JP2008532279A - Laser diode with improved heat dissipation structure and method of manufacturing the same - Google Patents

Laser diode with improved heat dissipation structure and method of manufacturing the same Download PDF

Info

Publication number
JP2008532279A
JP2008532279A JP2007556968A JP2007556968A JP2008532279A JP 2008532279 A JP2008532279 A JP 2008532279A JP 2007556968 A JP2007556968 A JP 2007556968A JP 2007556968 A JP2007556968 A JP 2007556968A JP 2008532279 A JP2008532279 A JP 2008532279A
Authority
JP
Japan
Prior art keywords
laser diode
type electrode
concavo
electrode
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007556968A
Other languages
Japanese (ja)
Inventor
クァンス ホ
ハングォン リュ
ボンジョ ク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Cable and Systems Ltd
Original Assignee
LS Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Cable Ltd filed Critical LS Cable Ltd
Publication of JP2008532279A publication Critical patent/JP2008532279A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/107Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening using hinge joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/12Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by screwing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02235Getter material for absorbing contamination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

熱放出効率を高めることができる電極構造を備えたレーザーダイオードとその製造方法を提供する。本発明によるレーザーダイオードは、注入された電流を光に変換させる活性層と、活性層に電流を注入するためのp型電極及びn型電極を備え、パッケージングの際ヒートシンクが付着されるp型電極あるいはn型電極に凹凸構造が反復的に形成される。レーザーダイオードの製造方法は、p型電極あるいはn型電極を形成する工程が、p型電極あるいはn型電極が形成される基板の表面にマスク層を蒸着する段階と、フォトリソグラフィー工程とBOE食刻工程で前記マスク層の蒸着膜を所定のパターンで除去してマスクを形成する段階と、マスクを通じて露出する部分を食刻して基板の表面に凹凸構造を形成する段階と、マスクを除去する段階及び凹凸構造に対応する屈曲を有する電極が形成されるように凹凸構造上に電極物質を蒸着する段階とを含む。  Provided are a laser diode having an electrode structure capable of increasing heat release efficiency and a method for manufacturing the same. A laser diode according to the present invention includes an active layer that converts injected current into light, a p-type electrode and an n-type electrode for injecting current into the active layer, and a p-type to which a heat sink is attached during packaging. The uneven structure is repeatedly formed on the electrode or the n-type electrode. The manufacturing method of the laser diode includes a step of forming a p-type electrode or an n-type electrode, a step of depositing a mask layer on a surface of a substrate on which the p-type electrode or the n-type electrode is formed, a photolithography step, and a BOE etching. Forming a mask by removing the deposited film of the mask layer in a predetermined pattern in the process, etching a portion exposed through the mask to form a concavo-convex structure on the surface of the substrate, and removing the mask And depositing an electrode material on the concavo-convex structure so that an electrode having a bend corresponding to the concavo-convex structure is formed.

Description

本発明は、レーザーダイオード及びその製造方法に関するものであって、特に、ヒートシンク(Heat sink)との接触面積を大きくすることができる電極構造を備えたレーザーダイオードとその製造方法に関する。   The present invention relates to a laser diode and a manufacturing method thereof, and more particularly, to a laser diode having an electrode structure capable of increasing a contact area with a heat sink and a manufacturing method thereof.

最近のレーザーダイオードは、埋め込まれた活性層と平坦な表面を有するPBH(Planar Buried Heterostructure)型に製作されることが一般的である。   Recent laser diodes are generally manufactured in a PBH (Planar Buried Heterostructure) type having an embedded active layer and a flat surface.

図1及び図2を参照すれば、通常のレーザーダイオードは、n型基板11の上部に活性層12、電流遮断層13,14、クラッド層15、オーミックコンタクト層(Ohmic contact layer)16、絶縁層17、p型電極18が積層され、n型基板11の下面には、n型電極10が形成され、チップの背面には、反射膜19が形成された構造を持つ。以下、理解しやすくするために、レーザーダイオードの側面図には、p型電極18の周りに部分的に形成された絶縁層17の図示を省略する。   Referring to FIGS. 1 and 2, a conventional laser diode includes an active layer 12, current blocking layers 13 and 14, a cladding layer 15, an ohmic contact layer 16, and an insulating layer on an n-type substrate 11. 17, a p-type electrode 18 is laminated, an n-type electrode 10 is formed on the lower surface of the n-type substrate 11, and a reflective film 19 is formed on the back surface of the chip. Hereinafter, for easy understanding, the illustration of the insulating layer 17 partially formed around the p-type electrode 18 is omitted from the side view of the laser diode.

