable, and n-hexylamine is particularly preferable. This intercalation reaction can be performed by contacting the long-chain alkylamine with the above-mentioned proton conversion layered compound in a suitable solvent such as a lower alcohol at room temperature for about 50 to 200 hours. By this reaction, a long-chain alkylamine is intercalated between the layers of the layered compound, and the interlayer distance is increased.

【0016】次に、このようにして長鎖アルキルアミン
がインターカレートされた層状化合物にテトラアルコキ
シシランを反応させる。この際用いられるテトラアルコ
キシシランとしては、アルコキシル基がメトキシ基、エ
トキシ基、n‐プロポキシ基、イソプロポキシ基などの
低級アルコキシル基であるものが好ましく、特にテトラ
エトキシシランが好適である。この反応は、一般に40
〜80℃程度の温度において50〜200時間程度行わ
れる。
Next, a tetraalkoxysilane is reacted with the layered compound in which the long-chain alkylamine has been intercalated as described above. As the tetraalkoxysilane used at this time, those in which the alkoxyl group is a lower alkoxyl group such as a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group are preferable, and tetraethoxysilane is particularly preferable. This reaction generally takes 40
This is performed at a temperature of about 80 ° C. for about 50 to 200 hours.

【0017】最後に、空気などの酸素含有ガス雰囲気下
に、400〜600℃の範囲の温度において焼成処理
し、層間中の有機物を燃焼させる。この焼成処理によ
り、一般式 SiO−CaNan−3Nb3n+1 (III) (式中のnは前記と同じ意味をもつ)で表わされ、層間
にシリカの支柱を有する層間架橋構造の層状化合物が得
られる。このものは多孔体であって、大きな表面積を有
するとともに、高温安定性も良好である。
Finally, in an oxygen-containing gas atmosphere such as air, a baking treatment is performed at a temperature in the range of 400 to 600 ° C. to burn organic substances in the interlayer. By this calcination treatment, an interlayer bridge represented by the general formula SiO 2 —Ca 2 Na n−3 Nb n O 3n + 1 (III) (wherein n has the same meaning as described above) and having silica pillars between the layers A layered compound of the structure is obtained. This is a porous body, has a large surface area, and has good high-temperature stability.

【0018】[0018]

【発明の効果】本発明によれば、複数のアルカリ金属及
びアルカリ土類金属を含む層状ペロブスカイト型化合物
を用い、インターカレーション反応を利用して、従来の
ものよりも拡大された層間距離のシリカの支柱を有する
層間架橋構造の層状化合物からなる多孔体を効率よく製
造することができる。このものは、高機能光触媒とし
て、例えば光化学変換や光を用いた合成化学分野、ある
いは光触媒反応を利用した環境汚染物質の除去処理分野
などに有用である。
According to the present invention, a layered perovskite compound containing a plurality of alkali metals and alkaline earth metals is used, and the intercalation reaction is used to increase the interlayer distance of the silica compared with the conventional silica. It is possible to efficiently produce a porous body composed of a layered compound having an interlayer cross-linking structure having the above-mentioned pillars. This is useful as a highly functional photocatalyst, for example, in the field of synthetic chemistry using photochemical conversion or light, or in the field of removal of environmental pollutants using photocatalysis.

【0019】[0019]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0020】参考例1 KCaNb10の調製 酸化ニオブ(V)粉末[和光純薬工業(株)製、純度9
9.9%]0.03モル、炭酸カルシウム粉末[和光純
薬工業(株)製、試薬特級]0.04モル及び炭酸カリ
ウム粉末[片山化学工業(株)製、試薬一級]0.01
1モルをよく混合したのち、空気中、1200℃におい
て7時間焼成して得られたものを粉砕し、再び空気中、
1200℃において7時間焼成した。次いで、これを蒸
留水で十分に洗浄したのち、110℃で乾燥処理して、
KCaNb10粉末を調製した。このもののX線
回折図を図1にaとして示す。
Reference Example 1 Preparation of KCa 2 Nb 3 O 10 Niobium (V) oxide powder [purity 9 manufactured by Wako Pure Chemical Industries, Ltd.]
9.9%] 0.03 mol, calcium carbonate powder [manufactured by Wako Pure Chemical Industries, Ltd., reagent grade] 0.04 mol and potassium carbonate powder [Katayama Chemical Industry Co., Ltd., reagent first grade] 0.01
After thoroughly mixing 1 mol, the mixture obtained by calcining in air at 1200 ° C. for 7 hours is pulverized, and again in air,
It was baked at 1200 ° C. for 7 hours. Next, this is sufficiently washed with distilled water, and then dried at 110 ° C.
KCa 2 Nb 3 O 10 powder was prepared. The X-ray diffraction pattern of this is shown in FIG.

