JPH11135892A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH11135892A
JPH11135892A JP31423197A JP31423197A JPH11135892A JP H11135892 A JPH11135892 A JP H11135892A JP 31423197 A JP31423197 A JP 31423197A JP 31423197 A JP31423197 A JP 31423197A JP H11135892 A JPH11135892 A JP H11135892A
Authority
JP
Japan
Prior art keywords
semiconductor laser
algaas
laser element
brazing material
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31423197A
Other languages
Japanese (ja)
Inventor
Koichi Nitori
耕一 似鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP31423197A priority Critical patent/JPH11135892A/en
Publication of JPH11135892A publication Critical patent/JPH11135892A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To fix a semiconductor laser element to a radiator with a metallic brazing material via no oxide film and without causing damages thereto, by forming bumps and dips on its side facing opposite to the radiator. SOLUTION: In a semiconductor laser device 1, an AlGaAs semiconductor laser element 2 has irregularities 7a in a p-GaAs contact layer 7, so that when it is fixed to a radiator 10 with a metallic brazing material 11, it makes an oxide film formed on the brazing material 11 to be broken easily. That is, an n-AlGaAs clad layer 4, an AlGaAs active layer 5, and p-AlGaAs clad layer 6 are formed in this order on an n-AlGaAs substrate 3. Next, the p-GaAs contact layer 7 having the bumps and dips 7a is formed on the p-AlGaAs clad layer 6 at a growth temperatures in a range of 575 to 600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レ−ザ素子
に関し、特に、この半導体レ−ザ素子を放熱体上に固着
させた半導体レ−ザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly, to a semiconductor laser device having the semiconductor laser device fixed on a heat radiator.

【0002】[0002]

【従来の技術】通常、半導体レ−ザ素子は、この半導体
レ−ザ素子から発生する熱を効率良く外部へ放出するた
めに金属ろう材を介して、放熱性の良好な放熱体上に固
着される。
2. Description of the Related Art Normally, a semiconductor laser device is fixed on a heat radiator having good heat radiation properties through a metal brazing material in order to efficiently release the heat generated from the semiconductor laser device to the outside. Is done.

【0003】図3は、従来の半導体レ−ザ素子101を
放熱体103上に固着した半導体レ−ザ装置100の断
面図である。この半導体レ−ザ装置100は、半導体レ
−ザ素子101を金属ろう材102を介して放熱体10
3上に固着した構造である。この半導体レ−ザ素子10
1の放熱体103上への固着は、放熱体103上に金属
ろう材102を付着させ、この半導体レ−ザ素子101
を放熱材103に対向配置し、この半導体レ−ザ素子1
01を金属ろう材102に載置した後、この半導体レ−
ザ素子101を加圧すると同時に加熱して、この金属ろ
う材102と、半導体レ−ザ素子101及び放熱体10
3との間の合金化反応により行う。しかし、通常、金属
ろう材102は空気中に置かれて保管されているため、
この表面には酸化被膜104が生ずる。一般的に、この
ような金属ろう材102は、通常、その表面に酸化被膜
が形成されているが、この金属ろう材102と対向する
半導体レ−ザ素子101面は平担であり、この金属ろう
材102と半導体レ−ザ素子101間の面接触性が良い
ため、上記のような加圧方法では、酸化被膜104が破
られにくく、合金化反応が均一に行われにくいという問
題がある。また、酸化被膜104は、熱伝導度が悪いの
で、半導体レ−ザ素子101から発生する熱は、金属ろ
う材102を介して効率良く放熱体103に伝達されに
くく、従って、放熱体103から外部への熱放出が効率
良く行われなくなってしまう。
FIG. 3 is a cross-sectional view of a semiconductor laser device 100 in which a conventional semiconductor laser element 101 is fixed on a heat radiator 103. In this semiconductor laser device 100, a semiconductor laser element 101 is radiated by a heat radiator 10 through a brazing metal 102.
3 is a structure fixed to the upper surface. This semiconductor laser device 10
In order to fix the semiconductor laser element 101 on the heat radiator 103, a metal brazing material 102 is adhered on the heat radiator 103.
Is disposed to face the heat radiating member 103, and the semiconductor laser element 1
01 is placed on the brazing metal 102, and the semiconductor laser
When the laser element 101 is pressurized and heated at the same time, the metal brazing material 102, the semiconductor laser element 101 and the radiator 10 are heated.
3 is carried out by an alloying reaction. However, since the brazing filler metal 102 is usually stored in the air,
An oxide film 104 is formed on this surface. Generally, such a metal brazing material 102 has an oxide film formed on the surface thereof, but the surface of the semiconductor laser element 101 facing the metal brazing material 102 is flat, and Since the surface contact between the brazing material 102 and the semiconductor laser element 101 is good, there is a problem that the oxide film 104 is not easily broken by the above-described pressing method, and the alloying reaction is not easily performed uniformly. Further, since the oxide film 104 has poor thermal conductivity, heat generated from the semiconductor laser element 101 is not easily transmitted to the heat radiator 103 through the metal brazing material 102 efficiently. The heat is not efficiently released to the air.