通常、多重量子井戸構造を備える活性層12は、光導波構造との間にメサ(Mesa)模様に形成される。活性層12以外の領域に注入電流が漏洩することを遮断する電流遮断層13,14は、活性層12の周りにp−InP電流遮断層13と、n−InP電流遮断層14が順次成長された形態とで成る。このとき、電流遮断層14は、寄生静電容量を減少させ得るように「U」字状に食刻することもできる。   Usually, the active layer 12 having a multiple quantum well structure is formed in a mesa pattern between the active layer 12 and the optical waveguide structure. Current blocking layers 13 and 14 for blocking injection current leakage to regions other than the active layer 12 are formed by sequentially growing a p-InP current blocking layer 13 and an n-InP current blocking layer 14 around the active layer 12. It consists of different forms. At this time, the current blocking layer 14 may be etched in a “U” shape so as to reduce the parasitic capacitance.

レーザーダイオードは、その他の半導体素子と同様に温度に敏感であるため、パッケージングの際、その一面には所定のサブマウント(Submount)を媒介にしてヒートシンクが付着される。従って、レーザーダイオードの動作の際発生する熱は、サブマウントを経てヒートシンクに伝達され、パッケージングフレームの外部に放出される。   Since the laser diode is sensitive to temperature like other semiconductor elements, a heat sink is attached to one surface of the laser diode through a predetermined submount during packaging. Accordingly, heat generated during the operation of the laser diode is transmitted to the heat sink through the submount and released to the outside of the packaging frame.

レーザーダイオードで発生する熱に対する熱伝達効率を高めるためには、レーザーダイオードとヒートシンクとの間の接触面積を大きくし、熱伝導度に優れた材質でヒートシンクを構成しなければならない。そのため、ヒートシンクは、金属材質から構成される場合、熱膨張係数が大きすぎて、ストレスによる物理的な問題が発生するので、熱膨張係数が半導体に近いセラミックスなどを用いなければならない等、材料の選択に制約が多いという問題がある。   In order to increase the heat transfer efficiency with respect to the heat generated by the laser diode, the contact area between the laser diode and the heat sink must be increased, and the heat sink must be made of a material having excellent thermal conductivity. Therefore, when the heat sink is made of a metal material, the thermal expansion coefficient is too large and a physical problem due to stress occurs. Therefore, it is necessary to use ceramics having a thermal expansion coefficient close to that of a semiconductor. There is a problem that there are many restrictions on selection.

特に、レーザーダイオードチップにおいて、熱放出度の最も高い部分が電極部分であることを勘案すれば、熱伝達効率を高めるためには、電極とヒートシンクとの間の接触面積を大きくすることが重要である。しかし、従来のレーザーダイオードは、p型電極18とn型電極10とが、単に平らな金属プレート構造に形成されるので、接触面積を大きくするには限界がある。   In particular, in the laser diode chip, it is important to increase the contact area between the electrode and the heat sink in order to increase the heat transfer efficiency, considering that the portion with the highest heat release is the electrode portion. is there. However, in the conventional laser diode, since the p-type electrode 18 and the n-type electrode 10 are simply formed in a flat metal plate structure, there is a limit in increasing the contact area.

本発明は、上記のような点を考慮して創案されたものであって、ヒートシンクとの接触面積が大きくなるよう立体的な表面構造を持った電極を備えたレーザーダイオードと、その製造方法を提供することを目的としている。   The present invention was devised in view of the above points, and includes a laser diode including an electrode having a three-dimensional surface structure so as to increase a contact area with a heat sink, and a method for manufacturing the laser diode. It is intended to provide.

また、本発明は、放熱作用とともにチップバーブレイキング(Chip bar breaking)工程の便宜を図ることができる電極構造を備えたレーザーダイオードと、その製造方法を提供することを目的としている。   Another object of the present invention is to provide a laser diode having an electrode structure capable of facilitating a chip bar breaking process as well as a heat dissipation effect, and a method for manufacturing the laser diode.

上記のような目的を達成するため、本発明によるレーザーダイオードは、注入された電流を光に変換させる活性層と、前記活性層に電流を注入するためのp型電極及びn型電極を備え、パッケージングの際ヒートシンクが付着される前記p型電極あるいはn型電極に凹凸構造が反復的に形成されていることを特徴とする。   In order to achieve the above object, a laser diode according to the present invention includes an active layer that converts injected current into light, and a p-type electrode and an n-type electrode for injecting current into the active layer, A concavo-convex structure is repeatedly formed on the p-type electrode or n-type electrode to which a heat sink is attached during packaging.