【0021】参考例2 KCaNaNb13の調
製 酸化ニオブ(V)粉末[和光純薬工業(株)製、純度9
9.9%]0.045モル、炭酸カルシウム粉末[和光
純薬工業(株)製、試薬特級]0.06モル及び炭酸カ
リウム粉末[片山化学工業(株)製、試薬一級]0.0
165モルをよく混合したのち、空気中、1000℃に
おいて20時間焼成して得られたものを粉砕し、再び空
気中、1000℃において20時間焼成した。次いで、
これを蒸留水で十分に洗浄したのち、500℃で3時間
乾燥処理して、KCaNb10粉末を調製した。
一方、酸化ニオブ(V)粉末[和光純薬工業(株)製、
純度99.9%]0.02モルと炭酸ナトリウム粉末
[和光純薬工業(株)製、試薬一級]0.02モルとを
よく混合したのち、空気中、1050℃において6時間
焼成してNaNbO粉末を得た。このようにして得ら
れたKCaNb10粉末0.025モルとNaN
bO粉末0.025モルとをよく混合したのち、空気
中、1230℃において10時間焼成して、KCa
aNb13粉末を調製した。このもののX線回折図
を図1にbとして示す。
Reference Example 2 Preparation of KCa 2 NaNb 4 O 13 Niobium (V) oxide powder [Wako Pure Chemical Industries, Ltd., purity 9
9.9%] 0.045 mol, calcium carbonate powder [manufactured by Wako Pure Chemical Industries, Ltd., reagent grade] 0.06 mol and potassium carbonate powder [Katayama Chemical Industry Co., Ltd., reagent first grade] 0.0
After well mixing 165 moles, the mixture was calcined in air at 1000 ° C. for 20 hours, and the resultant was pulverized and calcined again in air at 1000 ° C. for 20 hours. Then
After sufficiently washing this with distilled water, it was dried at 500 ° C. for 3 hours to prepare KCa 2 Nb 3 O 10 powder.
On the other hand, niobium oxide (V) powder [manufactured by Wako Pure Chemical Industries, Ltd.
[Purity 99.9%] and 0.02 mol of sodium carbonate powder [Wako Pure Chemical Industries, Ltd., first class reagent] are mixed well, and then calcined in air at 1050 ° C. for 6 hours to obtain NaNbO. Three powders were obtained. The thus obtained KCa 2 Nb 3 O 10 powder 0.025 mol and NaN
After sufficiently mixing 0.025 mol of bO 3 powder, the mixture was calcined at 1230 ° C. for 10 hours in air to obtain KCa 2 N
aNb 4 O 13 powder was prepared. The X-ray diffraction pattern of this is shown as b in FIG.

【0022】参考例3 KCaNaNb16
調製 参考例2で得たKCaNaNb13粉末0.01
モルと参考例2で得たNaNbO粉末0.01モルと
をよく混合して、空気中、1260℃において15時間
焼成したのち、粉砕し、再度空気中、1300℃におい
て10時間焼成して、KCaNaNb16粉末
を調製した。このもののX線回折図を図1にcとして示
す。
REFERENCE EXAMPLE 3 Preparation of KCa 2 Na 2 Nb 5 O 16 KCa 2 NaNb 4 O 13 powder obtained in Reference Example 2 0.01
Mol and 0.01 mol of the NaNbO 3 powder obtained in Reference Example 2 were thoroughly mixed, fired in air at 1260 ° C. for 15 hours, pulverized, and fired again in air at 1300 ° C. for 10 hours. KCa 2 Na 2 Nb 5 O 16 powder was prepared. The X-ray diffraction pattern of this is shown as c in FIG.

