JPH11136299A - Demodulation system - Google Patents

Demodulation system

Info

Publication number
JPH11136299A
JPH11136299A JP29857697A JP29857697A JPH11136299A JP H11136299 A JPH11136299 A JP H11136299A JP 29857697 A JP29857697 A JP 29857697A JP 29857697 A JP29857697 A JP 29857697A JP H11136299 A JPH11136299 A JP H11136299A
Authority
JP
Japan
Prior art keywords
doppler shift
received signal
shift component
equation
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29857697A
Other languages
Japanese (ja)
Inventor
Yoshio Sasaki
芳夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29857697A priority Critical patent/JPH11136299A/en
Publication of JPH11136299A publication Critical patent/JPH11136299A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily eliminate the effect of Doppler shift by calculating an uncertain variable of a Doppler shift component based on in-phase and orthogonal components obtained by sampling a received signal for a prescribed period in order to demodulate the received signal with the effect of the Doppler sift and to generate a base band signal. SOLUTION: A MODEM circuit 2 includes a detection calculation section 2-4 for uncertain variable Δf of a Doppler shift component and an elimination calculation section 2-5 for the Doppler shift component of a received signal. A MODEM control section 2-1 allows the detection calculation section 2-4 to sample in-phase and orthogonal components I, Q of the received signal in a timing of a prescribed sampling period Δt, obtains a mean value of Δf in a preamble of the received signal which is defined as Δf. The elimination calculation section 2-5 eliminates the Doppler shift component from the received signal based on the Δf to generate a base band signal. Thus, the hardware can be of a simple configuration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低軌道周回衛星を
使用した携帯電話システムなど、相対的に高速で移動す
る無線局同士で無線通信を行う通信システムにおけるド
ップラシフトの影響を除去する技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for eliminating the effects of Doppler shift in a communication system such as a portable telephone system using a low orbiting satellite which performs wireless communication between wireless stations moving at a relatively high speed. Things.

【0002】[0002]

【従来の技術】近年、地上数百Km上空の低軌道周回衛
星を使用した移動体衛星通信電話システム構想が提唱さ
れている。本電話システムを利用した場合、地上の携帯
無線端末は低軌道周回衛星と直接無線通信を行い当該衛
星を経由して地上の他の地域に存在する電話端末との通
話やデータ通信が行える。また、ページングサービスも
受けられる。
2. Description of the Related Art In recent years, a mobile satellite communication telephone system using a low orbit satellite several hundred kilometers above the ground has been proposed. When this telephone system is used, a portable radio terminal on the ground performs direct radio communication with a low-orbit satellite and can communicate with a telephone terminal located in another area on the ground via the satellite. A paging service is also available.

【0003】[0003]

【発明が解決しようとする課題】しかしながら低軌道周
回衛星は静止衛星ではなく地上から見て軌道上を高速移
動しているため、地上局と低軌道周回衛星との通信には
ドップラシフトの影響を無視できない。したがって、移
動体衛星通信電話システム等で容易に実施可能なドップ
ラーシフトの影響を除去する通信技術の提供が望まれ
る。
However, the low orbiting satellite is not a geostationary satellite but moves at a high speed in orbit as viewed from the ground. Therefore, the effect of the Doppler shift on the communication between the ground station and the low orbiting satellite is not significant. I can't ignore it. Therefore, it is desired to provide a communication technique which can be easily implemented in a mobile satellite communication telephone system and eliminates the influence of Doppler shift.

【0004】[0004]

【課題を解決するための手段】上記従来技術の課題を解
決するために本発明は、無線部で受信するドップラーシ
フトの影響を受けた受信信号を復調してベースバンド信
号を生成するために、所定周期(Δt)と当該周期(Δ
t)で前記受信信号をサンプリングした同相成分I及び
直交成分Qに基いてドップラーシフト成分の不確定変数
(Δf)を演算し、予め前記受信信号からドップラーシ
フト成分を除去する演算手段を具備することを特徴とす
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present invention provides a method for demodulating a Doppler-shifted received signal received by a radio unit to generate a baseband signal. The predetermined period (Δt) and the period (Δ
calculating means for calculating an uncertain variable (Δf) of the Doppler shift component based on the in-phase component I and the quadrature component Q obtained by sampling the received signal at t) and removing the Doppler shift component from the received signal in advance; It is characterized by.

【0005】[0005]

【発明の実施の形態】図1は本発明の一実施形態を示す
無線機受信部構成の図で、TDMA/FDMAを使用し
たQPSK変調されたマイクロ波を受信する受信回路
(RF部)1と希望波に対するドップラシフトの影響が
無視できない程大きい信号を復調するためのモデム(変
復調装置)回路2を含んでいる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram of the configuration of a radio receiver section showing an embodiment of the present invention. A receiving circuit (RF section) 1 for receiving a QPSK-modulated microwave using TDMA / FDMA, and It includes a modem (modulator / demodulator) circuit 2 for demodulating a signal in which the influence of the Doppler shift on the desired wave is not negligible.