【0004】そこで、この問題を解決するために実開平
3−41959に示すように、半導体レ−ザ素子をCu
球、Ni等の金属部材からなるビ−ズ部材を含んだソル
ダ−を介して、加圧及び加熱してベ−ス上に固着する方
法が開示された。この方法によれば、ソルダ−に生じて
いる酸化被膜はビ−ズ部材によって、分断除去されるの
で、半導体レ−ザ素子とベ−スの接触を良好にすること
ができるので、この半導体レ−ザ素子から発生する熱を
効率良くベ−スを介して外部に放出することができる。
In order to solve this problem, as shown in Japanese Utility Model Laid-Open Publication No. 3-41959, a semiconductor laser device is made of Cu.
A method has been disclosed in which a ball and a solder member including a bead member made of Ni or the like are used to press and heat the wire to fix it on a base. According to this method, the oxide film formed on the solder is separated and removed by the bead member, so that good contact between the semiconductor laser element and the base can be achieved. -The heat generated from the element can be efficiently released to the outside via the base.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この半
導体レ−ザ素子を加圧及び加熱して、ベ−ス上に固着し
た場合、ビ−ズ部材はCu球、Ni等の硬い金属材料で
構成されているので、この半導体レ−ザ素子にダメ−ジ
が加えられ、半導体レ−ザ素子を構成する結晶に転位や
結晶欠陥等が発生する。このため、この半導体レ−ザ素
子の信頼性を低下させていた。そこで、本発明は、上記
のような問題点を解消するためになされたもので、酸化
膜を介さず、かつダメ−ジを与えることなく、半導体レ
−ザ素子を放熱体に固着する半導体レ−ザ装置を提供す
ることを目的とする。
However, when this semiconductor laser element is fixed on a base by pressing and heating, the bead member is made of a hard metal material such as Cu spheres or Ni. Therefore, damage is added to the semiconductor laser element, and dislocations, crystal defects, and the like are generated in crystals constituting the semiconductor laser element. For this reason, the reliability of the semiconductor laser device has been reduced. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a semiconductor laser element for fixing a semiconductor laser element to a heat radiator without passing through an oxide film and without damaging the semiconductor laser element. -To provide the device.

【0006】[0006]

【課題を解決するための手段】本発明の半導体レ−ザ装
置は、半導体レ−ザ素子を金属ろう材を介して放熱体上
に固着した半導体レ−ザ装置において、前記半導体レ−
ザ素子は、前記放熱体と対向する側に凹凸部を形成した
ことを特徴とする。
According to the present invention, there is provided a semiconductor laser device in which a semiconductor laser element is fixed on a heat radiator via a metal brazing material.
The device is characterized in that an uneven portion is formed on the side facing the heat radiator.

【0007】[0007]

【発明の実施の形態】本発明による半導体レ−ザ装置の
一実施例について図1、図2を用いて説明する。図1
は、AlGaAs半導体レ−ザ素子2の断面図である。
図2は、AlGaAs半導体レ−ザ素子2を金属ろう材
11を介して放熱体10に固着した半導体レ−ザ装置1
の断面図である。本発明の実施例の半導体レ−ザ装置1
は、AlGaAs半導体レ−ザ素子2を金属ろう材11
を介して、放熱体10上に固着する際に、この金属ろう
材11に形成される酸化被膜を破りやすくするために、
AlGaAs半導体レ−ザ素子2のp−GaAsコンタ
クト層7に凹凸部7aを形成した点に特徴がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a semiconductor laser device according to the present invention will be described with reference to FIGS. FIG.
1 is a sectional view of an AlGaAs semiconductor laser device 2.
FIG. 2 shows a semiconductor laser device 1 in which an AlGaAs semiconductor laser element 2 is fixed to a radiator 10 via a metal brazing material 11.
FIG. Semiconductor laser device 1 according to an embodiment of the present invention
Is a method of connecting an AlGaAs semiconductor laser element 2 to a metal brazing material 11.
In order to make it easy to break the oxide film formed on the metal brazing material 11,
The AlGaAs semiconductor laser device 2 is characterized in that the p-GaAs contact layer 7 has an uneven portion 7a.