【0023】参考例4 KCaNaNb19
調製 参考例2で得たKCaNaNb13粉末0.01
モルと参考例2で得たNaNbO粉末0.02モルと
をよく混合して、空気中、1320℃において5時間焼
成したのち、粉砕し、再度空気中、1320℃において
5時間焼成して、KCaNaNb19粉末を調
製した。このもののX線回折図を図1にdとして示す。
REFERENCE EXAMPLE 4 Preparation of KCa 2 Na 3 Nb 6 O 19 KCa 2 NaNb 4 O 13 powder obtained in Reference Example 2 0.01
Mol and 0.02 mol of the NaNbO 3 powder obtained in Reference Example 2 were mixed well, calcined in air at 1320 ° C. for 5 hours, pulverized, and calcined again in air at 1320 ° C. for 5 hours. KCa 2 Na 3 Nb 6 O 19 powder was prepared. The X-ray diffraction pattern of this is shown in FIG. 1 as d.

【0024】上記参考例1〜4から、前記一般式(I)
で示されるK[CaNan−3Nb3n+1
(n=3〜6)は、骨格の[CaNan−3Nb
3n+1]部分と層間のK部分を組み合わせた層状ペロ
ブスカイト型化合物であり、nを増加すると骨格部分の
厚みが増加することが分る。X線回折により同定したと
ころ、nが3から4,5,6になると、層間距離は、そ
れぞれ2.94nm、3.72nm、4.47nm及び
5.24nmの順に増加したことが分かった。すなわ
ち、参考例で得られた層状ペロブスカイト型化合物は、
その骨格の修飾を可能にするものである。
From the above Reference Examples 1 to 4, the above-mentioned general formula (I)
In shown are K [Ca 2 Na n-3 Nb n O 3n + 1]
(N = 3 to 6) are the backbone [Ca 2 Na n-3 Nb n O
3n + 1 ] and a layered perovskite compound in which the interlayer K is combined. It can be seen that as n increases, the thickness of the skeleton increases. As a result of identification by X-ray diffraction, it was found that when n was changed from 3 to 4, 5, 6, the interlayer distances increased in the order of 2.94 nm, 3.72 nm, 4.47 nm, and 5.24 nm, respectively. That is, the layered perovskite compound obtained in Reference Example is
It allows for modification of its backbone.

【0025】比較例1 参考例1で調製したKCaNb102.5gを6
N硝酸[和光純薬工業(株)製、試薬特級]水溶液10
0ml中に入れて、室温でかきまぜながら、3日間プロ
トン交換させたのち、ろ過、洗浄及び乾燥処理してHC
Nb10粉末を得た。
Comparative Example 1 2.5 g of KCa 2 Nb 3 O 10 prepared in Reference Example 1 was added to 6
N nitric acid [Wako Pure Chemical Industries, Ltd., reagent grade] aqueous solution 10
After stirring for 3 days while stirring at room temperature, the mixture was filtered, washed and dried to give HC
It was obtained a 2 Nb 3 O 10 powder.

【0026】このようにして得たHCaNb10
粉末2.2gを、n‐ヘキシルアミン[和光純薬工業
(株)製、試薬一級]50mlとエタノール[和光純薬
工業(株)製、試薬特級]25mlとの混合溶液中に入
れ、室温でかきまぜながら7日間反応させたのち、ろ
過、洗浄及び乾燥処理して[C13NH][Ca
Nb10]粉末を得た。
The thus obtained HCa 2 Nb 3 O 10
2.2 g of the powder was placed in a mixed solution of 50 ml of n-hexylamine [manufactured by Wako Pure Chemical Industries, Ltd., reagent first grade] and 25 ml of ethanol [manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent], and the mixture was stirred at room temperature. After reacting for 7 days while stirring, the mixture was filtered, washed and dried to obtain [C 6 H 13 NH 3 ] [Ca
To obtain a 2 Nb 3 O 10] powder.