【0006】RF部1にてドップラシフト成分を含まな
い信号の搬送波を含む信号の直交復調器1−1の後の受
信信号は、数1となる。
The received signal after the quadrature demodulator 1-1 for the signal including the carrier of the signal not including the Doppler shift component in the RF unit 1 is represented by the following equation (1).

【0007】[0007]

【数1】 (Equation 1)

【0008】数1に対して、搬送波の基本成分を除去す
るために複素共役COS(ωt)−j・sin(ωt)
との積を求めると数2となり、位相情報が取り出せる。
[0008] With respect to equation (1), a complex conjugate COS (ωt) -j · sin (ωt) is used to remove the fundamental component of the carrier.
When the product of the above is obtained, the result becomes Equation 2, and phase information can be extracted.

【0009】[0009]

【数2】 (Equation 2)

【0010】ここで、ドップラーシフト成分を含んだ受
信信号は数3で表わされる。
[0010] Here, the received signal including the Doppler shift component is expressed by Equation 3.

【0011】[0011]

【数3】 (Equation 3)

【0012】数3に対して、同様に複素共役cos(ω
t)−j・sin(ωt)との積を求めると数4を得
る。
Similarly, the complex conjugate cos (ω
t) −j · sin (ωt) to obtain the product.

【0013】[0013]

【数4】 (Equation 4)

【0014】数4はドップラーシフト成分とベースバン
ド信号を含んだ信号であり、またΔωすなわちΔfは不
定な値をとる。このΔfを除去しなければベースバンド
信号は復調できない。
Equation 4 is a signal including a Doppler shift component and a baseband signal, and Δω, that is, Δf takes an indefinite value. Unless Δf is removed, the baseband signal cannot be demodulated.

【0015】そこでサンプリング周波数fs (サンプリ
ング周期Δt=1/fs )でドップラーシフト成分を含
んだ受信信号をサンプリングし、ベースバンド信号を復
調することを考えた場合、まず前述の複素共役との積を
用いて基準搬送波成分を除去すると、最初のサンプル時
間t1 では数5を得る。
Therefore, when sampling a received signal including a Doppler shift component at a sampling frequency fs (sampling period Δt = 1 / fs) and demodulating a baseband signal, first consider the product of the above complex conjugate. When the reference carrier component is removed using Equation (5), Equation 5 is obtained at the first sample time t1.

【0016】[0016]

【数5】 (Equation 5)

【0017】同様に、t2 ,・・・,tn では数6を得
る。
Similarly, for t 2,..., T n, Equation 6 is obtained.

【0018】[0018]

【数6】 (Equation 6)

【0019】ここで、サンプリング周期Δtは一定であ
るのでt2 =t1 +Δtであり、またΔtが十分小さけ
れば、θ2 =θ1 +Δθと近似できるので、数7が導か
れる。
Here, since the sampling period .DELTA.t is constant, t2 = t1 + .DELTA.t. If .DELTA.t is sufficiently small, it can be approximated to .theta.2 = .theta.1 + .DELTA..theta.

【0020】[0020]

【数7】 (Equation 7)

【0021】この数7の式に時間t1 で求めたドップラ
ーシフト成分を含んだ信号の複素共役cos(ωt)−
j・sin(ωt)との積を求めれば、数8が求められ
る。
The complex conjugate cos (ωt) − of the signal containing the Doppler shift component obtained at time t 1 in the equation (7)
If the product of j · sin (ωt) is obtained, Expression 8 is obtained.

【0022】[0022]

【数8】 (Equation 8)

【0023】この演算でcos(ΔωΔt+Δθ)及び
sin(ΔωΔt+Δθ)の値は求まっており、かつベ
ースバンド変調周波数fb とサンプリング周期Δt=1
/fsは既知の値であるので、Δθ=2πfb /fs で
求められることから、上式でのドップラーシフト成分の
不確定変数はΔfのみということになる。
In this operation, the values of cos (ΔωΔt + Δθ) and sin (ΔωΔt + Δθ) are obtained, and the baseband modulation frequency fb and the sampling period Δt = 1
Since / fs is a known value, it can be obtained by Δθ = 2πfb / fs, so the only uncertain variable of the Doppler shift component in the above equation is Δf.

【0024】となれば数9が導かれる。Then, Equation 9 is derived.