【0008】まず初めに、AlGaAs半導体レ−ザ素
子2について説明する。MOCVD法(有機金属気相成
長方法)により、成長温度600℃乃至650℃で、n
−GaAs基板3上にn−AlGaAsクラッド層4、
AlGaAs活性層5、p−AlGaAsクラッド層6
を順次積層する。次に、このp−AlGaAsクラッド
層6上に成長温度を575℃乃至600℃の温度範囲に
して、凹凸部7aを有したp−GaAsコンタクト層7
を形成する。
First, the AlGaAs semiconductor laser device 2 will be described. By MOCVD (metal organic chemical vapor deposition), at a growth temperature of 600 ° C. to 650 ° C., n
An n-AlGaAs cladding layer 4 on a GaAs substrate 3;
AlGaAs active layer 5, p-AlGaAs cladding layer 6
Are sequentially laminated. Next, the growth temperature is set on the p-AlGaAs cladding layer 6 in the temperature range of 575 ° C. to 600 ° C., and the p-GaAs contact layer 7 having the uneven portion 7a is formed.
To form

【0009】ここで、どのようにして、凹凸7aを有し
たp−GaAsコンタクト層7が形成されるかについて
説明する。一般的に、MOCVD法による半導体基板上
へのGaAs結晶の成長は、Ga元素を含むTMG(ト
リメチルガリウム)とAsを含むAsH3 がこの半導体
基板上に到達すると、このTMGがGaとラジカルに、
AsH3 がAsと水素に熱分解し、この分解したGaと
Asがこの半導体基板上で熱合成することによって行わ
れる。この際、この半導体基板上に良好なGaAs結晶
が得られるかどうかは、GaAs結晶を成長する際の成
長温度に依存する。
Here, how the p-GaAs contact layer 7 having the unevenness 7a is formed will be described. In general, a GaAs crystal is grown on a semiconductor substrate by the MOCVD method. When TMG (trimethylgallium) containing Ga element and AsH 3 containing As reach the semiconductor substrate, the TMG is converted into Ga and radicals.
AsH 3 is thermally decomposed into As and hydrogen, and the decomposed Ga and As are thermally synthesized on the semiconductor substrate. At this time, whether or not a good GaAs crystal is obtained on the semiconductor substrate depends on the growth temperature when growing the GaAs crystal.

【0010】GaAsの成長温度が高い場合には、Ga
とAsが活発に熱分解及び熱合成するので、GaAs結
晶成長レ−トや組成が大幅に変化し、この半導体基板上
には、化学量論的に安定した結晶性を有するGaAs結
晶を得ることができない。一方、このGaAsの成長温
度が低い場合には、TMGから熱分解されたGaとAs
3 から熱分解されたAsのマイグレ−ションが十分行
われないので、近接した位置でのGaとAs同士が結合
するため、この半導体基板上には、クラスタ状にGaA
sが点在して成長することになる。このクラスタ状に成
長したGaAsの平面的な大きさや厚さは、バラツキを
生じるため、この半導体基板上には、凹凸部が形成され
ることになるのである。
When the growth temperature of GaAs is high, Ga
As and As are actively pyrolyzed and thermally synthesized, the GaAs crystal growth rate and composition are greatly changed, and a stoichiometrically stable GaAs crystal is obtained on this semiconductor substrate. Can not. On the other hand, when the growth temperature of the GaAs is low, Ga thermally decomposed from TMG and As
Since migration of As thermally decomposed from H 3 is not sufficiently performed, Ga and As at adjacent positions are bonded to each other, so that GaAs is formed on the semiconductor substrate in a cluster shape.
s will be scattered and grow. Since the planar size and thickness of the GaAs grown in a cluster shape vary, an uneven portion is formed on the semiconductor substrate.