【0027】このようにして得た[C13NH
[CaNb10]粉末2.0gをテトラエトキシ
シラン[和光純薬工業(株)製、試薬特級]50ml中
に入れ、65℃でかきまぜながら3日間反応させたの
ち、ろ過し、エタノールで洗浄後、乾燥した。これによ
りテトラエトキシシランを層間に導入することができ
た。次いで、これを空気中、500℃において焼成する
ことにより、層間にシリカの支柱を形成させ、層間架橋
構造の層状化合物であるSiO−CaNb10
を製造した。なお、n‐ヘキシルアミンによるインター
カレーション反応を行うと層間距離が1.47nmから
2.87nmになり、さらにテトラエトキシシランによ
り支柱を形成させると、層間距離は3.03nmになっ
た。
[C 6 H 13 NH 3 ] thus obtained.
2.0 g of [Ca 2 Nb 3 O 10 ] powder was placed in 50 ml of tetraethoxysilane [Wako Pure Chemical Industries, Ltd., reagent grade], reacted at 65 ° C. for 3 days with stirring, filtered, and then ethanol. And then dried. Thereby, tetraethoxysilane could be introduced between the layers. Next, this is calcined in air at 500 ° C. to form a pillar of silica between the layers, and SiO 2 —Ca 2 Nb 3 O 10 which is a layered compound having an interlayer cross-linking structure is formed.
Was manufactured. When an intercalation reaction with n-hexylamine was performed, the interlayer distance was changed from 1.47 nm to 2.87 nm, and when pillars were formed using tetraethoxysilane, the interlayer distance was 3.03 nm.

【0028】実施例1 参考例2で調製したKCaNaNb13粉末を用
い、比較例1と同様の方法により、層間にシリカの支柱
を形成させ、層間架橋構造の層間化合物であるSiO
−CaNaNb13を調製した。なお、n‐ヘキ
シルアミンによるインターカレーション反応を行うと層
間距離が1.86nmから3.30nmになり、テトラ
エトキシシランにより支柱を形成させると、層間距離は
3.40nmになった。
Example 1 Using the KCa 2 NaNb 4 O 13 powder prepared in Reference Example 2, a silica column was formed between layers by the same method as in Comparative Example 1, and SiO 2 , an interlayer compound having an interlayer cross-linking structure, was formed.
The -Ca 2 NaNb 4 O 13 was prepared. When the intercalation reaction with n-hexylamine was performed, the interlayer distance was changed from 1.86 nm to 3.30 nm, and when the pillar was formed with tetraethoxysilane, the interlayer distance was 3.40 nm.

【0029】比較例2 酸化ニオブ(V)粉末[和光純薬工業(株)製、純度9
9.9%]0.029モル、炭酸カルシウム粉末[和光
純薬工業(株)製、試薬特級]0.04モル、炭酸カリ
ウム粉末[片山化学工業(株)製、試薬一級]0.01
1モル及び硝酸クロム9水和物[Cr(NO・9
O]粉末[片山化学工業(株)製、試薬特級]0.
002モルを蒸留水100mlに加え、かき混ぜながら
蒸発乾固した。得られた固形物を110℃で乾燥させ、
次いで、空気中、1200℃において5時間焼成したの
ち粉砕した。この粉砕物を空気中、1200℃において
10時間焼成し、蒸留水で十分に洗浄後、110℃で乾燥
して、KCaNb2.9Cr0.110粉末を調製
した。
Comparative Example 2 Niobium (V) oxide powder [manufactured by Wako Pure Chemical Industries, Ltd., purity 9]
9.9%] 0.029 mol, calcium carbonate powder [Wako Pure Chemical Industries, Ltd., reagent grade] 0.04 mol, potassium carbonate powder [Katayama Chemical Industry Co., Ltd., reagent first grade] 0.01
1 mol of chromium nitrate nonahydrate [Cr (NO 3) 3 · 9
H 2 O] powder [Katayama Chemical Industry Co., Ltd., reagent grade]
002 mol was added to 100 ml of distilled water and evaporated to dryness while stirring. Drying the resulting solid at 110 ° C.
Next, it was baked in air at 1200 ° C. for 5 hours, and then pulverized. The pulverized material was fired in air at 1200 ° C. for 10 hours, sufficiently washed with distilled water, and dried at 110 ° C. to prepare KCa 2 Nb 2.9 Cr 0.1 O 10 powder.