【0025】[0025]

【数9】 (Equation 9)

【0026】このようにドップラーシフト成分の不確定
変数であるΔfを、1つ前の検波信号との変化量から求
めることができる。このようにして求まったΔfを用い
て受信信号に対する複素共役の式を数10として復調す
ればベースバンド信号cosθt +j・sinθt が求
まる。
As described above, Δf, which is an uncertain variable of the Doppler shift component, can be obtained from the amount of change from the immediately preceding detection signal. By demodulating the complex conjugate equation for the received signal as Equation 10 using Δf obtained in this way, the baseband signal cos θt + j · sin θt is obtained.

【0027】[0027]

【数10】 (Equation 10)

【0028】なお、ここで示したΔfを求めてドップラ
ーシフト成分を除去する方式は、ベースバンド信号に位
相成分の含んでいない、プリアンブルのようなトレーニ
ングシーケンスにおいてのみ成立する。実際の復調器で
は、受信信号に対してデジタルフィルタを用いた複素変
換(ヒルバート変換など)を行って同相成分と直交成分
の値(IとQ)を求めたり、バンドパスフィルタを通し
たりするため、フィルタの過渡特性などによる計算値の
ばらつきを考慮しなければならない。また、トレーニン
グシーケンス長が一定でないか、必ずしもトレーニング
シーケンスから受信できない場合も想定しておかなけれ
ばならない。
The method of obtaining Δf and removing the Doppler shift component shown here is valid only in a training sequence such as a preamble in which a baseband signal does not include a phase component. In an actual demodulator, the received signal is subjected to a complex transformation (Hilbert transformation or the like) using a digital filter to obtain values (I and Q) of an in-phase component and a quadrature component, or to pass through a band-pass filter. In addition, it is necessary to consider variations in the calculated values due to the transient characteristics of the filter. Also, it must be assumed that the length of the training sequence is not constant, or that it cannot always be received from the training sequence.

【0029】以上の方式に基いて、モデム回路2はドッ
プラーシフト成分の不確定変数Δfを検出する演算部2
ー4及び受信信号からドップラーシフト成分除去する演
算部2−5を含む。図2に示す本発明一実施形態のフロ
ーチャートに従い受信信号からドップラーシフト成分は
除去されてベースバンド信号に復調される。図3は演算
部(2−4及び2−5)の一実施形態を示す。この例で
はモデム制御部2−1は所定サンプリング周期Δtのタ
イミングで演算部2−4に受信信号の同相成分I及び直
交成分Qをサンプリング(S1)させる。モデム制御部
2−1は受信信号のプリアンブル(通信のトレーニング
シーケンス期間)(S2)におけるΔf平均を求めこれ
をΔfに決定(S3)する。求められたΔfに基いて演
算部2−5は受信信号からドップラーシフト成分を除去
(S4)しベースバンド信号を生成しQPSK復調(S
5)してFIFO回路3を介して上位レイヤーに転送
(S6)する。
Based on the above-mentioned method, the modem circuit 2 detects the uncertain variable Δf of the Doppler shift component by the arithmetic unit 2
-4 and an operation unit 2-5 for removing Doppler shift components from the received signal. According to the flowchart of the embodiment of the present invention shown in FIG. 2, the Doppler shift component is removed from the received signal and demodulated to a baseband signal. FIG. 3 shows an embodiment of the operation units (2-4 and 2-5). In this example, the modem control unit 2-1 causes the arithmetic unit 2-4 to sample (S1) the in-phase component I and the quadrature component Q of the received signal at the timing of the predetermined sampling period Δt. The modem control unit 2-1 obtains an average of Δf in the preamble of the received signal (training sequence period of communication) (S2), and determines this as Δf (S3). Based on the obtained Δf, the arithmetic unit 2-5 removes the Doppler shift component from the received signal (S4), generates a baseband signal, and performs QPSK demodulation (S4).
5) Then, the data is transferred to the upper layer via the FIFO circuit 3 (S6).

【0030】[0030]

【発明の効果】以上のように本発明によれば希望波にド
ップラーシフト成分を含んだ受信信号からドップラーシ
フト量を測定でき、ハードウエアが簡単な構成ですみ、
目的の情報のみを取り出すことができる。しかも回路規
模の大きなPLL回路など使用せずにDSPなど使用し
た演算処理のみで実現できる。さらに外部のRF部の受
信帯域さえ変更すればさまざま周波数帯で利用が可能と
なる。
As described above, according to the present invention, the Doppler shift amount can be measured from the received signal containing the Doppler shift component in the desired wave, and the hardware can be simply configured.
Only the desired information can be extracted. Moreover, the present invention can be realized only by arithmetic processing using a DSP or the like without using a PLL circuit having a large circuit scale. Furthermore, if only the reception band of the external RF unit is changed, it can be used in various frequency bands.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる無線機受信部構成の一実施形態
の図。
FIG. 1 is a diagram of an embodiment of a configuration of a radio receiver according to the present invention.