【0011】しかしながら、このGaAsの成長温度を
低くしすぎると、TMGとAsH3の熱分解及び熱合成
が行われなくなるので、この半導体基板上には、GaA
s結晶を得ることができない。また、実験的には、TM
GとAsH3 の熱分解及び熱合成が行われる下限の温度
は、575℃であり、凹凸部が形成し始める温度は60
0℃であることが経験的に知られている。この結果、半
導体基板上に凹凸部を有するGaAsを形成するために
は、このGaAsの成長温度を575℃乃至600℃に
することが必要となる。このように、p−GaAsコン
タクト層7の成長温度を575℃乃至600℃までの温
度範囲にすれば、凹凸部7aを有したp−GaAsコン
タクト層7が得られることになるのである。
However, if the growth temperature of GaAs is too low, thermal decomposition and thermal synthesis of TMG and AsH 3 will not be performed, so that GaAs is not formed on the semiconductor substrate.
s crystals cannot be obtained. Experimentally, TM
The lower limit temperature at which the thermal decomposition and thermal synthesis of G and AsH 3 are performed is 575 ° C., and the temperature at which the uneven portion starts to be formed is 60 ° C.
It is empirically known that the temperature is 0 ° C. As a result, in order to form GaAs having irregularities on a semiconductor substrate, it is necessary to set the growth temperature of GaAs to 575 ° C. to 600 ° C. As described above, if the growth temperature of the p-GaAs contact layer 7 is set in the temperature range of 575 ° C. to 600 ° C., the p-GaAs contact layer 7 having the uneven portion 7a can be obtained.

【0012】次に、n−GaAs基板3上にn−AlG
aAsクラッド層4、AlGaAs活性層5、p−Al
GaAsクラッド層6、p−GaAsコンタクト層7を
順次積層した側の逆方向側のn−GaAs基板3をメカ
ニカルポリッシュ及びケミカルポリッシュにより研磨す
る。なお、p−GaAsコンタクト層7上には、pオ−
ミック電極8を形成し、積層方向と反対側のn−GaA
s基板3にはnオ−ミック電極9を形成する。ここで、
pオ−ミック電極8の材料としては、AuBe、nオ−
ミック電極9の材料としては、Snである。pオ−ミッ
ク電極8の形状は、p−GaAsコンタクト層7の形状
に対応して形成されるので、凹凸状となる。こうして、
AlGaAs半導体レ−ザ素子2が得られる(図1)。
Next, an n-AlG substrate is formed on the n-GaAs substrate 3.
aAs cladding layer 4, AlGaAs active layer 5, p-Al
The n-GaAs substrate 3 on the side opposite to the side on which the GaAs clad layer 6 and the p-GaAs contact layer 7 are sequentially laminated is polished by mechanical polishing and chemical polishing. The p-GaAs contact layer 7 has a p-type
And a n-GaAs layer on the opposite side of the stacking direction.
An n-ohmic electrode 9 is formed on the s substrate 3. here,
As a material of the p-type ohmic electrode 8, AuBe, n-type
The material of the mix electrode 9 is Sn. Since the shape of the p-ohmic electrode 8 is formed corresponding to the shape of the p-GaAs contact layer 7, it becomes uneven. Thus,
An AlGaAs semiconductor laser device 2 is obtained (FIG. 1).

【0013】次に、このAlGaAs半導体レ−ザ素子
2のpオ−ミック電極8側を放熱体10に対向させて配
置し、金属ろう材11を介してこのAlGaAs半導体
レ−ザ素子2を放熱体10上に載置、加圧及び加熱して
固着することにより、本発明になる半導体レ−ザ装置1
が得られる(図2)。ここで、金属ろう材11の材料と
しては、例えば、AuSn、AuSi、Agペ−スト等
がある。放熱体10の材料としては、例えば、Cu、S
i、ダイヤモンド等がある。
Next, the AlGaAs semiconductor laser element 2 is arranged so that the p-ohmic electrode 8 side faces the heat radiator 10, and the AlGaAs semiconductor laser element 2 is radiated through the metal brazing material 11. A semiconductor laser device 1 according to the present invention, which is mounted on a body 10, and fixed by pressing and heating.
Is obtained (FIG. 2). Here, examples of the material of the metal brazing material 11 include AuSn, AuSi, and Ag paste. As a material of the radiator 10, for example, Cu, S
i, diamond and the like.