【0030】このようにして得たKCaNb2.9
0.110粉末4.0gを6Nの硝酸[和光純薬工
業(株)製、試薬特級]水溶液150ml中に入れ、室
温でかきまぜながら3日間プロトン交換させたのち、ろ
過、洗浄、乾燥して、HCaNb2.9Cr0.1
10粉末を得た。次いで、このHCaNb2.9Cr
0.110粉末2.8gを、n‐ヘキシルアミン[和
光純薬工業(株)製、試薬一級]80mlとエタノール
[和光純薬工業(株)製、試薬特級]40mlとの混合
溶液中に入れ、室温でかきまぜながら7日間反応させた
のち、ろ過、洗浄及び乾燥処理して[C13NH]
[CaNb2.9Cr0.110]粉末を得た。次
に、この[C13NH][CaNb2.9Cr
0.110]粉末2.0gをテトラエトキシシラン
[和光純薬工業(株)製、試薬特級]50ml中に入
れ、65℃でかきまぜながら7日間(その間にテトラエ
トキシシラン20mlを2回添加した)反応させたの
ち、ろ過し、エタノールで洗浄後、乾燥した。次いで、
空気中、500℃において焼成することにより、層間に
シリカの支柱を形成させ、層間架橋構造の層状化合物で
あるSiO−CaNb2.9Cr0.110を製
造した。なお、n‐ヘキシルアミンによるインターカレ
ーション反応を行うと層間距離が1.46nmから2.
73nmになり、さらにテトラエトキシシランにより支
柱を形成させると、層間距離は2.95nmになった。
また、温度を変え、400℃、500℃及び600℃で
焼成すると、層間距離は、それぞれ2.61nm、2.
45nm、2.39nmとなり、有機物を燃焼させるこ
とでやや小さくなることが認められたが、高表面積(5
00℃で焼成したものは292m/g)を有し、かつ
高温安定性も認められた。ここで得られた各段階におけ
る生成物のX線回折図を図2に示す。図2において、
(a)はKCaNb10についての未処理物、
(b)は(a)を6N硝酸水溶液で処理したもの、
(c)は(b)をヘキシルアミンを用いてインターカレ
ートしたもの、(d)は(c)のヘキシルアミンをテト
ラエトキシシランで置換したもの、(e)は(d)を3
30℃で焼成したもの及び(f)は(d)を500℃で
焼成したものである。
The thus obtained KCa 2 Nb 2.9 C
4.0 g of r 0.1 O 10 powder was placed in 150 ml of 6N nitric acid [Wako Pure Chemical Industries, Ltd., reagent grade] aqueous solution, and stirred at room temperature for 3 days for proton exchange, followed by filtration, washing and drying. And HCa 2 Nb 2.9 Cr 0.1 O
10 powders were obtained. Next, the HCa 2 Nb 2.9 Cr
2.8 g of 0.1 O 10 powder is mixed with 80 ml of n-hexylamine [manufactured by Wako Pure Chemical Industries, Ltd., first grade reagent] and 40 ml of ethanol [wako Pure Chemical Industries, Ltd., special grade reagent]. After stirring at room temperature for 7 days, the mixture was filtered, washed and dried to obtain [C 6 H 13 NH 3 ].
[Ca 2 Nb 2.9 Cr 0.1 O 10 ] powder was obtained. Next, this [C 6 H 13 NH 3 ] [Ca 2 Nb 2.9 Cr
0.1 O 10 ] powder (2.0 g) is placed in 50 ml of tetraethoxysilane [Wako Pure Chemical Industries, Ltd., reagent grade] for 50 days with stirring at 65 ° C. for 7 days (in the meantime, 20 ml of tetraethoxysilane is added twice) After the reaction, the mixture was filtered, washed with ethanol, and dried. Then
By baking at 500 ° C. in air, pillars of silica were formed between the layers, and SiO 2 —Ca 2 Nb 2.9 Cr 0.1 O 10 which was a layered compound having an interlayer cross-linking structure was produced. When an intercalation reaction with n-hexylamine is carried out, the interlayer distance becomes 1.46 nm to 2.46 nm.
When the thickness became 73 nm, and further when pillars were formed with tetraethoxysilane, the interlayer distance became 2.95 nm.
When the temperature is changed and firing is performed at 400 ° C., 500 ° C., and 600 ° C., the interlayer distances are 2.61 nm and 2.
45 nm and 2.39 nm, which was recognized to be slightly reduced by burning organic substances.
Those fired at 00 ° C. had 292 m 2 / g) and high temperature stability was also observed. FIG. 2 shows an X-ray diffraction diagram of the product obtained at each stage. In FIG.
(A) untreated KCa 2 Nb 3 O 10
(B) is obtained by treating (a) with a 6N nitric acid aqueous solution,
(C) is a product obtained by intercalating (b) with hexylamine, (d) is a product obtained by substituting hexylamine of (c) with tetraethoxysilane, and (e) is a product obtained by replacing (d) by 3
(F) is obtained by firing (d) at 500 ° C.