前記凹凸構造は、横断面が「V」字状のストライプ(Stripe)パターンのグルーブ(Groove)を含むように形成されることが望ましい。   The uneven structure may be formed to include a groove having a stripe pattern having a “V” -shaped cross section.

前記活性層は、メサ構造に形成され、前記凹凸構造のグルーブは、チップバーブレイキング工程の便宜のため、前記メサの長手方向に対して垂直な方向に形成されることが望ましい。   The active layer may be formed in a mesa structure, and the groove of the concavo-convex structure may be formed in a direction perpendicular to the longitudinal direction of the mesa for convenience of a chip bar breaking process.

本発明は、注入された電流を光に変換させる活性層と、前記活性層に電流を注入するためのp型電極及びn型電極を備えたレーザーダイオードの製造方法において、前記p型電極あるいはn型電極を形成する工程が、前記p型電極あるいはn型電極が形成される基板の表面にマスク層を蒸着する第1段階と、フォトリソグラフィー(Photolithography)工程とBOE(Buffered Oxide Etch)食刻工程で前記マスク層の蒸着膜を所定のパターンで除去してマスクを形成する第2段階と、前記マスクを通じて露出する部分を食刻して基板の表面に凹凸構造を形成する第3段階と、前記マスクを除去する第4段階と、前記凹凸構造に対応する屈曲を有する電極が形成されるように前記凹凸構造上に電極物質を蒸着する第5段階とを含むことを特徴とするレーザーダイオードの製造方法が提供される。   The present invention relates to a method of manufacturing a laser diode comprising an active layer for converting injected current into light, and a p-type electrode and an n-type electrode for injecting current into the active layer. Forming a mold electrode includes a first step of depositing a mask layer on a surface of the substrate on which the p-type electrode or the n-type electrode is formed, a photolithography process, and a BOE (Buffered Oxide Etch) etching process. A second step of forming a mask by removing the deposited film of the mask layer in a predetermined pattern, a third step of forming a concavo-convex structure on the surface of the substrate by etching a portion exposed through the mask, and A fourth step of removing the mask and steaming the electrode material on the concavo-convex structure so as to form an electrode having a bend corresponding to the concavo-convex structure And a fifth step of wearing the laser diode.

前記活性層はメサ構造に形成され、前記第2段階はストライプパターンの窓を有するマスクをメサの長手方向に対して垂直な方向に形成することが望ましい。   Preferably, the active layer is formed in a mesa structure, and in the second step, a mask having a stripe pattern window is formed in a direction perpendicular to the longitudinal direction of the mesa.

前記第3段階は、横断面が「V」字状のストライプパターンのグルーブが形成されるように行われることが望ましい。   The third step is preferably performed so as to form a stripe pattern groove having a V-shaped cross section.

本発明によると、凹凸構造によりレーザーダイオードの電極とヒートシンクとの間の接触面積が広くなることで熱放出特性が向上されるので、レーザーダイオードをより安定して動作させることができる。   According to the present invention, the heat release characteristics are improved by increasing the contact area between the electrode of the laser diode and the heat sink due to the concavo-convex structure, so that the laser diode can be operated more stably.

また、レーザーダイオードの製造工程において、チップバーブレイキング工程の際には簡便に凹凸構造のグルーブ部分を切断すれば良いので、作業性を向上させることができる。   Further, in the laser diode manufacturing process, since the groove portion of the concavo-convex structure may be simply cut during the chip bar breaking process, workability can be improved.

以下、添付した図面を参照しながら本発明の望ましい実施例を詳しく説明する。これに先立って、本明細書及び請求範囲に使われた用語や単語は、通常的や辞書的な意味に限定して解釈されてはならず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とに解釈されなければならない。従って、本明細書に記載された実施例は本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想の全てを代弁するものではないため、本出願時点においてこれらに代替できる多様な均等物と変形例があり得ることを明記しておく。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms and words used in this specification and claims should not be construed to be limited to ordinary or lexicographic meanings, and the inventor best describes his invention. Therefore, in accordance with the principle that the concept of a term can be appropriately defined, it should be interpreted as a meaning and a concept consistent with the technical idea of the present invention. Therefore, the embodiment described in the present specification is only the most preferred embodiment of the present invention, and does not represent all the technical ideas of the present invention. It should be noted that there can be equivalents and variations.