【0014】次に、本発明になる半導体レ−ザ装置1の
具体的な構成につき以下、詳述する。本発明は、前記し
た如く、AlGaAs半導体レ−ザ素子2に形成した凹
凸部7aにより、金属ろう材11に形成されている酸化
被膜を分断除去し、酸化被膜のない部分の金属ろう材1
1とこのAlGaAs半導体レ−ザ素子2を接触させ、
しかる後、このAlGaAs半導体レ−ザ素子2を加圧
及び加熱して放熱体10上に固着するので、熱伝導度が
改善され、このAlGaAs半導体レ−ザ素子2から発
生する熱は、放熱体10を介して外部に効率良く放出す
ることができる。また、従来例に示すように、この金属
ろう材11に形成されている酸化被膜を分断するため
に、Cu球、Ni等の金属部材からなるビ−ズ部材を用
いないので、このAlGaAs半導体レ−ザ素子2にダ
メ−ジを与えることなく、これをこの放熱体10に固着
することができ、信頼性の高いAlGaAs半導体レ−
ザ素子2が得られる。
Next, a specific configuration of the semiconductor laser device 1 according to the present invention will be described in detail below. According to the present invention, as described above, the oxide film formed on the metal brazing material 11 is divided and removed by the concave and convex portions 7a formed on the AlGaAs semiconductor laser element 2, and the metal brazing material 1 having no oxide film is removed.
1 and this AlGaAs semiconductor laser element 2
Thereafter, the AlGaAs semiconductor laser element 2 is pressurized and heated to be fixed on the radiator 10, so that the thermal conductivity is improved, and the heat generated from the AlGaAs semiconductor laser element 2 is reduced by the radiator. 10 can be efficiently released to the outside. Further, as shown in the conventional example, a bead member made of a metal member such as Cu sphere or Ni is not used to divide the oxide film formed on the metal brazing material 11, so that the AlGaAs semiconductor laser is not used. -The element 2 can be fixed to the heat radiator 10 without damaging the element 2, thereby providing a highly reliable AlGaAs semiconductor laser.
The element 2 is obtained.

【0015】また、凹凸部7aを有するp−GaAsコ
ンタクト層7の形成は、このp−GaAsコンタクト層
7を成長する際にド−プする不純物を増加させたり、T
MGに対するAsH3 の割合をその最適値からずらし、
このp−GaAsコンタクト層7の結晶性を悪くするこ
とによっても可能である。ここで、このAlGaAs半
導体レ−ザ素子2の特性は、n−AlGaAsクラッド
層4、AlGaAs活性層5、p−AlGaAsクラッ
ド層6により決定されるので、このp−GaAsコンタ
クト層7の結晶性を悪くしても、このAlGaAs半導
体レ−ザ素子2の特性への影響はない。
The formation of the p-GaAs contact layer 7 having the uneven portion 7a can be achieved by increasing the amount of impurities to be doped when the p-GaAs contact layer 7 is grown or by increasing the T-type impurity.
Shifting the ratio of AsH 3 to MG from its optimal value,
It is also possible by making the crystallinity of the p-GaAs contact layer 7 worse. Here, since the characteristics of the AlGaAs semiconductor laser element 2 are determined by the n-AlGaAs cladding layer 4, the AlGaAs active layer 5, and the p-AlGaAs cladding layer 6, the crystallinity of the p-GaAs contact layer 7 is determined. At worst, the characteristics of the AlGaAs semiconductor laser element 2 are not affected.