【0031】実施例2 実施例1と同様にしてKCaNaNb13粉末を
用い、6N硝酸水溶液による処理、n‐ヘキシルアミン
による処理及びテトラエトキシシランによる処理を行っ
たのち、330℃又は500℃で焼成した。これらの各
段階におけるX線回折図を図3に示す。図3において、
(a)はKCaNaNb13についての未処理
物、(b)は(a)を6N硝酸水溶液で処理したもの、
(c)は(b)をヘキシルアミンを用いてインターカレ
ートしたもの、(d)は(c)のヘキシルアミンをテト
ラエトキシシランで置換したもの、(e)は(d)を3
30℃で焼成したもの及び(f)は(d)を500℃で
焼成したものである。
Example 2 In the same manner as in Example 1, KCa 2 NaNb 4 O 13 powder was used, followed by treatment with a 6N aqueous nitric acid solution, treatment with n-hexylamine and treatment with tetraethoxysilane. Fired at ℃. FIG. 3 shows X-ray diffraction patterns at each of these stages. In FIG.
(A) untreated KCa 2 NaNb 4 O 13 , (b) (a) treated with 6N nitric acid aqueous solution,
(C) is a product obtained by intercalating (b) with hexylamine, (d) is a product obtained by substituting hexylamine of (c) with tetraethoxysilane, and (e) is a product obtained by replacing (d) by 3
(F) is obtained by firing (d) at 500 ° C.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 参考例1〜4で得た層状ペロブスカイト型化
合物のX線回折図。
FIG. 1 is an X-ray diffraction diagram of a layered perovskite compound obtained in Reference Examples 1 to 4.

【図2】 KCaNb10及びその処理物のX線
回折図。
FIG. 2 is an X-ray diffraction diagram of KCa 2 Nb 3 O 10 and a processed product thereof.

【図3】 KCaNaNb13及びその処理物の
X線回折図。
FIG. 3 is an X-ray diffraction diagram of KCa 2 NaNb 4 O 13 and a processed product thereof.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−196912(JP,A) 特表 昭63−503538(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 33/00 B01J 23/20 CA(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-196912 (JP, A) JP-A-63-503538 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 33/00 B01J 23/20 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 NaNbOとKCaNb10
を1150〜1350℃の温度で反応させて、一般式 K[CaNan−3Nb3n+1] (式中のnは4〜6の数であり、Nbは10原子%以下
の割合でNi、V、Cu、Cr及びWの中から選ばれた
少なくとも1種の金属と置換されていてもよい)で表わ
される層状ペロブスカイト型化合物を調製し、これをプ
ロトン交換処理したのち、長鎖アルキルアミンをインタ
ーカレートし、次いでテトラアルコキシシランを反応さ
せ、さらに酸素含有ガス雰囲気下、400〜600℃の
温度で焼成処理して層間にシリカの支柱を形成させるこ
とを特徴とする層間架橋構造を有する層状化合物の製造
方法。
1. A reaction between NaNbO 3 and KCa 2 Nb 3 O 10 at a temperature of 1150 to 1350 ° C. to obtain a general formula K [Ca 2 Na n-3 Nb n O 3n + 1 ] (where n is 4 to 1 ). 6, and Nb may be substituted by at least one kind of metal selected from Ni, V, Cu, Cr and W at a ratio of 10 atomic% or less.) After proton exchange treatment, a long-chain alkylamine is intercalated, then tetraalkoxysilane is reacted, and further calcined at a temperature of 400 to 600 ° C. under an oxygen-containing gas atmosphere to form an interlayer. A method for producing a layered compound having an interlayer crosslinked structure, wherein pillars of silica are formed.
JP32549597A 1997-11-10 1997-11-10 Method for producing layered compound having interlayer crosslinked structure Expired - Lifetime JP3146351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32549597A JP3146351B2 (en) 1997-11-10 1997-11-10 Method for producing layered compound having interlayer crosslinked structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32549597A JP3146351B2 (en) 1997-11-10 1997-11-10 Method for producing layered compound having interlayer crosslinked structure