【図2】本発明に係わる一実施形態の受信処理フローチ
ャート。
FIG. 2 is a flowchart of a reception process according to an embodiment of the present invention.

【図3】本発明に係わる一実施形態を示す演算部のブロ
ック図。
FIG. 3 is a block diagram of a calculation unit showing one embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1:受信回路(RF部) 1−1:アンプ 1−2:乗算器 1−3:フィルタ
1−4:リミッタ 1−5:直交復調器 1−6:フィルタ 1−7:シン
セサイザ 2:モデム回路 2−1:モデム制御部 2−2:A/D変換器 2−
3:フィルタ 2−4:Δfの検知演算部 2−5:ドップラシフト成
分の除去演算部 2−6:等価器 2−7:フィルタ 2−8:QPSK
復調器 3:FIFO回路
1: Receiving circuit (RF unit) 1-1: Amplifier 1-2: Multiplier 1-3: Filter
1-4: Limiter 1-5: Quadrature demodulator 1-6: Filter 1-7: Synthesizer 2: Modem circuit 2-1: Modem control unit 2-2: A / D converter 2-
3: Filter 2-4: Δf detection operation unit 2-5: Doppler shift component removal operation unit 2-6: Equalizer 2-7: Filter 2-8: QPSK
Demodulator 3: FIFO circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】無線部で受信するドップラーシフトの影響
を受けた受信信号からベースバンド信号を生成するため
に、所定周期(Δt)と当該所定周期(Δt)で前記受
信信号をサンプリングした同相成分I及び直交成分Qに
基いてドップラーシフト成分の不確定変数(Δf)を演
算し、予め前記受信信号からドップラーシフト成分を除
去する演算手段を具備することを特徴とする復調方式。
1. A predetermined period (Δt) and an in-phase component obtained by sampling the reception signal at the predetermined period (Δt) in order to generate a baseband signal from a reception signal affected by Doppler shift received by a radio unit. A demodulation method comprising calculating means for calculating an uncertain variable (Δf) of a Doppler shift component based on I and a quadrature component Q and removing a Doppler shift component from the received signal in advance.
JP29857697A 1997-10-30 1997-10-30 Demodulation system Pending JPH11136299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29857697A JPH11136299A (en) 1997-10-30 1997-10-30 Demodulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29857697A JPH11136299A (en) 1997-10-30 1997-10-30 Demodulation system

Publications (1)

Publication Number Publication Date
JPH11136299A true JPH11136299A (en) 1999-05-21

Family

ID=17861541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29857697A Pending JPH11136299A (en) 1997-10-30 1997-10-30 Demodulation system

Country Status (1)

Country Link
JP (1) JPH11136299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879647B1 (en) 2000-09-29 2005-04-12 Northrop Grumman Corporation Radio receiver AM-MSK processing techniques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879647B1 (en) 2000-09-29 2005-04-12 Northrop Grumman Corporation Radio receiver AM-MSK processing techniques

Similar Documents

Publication Publication Date Title
US7200188B2 (en) Method and apparatus for frequency offset compensation
EP1391997B1 (en) Digitally compensated direct conversion receiver
JP4004553B2 (en) Integrable radio receiver circuit for frequency modulated digital signals
US20050207515A1 (en) Digital demodulation
US20070140382A1 (en) Bandpass sampling receiver and the sampling method
JPH0758928B2 (en) Method and circuit device for receiving frequency-modulated radio wave
JP2000514965A (en) Variable of sampled signal C. Method and apparatus for compensating offset
JPH07273822A (en) Method and apparatus for automatically adjusting frequency
KR100406224B1 (en) Frequency modulation signaling inquiry and communication terminal equipment employing it
US6504867B1 (en) Digital matched filtering for signal estimation in a digital receiver
US6192089B1 (en) Electronic circuit and method for automatic frequency control
JP2659060B2 (en) Frequency error detection method
JP2959498B2 (en) Automatic frequency control circuit
JPH11136299A (en) Demodulation system
JP3979261B2 (en) Receiver
US7277501B2 (en) Data receiving device
JP3094940B2 (en) Quadrature modulated wave receiving method and apparatus
JP2001016120A (en) Cdma transmitter/receiver
JP3178277B2 (en) Direct conversion receiver
JP2744540B2 (en) Digital signal receiver
JP3665285B2 (en) Frequency deviation detection method and frequency deviation detector
JPH09121123A (en) Demodulator in common use for digital/analog fm
KR100262154B1 (en) Method for generating data transmission signal in a demodulator of channel modem for satellite communication system
KR100285756B1 (en) Apparatus for tracking carrier in wireless transfer system
JPH09214569A (en) Fsk base band demodulation device and moving body communication system