【0016】更に、AlGaAs半導体レ−ザ素子2の
pオ−ミック電極8側を放熱体10に固着する代わり
に、AlGaAs半導体レ−ザ素子2のnオ−ミック電
極9側を固着する場合には、積層方向と逆方向側のn−
GaAs基板3をメカニカルポリッシュして、このn−
GaAs基板3に図示しない凹凸部を形成することによ
って、同様な効果が得られる。即ち、AlGaAs半導
体レ−ザ素子2のn−GaAs基板3に形成された図示
しない凹凸部により、金属ろう材11に形成されている
酸化被膜を分断除去し、酸化被膜のない部分の金属ろう
材11とこのAlGaAs半導体レ−ザ素子2を接触さ
せ、しかる後、このAlGaAs半導体レ−ザ素子2を
加圧及び加熱して放熱体10上に固着するので、熱伝導
度が改善され、このAlGaAs半導体レ−ザ素子2か
ら発生する熱をこの放熱体10を介して外部に効率良く
放出することができるのである。また、本発明の実施例
は、AlGaAs系半導体レ−ザ素子に限定されるもの
ではなく、III−V族系半導体レ−ザ素子、II−VI族系半
導体レ−ザ素子等に広く適用できることはいうまでもな
い。
Furthermore, instead of fixing the p-type ohmic electrode 8 side of the AlGaAs semiconductor laser element 2 to the heat radiator 10, the n-type ohmic electrode 9 side of the AlGaAs semiconductor laser element 2 is fixed. Is n- on the side opposite to the stacking direction.
The GaAs substrate 3 is mechanically polished, and the n-
A similar effect can be obtained by forming an uneven portion (not shown) on the GaAs substrate 3. That is, the oxide film formed on the metal brazing material 11 is divided and removed by the uneven portion (not shown) formed on the n-GaAs substrate 3 of the AlGaAs semiconductor laser device 2, and the metal brazing material having no oxide film is removed. The AlGaAs semiconductor laser element 2 is brought into contact with the AlGaAs semiconductor laser element 2, and then the AlGaAs semiconductor laser element 2 is pressurized and heated to be fixed on the radiator 10, so that the thermal conductivity is improved. The heat generated from the semiconductor laser element 2 can be efficiently radiated to the outside through the radiator 10. The embodiments of the present invention are not limited to AlGaAs-based semiconductor laser devices, but can be widely applied to III-V-based semiconductor laser devices, II-VI-based semiconductor laser devices, and the like. Needless to say.

【0017】[0017]

【発明の効果】本発明の半導体レ−ザ装置によれば、凹
凸部が形成されている半導体レ−ザ素子側を放熱体に対
向させ、この凹凸部により金属ろう材に形成されている
酸化被膜を分断除去して、半導体レ−ザ素子を放熱体上
に固着できるので、酸化被膜のない部分の金属ろう材と
この半導体レ−ザ素子を接触させ、しかる後、この半導
体レ−ザ素子を加圧及び加熱して放熱体上に固着するの
で、熱伝導度が改善され、この半導体レ−ザ素子から発
生する熱を効率良く外部に放出することができる。ま
た、この半導体レ−ザ素子と放熱体との間には、金属ろ
う材以外の材料は介在しないので、この半導体レ−ザ素
子を放熱体上にダメ−ジを与えることなく固着すること
ができる。
According to the semiconductor laser device of the present invention, the side of the semiconductor laser element on which the irregularities are formed is opposed to the heat radiator, and the oxidation formed on the metal brazing material by the irregularities. Since the semiconductor laser element can be fixed on the heat radiator by separating the coating, the metal brazing material having no oxide film is brought into contact with the semiconductor laser element. Is fixed on the heat radiator by pressing and heating, the heat conductivity is improved, and the heat generated from the semiconductor laser element can be efficiently released to the outside. Further, since no material other than the brazing metal is interposed between the semiconductor laser element and the heat radiator, it is possible to fix the semiconductor laser element on the heat radiator without damaging the semiconductor laser element. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるAlGaAs半導体レ−ザ素子
の断面図である。
FIG. 1 is a sectional view of an AlGaAs semiconductor laser device according to the present invention.

【図2】本発明のAlGaAs半導体レ−ザ素子を金属
ろう材を介して放熱体に固着した半導体レ−ザ装置を示
す断面図である。
FIG. 2 is a cross-sectional view showing a semiconductor laser device in which the AlGaAs semiconductor laser device of the present invention is fixed to a heat radiator via a brazing metal.

【図3】従来の半導体レ−ザ装置を示す断面図である。FIG. 3 is a sectional view showing a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

1…半導体レ−ザ装置、2…AlGaAs半導体レ−ザ
素子、3…n−GaAs基板、4…n−AlGaAsク
ラッド層、5…AlGaAs活性層、6…p−AlGa
Asクラッド層、7…p−GaAsコンタクト層、7a
…凹凸部、8…pオ−ミック電極、9…nオ−ミック電
極、10…放熱体、11…金属ろう材
DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser device, 2 ... AlGaAs semiconductor laser element, 3 ... n-GaAs substrate, 4 ... n-AlGaAs cladding layer, 5 ... AlGaAs active layer, 6 ... p-AlGa
As clad layer, 7 ... p-GaAs contact layer, 7a
... Roughness, 8 p-ohmic electrode, 9 n-ohmic electrode, 10 radiator, 11 metal brazing material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体レ−ザ素子を金属ろう材を介して放
熱体上に固着した半導体レ−ザ装置において、前記半導
体レ−ザ素子は、前記放熱体と対向する側に凹凸部を形
成したことを特徴とする半導体レ−ザ装置。
In a semiconductor laser device having a semiconductor laser element fixed on a heat radiator via a metal brazing material, the semiconductor laser element has an uneven portion on a side facing the heat radiator. And a semiconductor laser device.
JP31423197A 1997-10-30 1997-10-30 Semiconductor laser device Pending JPH11135892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31423197A JPH11135892A (en) 1997-10-30 1997-10-30 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31423197A JPH11135892A (en) 1997-10-30 1997-10-30 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH11135892A true JPH11135892A (en) 1999-05-21