Publications (2)

Publication Number Publication Date
JPH11139826A JPH11139826A (en) 1999-05-25
JP3146351B2 true JP3146351B2 (en) 2001-03-12

Family

ID=18177524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32549597A Expired - Lifetime JP3146351B2 (en) 1997-11-10 1997-11-10 Method for producing layered compound having interlayer crosslinked structure

Country Status (1)

Country Link
JP (1) JP3146351B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425024B1 (en) * 2001-11-01 2004-03-27 주식회사 성원인더스트리 Hybrid material with multifunctional properties
JP5672726B2 (en) * 2010-03-11 2015-02-18 独立行政法人物質・材料研究機構 Organic solvent dispersion blended with flaky perovskite oxide particles, method for producing the same, perovskite oxide thin film using the same, and method for producing the same
JP5885150B2 (en) * 2011-05-19 2016-03-15 国立研究開発法人物質・材料研究機構 High dielectric nanosheet laminate, high dielectric nanosheet laminate, high dielectric element, and method of manufacturing high dielectric thin film element

Also Published As

Publication number Publication date
JPH11139826A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
Yu et al. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process
JP4041106B2 (en) Composition based on cerium oxide and zirconium oxide and having high specific surface area and high oxygen storage capacity, and method for producing the same
JP2947449B2 (en) Mixed oxides of cerium and zirconium, their production and use
KR100431919B1 (en) Composition Based On Zirconium Oxide and Cerium Oxide, Preparation Method Therefor and Use Thereof
CN105366720B (en) A kind of method of room temperature solid-state reaction carbonate synthesis oxygen bismuth nanometer sheet
WO2022021506A1 (en) Preparation of ultrathin porous carbon nitride nano-photocatalyst and applications thereof in photocatalytically oxidizing fructose to synthesize lactic acid
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
US20110300064A1 (en) Redox material for thermochemical water splitting, and method for producing hydrogen
CN110745864B (en) Perovskite type lanthanum titanate material and preparation method and application thereof
JP2017081812A (en) Manganese-zirconium-based composite oxide and manufacturing method therefor and application thereof
JPH05105428A (en) Cerium oxide having oxygen absorbing and releasing ability and its production
JP5892478B2 (en) BiVO4 particles and method for producing the same
Yanagisawa et al. Synthesis and photocatalytic properties of titania pillared H4Nb6O17 using titanyl acylate precursor
JP3146351B2 (en) Method for producing layered compound having interlayer crosslinked structure
CN111151238B (en) Bismuth vanadate heterojunction BiVO4/Bi25VO40Material, preparation method and application thereof
CN104760958A (en) Graphene-like amorphous silicon nanoflake, and preparation method and application thereof
CN110935309A (en) Two-stage low-concentration VOC catalytic degradation method
JPH11292538A (en) Production of zirconia-ceria composition
JP3049312B2 (en) Crosslinked titanium-niobium layered composite oxide
CN113634246B (en) Rare earth vanadate catalyst for reducing nitrogen oxides
KR100945250B1 (en) The preparation method for perovskite-type oxide nano powder by using porous silica templating
Tang et al. A Novel CuO/V2O5/TiO2 Catalyst for Catalytic Combustion of 1, 2-Dichlorobenzene
Li et al. Synthesis of potassium titanoniobate in supercritical and subcritical water and investigations on its photocatalytic performance
CN111790418A (en) Calcium-titanium composite material and preparation method and application thereof
CN114477298B (en) Composite oxide and preparation method and application thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term