図3は、本発明の望ましい実施例によるレーザーダイオードの構成を示す斜視図であり、図4は、図3の側面図である。図3及び図4を参照すれば、本発明の望ましい実施例によるレーザーダイオードは、n型基板101の上部に、活性層102、電流遮断層103,104、クラッド層105、オーミックコンタクト層106、絶縁層107及びp型電極108が積層され、n型基板101の下面には、凹凸構造を持ったn型電極100が備えられ、チップの背面には反射膜109が形成された構造を持つ。   FIG. 3 is a perspective view illustrating a configuration of a laser diode according to a preferred embodiment of the present invention, and FIG. 4 is a side view of FIG. 3 and 4, a laser diode according to a preferred embodiment of the present invention includes an active layer 102, current blocking layers 103 and 104, a cladding layer 105, an ohmic contact layer 106, an insulating layer on an n-type substrate 101. The layer 107 and the p-type electrode 108 are laminated, the n-type substrate 101 is provided with an n-type electrode 100 having an uneven structure on the lower surface of the n-type substrate 101, and the reflective film 109 is formed on the back surface of the chip.

活性層102は、p型電極108及びn型電極100を通じて注入される電流を光に変換させる部分であって、例えば、1〜1.5μm程度の幅を有するメサ模様の多重量子井戸構造から成る。ここで、活性層102は、埋め込みヘテロ構造(Buried Heterostructure)を有し、リッジ(Ridge)型光導波構造との間に介在されることが望ましい。   The active layer 102 is a portion that converts current injected through the p-type electrode 108 and the n-type electrode 100 into light, and has a mesa-patterned multiple quantum well structure having a width of about 1 to 1.5 μm, for example. . Here, the active layer 102 preferably has a buried heterostructure and is interposed between a ridge-type optical waveguide structure.

また、活性層102は、単一モードあるいは多重モードのスペクトルを有する一方、可視光から赤外線に至る波長領域において特定の波長の光が放出できる構造を持つ。特に、n型基板101の下面に備えるn型電極100は、凹凸構造が反復的に形成された構造を持つ。ここで、p型電極108に凹凸構造が形成されるように本発明が変形され得ることは言うまでもない。また、図面にはたとえn型電極100の両面に屈曲が存在するように凹凸構造が形成されたものが例示されているが、n型電極100の露出表面にのみ屈曲が存在するように凹凸構造が形成され得ることは言うまでもない。   The active layer 102 has a single-mode or multi-mode spectrum, and has a structure capable of emitting light of a specific wavelength in a wavelength region from visible light to infrared light. In particular, the n-type electrode 100 provided on the lower surface of the n-type substrate 101 has a structure in which an uneven structure is repeatedly formed. Here, it goes without saying that the present invention can be modified so that a concavo-convex structure is formed on the p-type electrode 108. Further, although the drawing illustrates an example in which a concavo-convex structure is formed so that there is a bend on both surfaces of the n-type electrode 100, the concavo-convex structure so that a bend exists only on the exposed surface of the n-type electrode 100. It goes without saying that can be formed.

望ましくは、凹凸構造は、横断面が「V」字状のストライプパターンのグルーブ110を含むように形成される。このとき、グルーブ110が活性層102のメサの長手方向に対して垂直な方向に延長されるように凹凸構造を形成すれば、チップバーブレイキング工程の際、グルーブ110部分(図5の切断指示線150を参照)を切断することで、より容易にブレイキング工程を行うことができる。   Preferably, the concavo-convex structure is formed so as to include a groove 110 having a stripe pattern whose cross section is a “V” shape. At this time, if the concavo-convex structure is formed so that the groove 110 extends in a direction perpendicular to the longitudinal direction of the mesa of the active layer 102, the groove 110 portion (the cutting instruction line in FIG. 5) is formed during the chip bar breaking process. 150)), the breaking process can be performed more easily.

図6には、本発明の望ましい実施例によるレーザーダイオードのパッケージング構成が示されている。図面に示したように、パッケージングの際、本発明のレーザーダイオード200のn型電極の表面には、例えば、金属ボンディング(Metallic bonding)に相当する接着部材201を媒介にしてヒートシンク202が付着される。接着部材201の代案として、所定のサブマウントを媒介にして、ヒートシンク202が間接的に付着されることも可能である。   FIG. 6 shows a packaging configuration of a laser diode according to a preferred embodiment of the present invention. As shown in the drawing, a heat sink 202 is attached to the surface of the n-type electrode of the laser diode 200 of the present invention via an adhesive member 201 corresponding to, for example, metal bonding, during packaging. The As an alternative to the adhesive member 201, the heat sink 202 can be indirectly attached through a predetermined submount.