Family

ID=18050872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31423197A Pending JPH11135892A (en) 1997-10-30 1997-10-30 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH11135892A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063967A1 (en) * 1999-04-20 2000-10-26 Toyo Kohan Co., Ltd. Heat sink base, heat sink, and method of manufacturing heat sink
JP2005142224A (en) * 2003-11-04 2005-06-02 Denso Corp Packaging method of semiconductor laser element
JP2005223353A (en) * 2000-11-01 2005-08-18 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device, and methods of manufacturing and driving the same
JP2008532279A (en) * 2005-02-25 2008-08-14 エルエス ケーブル リミテッド Laser diode with improved heat dissipation structure and method of manufacturing the same
JP2012227484A (en) * 2011-04-22 2012-11-15 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method of the same
JPWO2021177292A1 (en) * 2020-03-04 2021-09-10

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063967A1 (en) * 1999-04-20 2000-10-26 Toyo Kohan Co., Ltd. Heat sink base, heat sink, and method of manufacturing heat sink
JP2005223353A (en) * 2000-11-01 2005-08-18 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device, and methods of manufacturing and driving the same
JP2005142224A (en) * 2003-11-04 2005-06-02 Denso Corp Packaging method of semiconductor laser element
JP2008532279A (en) * 2005-02-25 2008-08-14 エルエス ケーブル リミテッド Laser diode with improved heat dissipation structure and method of manufacturing the same
JP2012227484A (en) * 2011-04-22 2012-11-15 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method of the same
JPWO2021177292A1 (en) * 2020-03-04 2021-09-10
WO2021177292A1 (en) * 2020-03-04 2021-09-10 株式会社デンソー Semiconductor device, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US7357837B2 (en) GaN single crystal substrate and method of making the same
US6303405B1 (en) Semiconductor light emitting element, and its manufacturing method
US6720581B2 (en) Mounting plate for a laser chip in a semiconductor laser device
TWI362761B (en)
US6611004B2 (en) Gallium nitride based light emitting element
US7929587B2 (en) Semiconductor laser diode element and method of manufacturing the same
JP4899348B2 (en) Method for manufacturing light emitting device
JP2002217115A (en) Crystal film, crystal substrate, and semiconductor device
JP2009206265A (en) Semiconductor light-emitting device and method of manufacturing semiconductor light-emitting device
JP2002217116A (en) Method for manufacturing crystal film, crystal substrate, and semiconductor device
JPH11135892A (en) Semiconductor laser device
JP2021002593A (en) Manufacturing method of semiconductor optical device, and semiconductor optical device
JP4974043B2 (en) LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2001230498A (en) Group iii nitride-base compound semiconductor laser
JP4056664B2 (en) Method for producing group III nitride crystal
JP4341623B2 (en) Light emitting device and manufacturing method thereof
JPH10321956A (en) Semiconductor device and manufacture thereof
WO2010024230A1 (en) METHOD FOR MANUFACTURING AlGaAs SUPPORT SUBSTRATE, METHOD FOR MANUFACTURING EPITAXIAL WAFER, METHOD FOR MANUFACTURING LED, AlGaAs SUPPORT SUBSTRATE, EPITAXIAL WAFER, AND LED
JP2003188414A (en) Method of manufacturing semiconductor light-emitting element
JPWO2009048056A1 (en) Compound semiconductor epitaxial wafer and manufacturing method thereof
JP2011254015A (en) Compound semiconductor film vapor phase growth susceptor and compound semiconductor film forming method
JP2008288256A (en) Method of manufacturing semiconductor laser element and semiconductor laser device
JP2608658B2 (en) Semiconductor device and manufacturing method thereof
JP2728672B2 (en) Semiconductor laser device, double hetero wafer, and method of manufacturing the same
JP3169177B2 (en) Substrate for epitaxial growth and semiconductor light emitting device