レーザーダイオード200で発生する熱は、接着部材201に伝達されヒートシンク202の方向に放出される。このとき、レーザーダイオード200のn型電極の表面には反復的に凹凸構造が形成されるので、より広い接触面を経由して熱が放出され得る。   The heat generated in the laser diode 200 is transmitted to the adhesive member 201 and released in the direction of the heat sink 202. At this time, since the concavo-convex structure is repeatedly formed on the surface of the n-type electrode of the laser diode 200, heat can be released through a wider contact surface.

図7ないし図11には、本発明の望ましい実施例によるレーザーダイオードの製造工程において、n型電極100を形成する工程が順次示されている。ここで、レーザーダイオードを製造するためのその他の工程は、通常のレーザーダイオードの製造技術に従って行うことができる。   7 to 11 sequentially show the process of forming the n-type electrode 100 in the manufacturing process of the laser diode according to the preferred embodiment of the present invention. Here, the other steps for manufacturing the laser diode can be performed according to a normal laser diode manufacturing technique.

まず、ウエハーの上部表面に対するp型電極108形成工程が完了した後には、前述したn型基板101の表面に相当するウエハーの下部面を研磨した後マスク層90を蒸着する工程(第1段階)が行われる(図7を参照)。マスク層90は、窒化珪素(SiNx)膜からなるが、後述するn型基板101の食刻マスクになり得る物質であれば、何れでもよい。   First, after the process of forming the p-type electrode 108 on the upper surface of the wafer is completed, the process of depositing the mask layer 90 after polishing the lower surface of the wafer corresponding to the surface of the n-type substrate 101 described above (first stage) Is performed (see FIG. 7). The mask layer 90 is made of a silicon nitride (SiNx) film, but may be any material that can serve as an etching mask for the n-type substrate 101 described later.

蒸着工程の後には、フォトリソグラフィー工程とBOE食刻工程でマスク層90を所定のパターンで除去してマスク91を形成する過程(第2段階)が行われる(図8を参照)。マスク91は、活性層102のメサの長手方向が通常ウエハーの<1,−1,0>方向であることを勘案すれば、その垂直方向である<1,1,0>方向に延長されたストライプ形状の窓92が反復的に形成された構造を持つことが望ましい。   After the vapor deposition process, a process (second stage) of removing the mask layer 90 in a predetermined pattern and forming a mask 91 in a photolithography process and a BOE etching process (see FIG. 8) is performed. Considering that the longitudinal direction of the mesa of the active layer 102 is usually the <1, -1,0> direction of the wafer, the mask 91 is extended in the <1,1,0> direction which is the vertical direction. It is desirable to have a structure in which stripe-shaped windows 92 are formed repeatedly.

マスク91を形成した後には、塩酸系溶液を用いてマスク91の窓92を通じて露出するn型基板101の表面を食刻して、基板の表面に横断面が「V」字状のグルーブ110を形成する過程(第3段階)が行われる(図9を参照)。   After the mask 91 is formed, the surface of the n-type substrate 101 exposed through the window 92 of the mask 91 is etched using a hydrochloric acid-based solution, and a groove 110 having a “V” -shaped cross section is formed on the surface of the substrate. A forming process (third stage) is performed (see FIG. 9).

次いで、BOE食刻工程を用いてマスク91を除去すれば(第4段階)、図10に示したように、n型基板101の表面に凹凸構造が反復されたパターンが得られる。   Next, if the mask 91 is removed using the BOE etching process (fourth stage), a pattern in which the concavo-convex structure is repeated on the surface of the n-type substrate 101 is obtained as shown in FIG.

最後に、図11に示したように、凹凸構造に対応する屈曲を維持するように凹凸構造上に電極物質を蒸着すれば(第5段階)、n型基板101の表面に凹凸構造を持ったn型電極100が形成される。   Finally, as shown in FIG. 11, if an electrode material is deposited on the concavo-convex structure so as to maintain the bending corresponding to the concavo-convex structure (fifth stage), the surface of the n-type substrate 101 has the concavo-convex structure. An n-type electrode 100 is formed.

以上のように、n型電極100の形成工程が完了した後には、凹凸構造のグルーブ110部分に沿ってチップバーブレイキング工程が行われ、チップバーの断面に対する所定の光学コーティング工程が行われる。   As described above, after the formation process of the n-type electrode 100 is completed, a chip bar breaking process is performed along the groove 110 portion of the concavo-convex structure, and a predetermined optical coating process is performed on the cross section of the chip bar.

続いて、分割されたレーザーダイオードチップを通常のTOCAN(Transistor Outline CAN)などを用いてヒートシンクとパッケージングする工程が行われる。このとき、ヒートシンクは、例えば、炭化珪素(SiC)、窒化ホウ素(BN)、窒化アルミニウム(AlN)などのように、半導体材料と熱膨張係数が近いながらも熱伝導特性に優れた材料から構成されることが望ましく、ヒートシンクとレーザーダイオードチップとの間の接着は、金(Au)と錫(Sn)との合金を用いる共晶接着(eutectic bonding)により行われることが望ましい。   Subsequently, a process of packaging the divided laser diode chip with a heat sink using a normal TOCAN (Transistor Outline CAN) or the like is performed. At this time, the heat sink is made of a material that has a thermal expansion coefficient close to that of a semiconductor material, such as silicon carbide (SiC), boron nitride (BN), and aluminum nitride (AlN), but has excellent thermal conductivity. The heat sink and the laser diode chip are preferably bonded by eutectic bonding using an alloy of gold (Au) and tin (Sn).

以上のように、本発明を一実施例と図面とによって説明したが、本発明はこれによって限定されず、本発明が属する技術分野において通常の知識を持つ者により本発明の技術思想と特許請求範囲の均等範囲内で多様な修正及び変形が可能なのは言うまでもない。   As described above, the present invention has been described with reference to one embodiment and the drawings. However, the present invention is not limited thereto, and technical ideas and claims of the present invention can be obtained by persons having ordinary knowledge in the technical field to which the present invention belongs. Needless to say, various modifications and variations can be made within the equivalent range.

本発明によると、凹凸構造によりレーザーダイオードの電極とヒートシンクとの間の接触面積が広くなることで熱放出特性が向上されるので、レーザーダイオードをより安定して動作させることができる。また、レーザーダイオードの製造工程において、チップバーブレイキング工程の際には簡便に凹凸構造のグルーブ部分を切断すれば良いので、作業性を向上させることができる。   According to the present invention, the heat release characteristics are improved by increasing the contact area between the electrode of the laser diode and the heat sink due to the concavo-convex structure, so that the laser diode can be operated more stably. Further, in the laser diode manufacturing process, since the groove portion of the concavo-convex structure may be simply cut during the chip bar breaking process, workability can be improved.

また、レーザーダイオードの製造工程において、チップバーブレイキング工程の際には簡便に凹凸構造のグルーブ部分を切断すれば良いので、作業性を向上させることができる。   Further, in the laser diode manufacturing process, since the groove portion of the concavo-convex structure may be simply cut during the chip bar breaking process, workability can be improved.

従来のレーザーダイオードの構成を示す斜視図である。It is a perspective view which shows the structure of the conventional laser diode. 図1の側面図である。It is a side view of FIG. 本発明の望ましい実施例によるレーザーダイオードの構成を示す斜視図である。1 is a perspective view illustrating a configuration of a laser diode according to a preferred embodiment of the present invention. 図3の側面図である。FIG. 4 is a side view of FIG. 3. 本発明の望ましい実施例によるレーザーダイオードの製造工程において行われるチップバーブレイキング工程を示す側面図である。FIG. 5 is a side view illustrating a chip bar breaking process performed in a manufacturing process of a laser diode according to a preferred embodiment of the present invention. 本発明の望ましい実施例によるレーザーダイオードのパッケージング構成図である。1 is a packaging configuration diagram of a laser diode according to a preferred embodiment of the present invention. 本発明の望ましい実施例によるレーザーダイオードの製造工程を示す側面図である。FIG. 5 is a side view illustrating a manufacturing process of a laser diode according to a preferred embodiment of the present invention. 本発明の望ましい実施例によるレーザーダイオードの製造工程を示す側面図である。FIG. 5 is a side view illustrating a manufacturing process of a laser diode according to a preferred embodiment of the present invention. 本発明の望ましい実施例によるレーザーダイオードの製造工程を示す側面図である。FIG. 5 is a side view illustrating a manufacturing process of a laser diode according to a preferred embodiment of the present invention. 本発明の望ましい実施例によるレーザーダイオードの製造工程を示す側面図である。FIG. 5 is a side view illustrating a manufacturing process of a laser diode according to a preferred embodiment of the present invention. 本発明の望ましい実施例によるレーザーダイオードの製造工程を示す側面図である。FIG. 5 is a side view illustrating a manufacturing process of a laser diode according to a preferred embodiment of the present invention.

Claims (6)

注入された電流を光に変換させる活性層と、前記活性層に電流を注入するためのp型電極及びn型電極を備えたレーザーダイオードにおいて、
パッケージングの際、ヒートシンク(heat sink)が付着される前記p型電極あるいはn型電極に凹凸構造が反復的に形成されていることを特徴とするレーザーダイオード。
In a laser diode comprising an active layer for converting injected current into light, and a p-type electrode and an n-type electrode for injecting current into the active layer,
A laser diode, wherein a concavo-convex structure is repeatedly formed on the p-type electrode or the n-type electrode to which a heat sink is attached during packaging.
前記凹凸構造は、横断面が「V」字状のストライプパターンのグルーブ(Groove)を含むことを特徴とする請求項1に記載のレーザーダイオード。 2. The laser diode according to claim 1, wherein the concavo-convex structure includes a groove having a stripe pattern having a “V” -shaped cross section. 前記活性層は、メサ(Mesa)構造に形成され、
前記凹凸構造のグルーブが前記メサ構造の長手方向に対して垂直な方向に形成されたことを特徴とする請求項2に記載のレーザーダイオード。
The active layer is formed in a mesa structure,
3. The laser diode according to claim 2, wherein the groove of the uneven structure is formed in a direction perpendicular to a longitudinal direction of the mesa structure.
注入された電流を光に変換させる活性層と、前記活性層に電流を注入するためのp型電極及びn型電極を備えたレーザーダイオードの製造方法において、
前記p型電極あるいはn型電極を形成する工程は、
前記p型電極あるいはn型電極が形成される基板の表面にマスク層を蒸着する第1段階と、
フォトリソグラフィー工程とBOE(Buffered Oxide Etch)食刻工程で前記マスク層の蒸着膜を所定のパターンで除去してマスクを形成する第2段階と、
前記マスクを通じて露出する部分を食刻して基板の表面に凹凸構造を形成する第3段階と、
前記マスクを除去する第4段階と、
前記凹凸構造に対応する屈曲を有した電極が形成されるように、前記凹凸構造上に電極物質を蒸着する第5段階とを含むことを特徴とするレーザーダイオードの製造方法。
In a manufacturing method of a laser diode comprising an active layer for converting injected current into light, and a p-type electrode and an n-type electrode for injecting current into the active layer,
The step of forming the p-type electrode or the n-type electrode includes
A first step of depositing a mask layer on a surface of a substrate on which the p-type electrode or the n-type electrode is formed;
A second step of forming a mask by removing the deposited film of the mask layer in a predetermined pattern in a photolithography process and a BOE (Buffered Oxide Etch) etching process;
Etching a portion exposed through the mask to form a concavo-convex structure on the surface of the substrate;
A fourth step of removing the mask;
And a fifth step of depositing an electrode material on the concavo-convex structure so that an electrode having a bend corresponding to the concavo-convex structure is formed.
前記活性層は、メサ構造に形成され、
前記第2段階において、ストライプパターンの窓を有するマスクをメサの長手方向に対して垂直な方向に形成することを特徴とする請求項4に記載のレーザーダイオードの製造方法。
The active layer is formed in a mesa structure,
5. The method of manufacturing a laser diode according to claim 4, wherein in the second step, a mask having a stripe pattern window is formed in a direction perpendicular to the longitudinal direction of the mesa.
前記第3段階において、横断面が「V」字状のストライプパターンのグルーブを含む凹凸構造を形成することを特徴とする請求項5に記載のレーザーダイオードの製造方法。 6. The method of manufacturing a laser diode according to claim 5, wherein, in the third step, a concavo-convex structure including a groove having a stripe pattern having a V-shaped cross section is formed.
JP2007556968A 2005-02-25 2006-02-13 Laser diode with improved heat dissipation structure and method of manufacturing the same Pending JP2008532279A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050016160A KR100610950B1 (en) 2005-02-25 2005-02-25 Laser diode improved in heat-dissipating structure and fabricating method therefor
PCT/KR2006/000506 WO2006090990A1 (en) 2005-02-25 2006-02-13 Laser diode improved in heat-dissipating structure and fabricating method therefor

Publications (1)

Publication Number Publication Date
JP2008532279A true JP2008532279A (en) 2008-08-14

Family

ID=36927600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007556968A Pending JP2008532279A (en) 2005-02-25 2006-02-13 Laser diode with improved heat dissipation structure and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP2008532279A (en)
KR (1) KR100610950B1 (en)
WO (1) WO2006090990A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119521A (en) * 2009-12-04 2011-06-16 Sharp Corp Semiconductor laser chip, semiconductor laser device, and method of manufacturing semiconductor laser chip
JP2015513229A (en) * 2012-04-12 2015-04-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Laser diode device
US9356423B2 (en) 2012-03-19 2016-05-31 Osram Opto Semiconductors Gmbh Laser diode assembly
JP2019518336A (en) * 2016-06-13 2019-06-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor laser diode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI786246B (en) * 2017-12-27 2022-12-11 美商普林斯頓光電公司 Semiconductor devices and methods for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362489A (en) * 1976-11-16 1978-06-03 Mitsubishi Electric Corp Production of semiconductor laser
JPH11135892A (en) * 1997-10-30 1999-05-21 Victor Co Of Japan Ltd Semiconductor laser device
JPH11163465A (en) * 1997-11-28 1999-06-18 Nec Corp Optical semiconductor element and manufacture thereof
JP2003179295A (en) * 2001-12-11 2003-06-27 Denso Corp Semiconductor laser

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461632B2 (en) * 1995-08-28 2003-10-27 三菱電機株式会社 Semiconductor laser device
US6665330B1 (en) * 1999-09-14 2003-12-16 Canon Kabushiki Kaisha Semiconductor device having a semiconductor ring laser with a circularly formed ridge optical waveguide
JP2001156389A (en) 1999-09-14 2001-06-08 Canon Inc Semiconductor device, method for fabricating semiconductor device, gyro
JP2001284704A (en) 2000-03-29 2001-10-12 Fuji Photo Film Co Ltd Semiconductor laser device
JP3812356B2 (en) 2001-03-30 2006-08-23 松下電器産業株式会社 Semiconductor light emitting device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362489A (en) * 1976-11-16 1978-06-03 Mitsubishi Electric Corp Production of semiconductor laser
JPH11135892A (en) * 1997-10-30 1999-05-21 Victor Co Of Japan Ltd Semiconductor laser device
JPH11163465A (en) * 1997-11-28 1999-06-18 Nec Corp Optical semiconductor element and manufacture thereof
JP2003179295A (en) * 2001-12-11 2003-06-27 Denso Corp Semiconductor laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119521A (en) * 2009-12-04 2011-06-16 Sharp Corp Semiconductor laser chip, semiconductor laser device, and method of manufacturing semiconductor laser chip
US9356423B2 (en) 2012-03-19 2016-05-31 Osram Opto Semiconductors Gmbh Laser diode assembly
JP2015513229A (en) * 2012-04-12 2015-04-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Laser diode device
US9331453B2 (en) 2012-04-12 2016-05-03 Osram Opto Semiconductors Gmbh Laser diode device
JP2019518336A (en) * 2016-06-13 2019-06-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor laser diode
US11245246B2 (en) 2016-06-13 2022-02-08 Osram Oled Gmbh Semiconductor laser diode

Also Published As

Publication number Publication date
WO2006090990A1 (en) 2006-08-31
KR100610950B1 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
US8039864B2 (en) Semiconductor light emitting device and fabrication method for the same
JP3859505B2 (en) GaN-based group III-V nitride semiconductor light-emitting device and method for manufacturing the same
WO2005093915A1 (en) Contact-bonded optically pumped semiconductor laser structure
JP7191167B2 (en) semiconductor laser diode
JP2007538408A5 (en)
JP2003332676A (en) Semiconductor optical device
JP2008532279A (en) Laser diode with improved heat dissipation structure and method of manufacturing the same
US20150349487A1 (en) Method For Producing Semiconductor Laser Elements And Semi-Conductor Laser Element
JP4776478B2 (en) Compound semiconductor device and manufacturing method thereof
JP2014229744A (en) Semiconductor light-emitting assembly
TW201936003A (en) Method for transferring electroluminescent structures
JP2007184316A (en) Semiconductor device
JP2009004524A (en) Nitride-based semiconductor laser element and manufacturing method of nitride-based semiconductor laser element
US8121163B2 (en) Semiconductor laser diode apparatus and method of fabricating the same
CN107591463B (en) Light emitting module and method for manufacturing light emitting module
JP2015046467A (en) Semiconductor device
JP2008181910A (en) Manufacturing method of gan-based light-emitting diode element
JP2011077456A (en) Semiconductor optical element and semiconductor optical device
JP2009088490A (en) Semiconductor light emitting element and semiconductor light emitting device
JP5103818B2 (en) Semiconductor laser element
US7692289B2 (en) Semiconductor devices with improved heat dissipation and method for fabricating same
JP2768852B2 (en) Semiconductor optical device and method of assembling the same
JP2005108917A (en) Semiconductor laser element and apparatus
JP2011108845A (en) Semiconductor optical amplifying element
JP4810808B2 (en) Manufacturing method of semiconductor laser light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426