JPH11135833A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH11135833A
JPH11135833A JP31422697A JP31422697A JPH11135833A JP H11135833 A JPH11135833 A JP H11135833A JP 31422697 A JP31422697 A JP 31422697A JP 31422697 A JP31422697 A JP 31422697A JP H11135833 A JPH11135833 A JP H11135833A
Authority
JP
Japan
Prior art keywords
layer
light
emitting element
light emitting
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31422697A
Other languages
Japanese (ja)
Inventor
Shigeki Yamaga
重來 山賀
Takahiro Sugiyama
隆啓 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP31422697A priority Critical patent/JPH11135833A/en
Publication of JPH11135833A publication Critical patent/JPH11135833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve external light-emitting efficiency by providing a reflecting layer, which reflects the light emitted from a light emitting element layer to the side of the light-emitting element layer between a substrate and the light- emitting element layer. SOLUTION: On a semiconductor substrate 1, a light-emitting element layer 2 having a P-N junction, an ohmic contact electrode 3 on the side of the light- emitting surface, an ohmic contact electrode 4 on the back side of the light- emitting surface and a reflecting layer 6, on which a thin layer is laminated, are formed. When a voltage is applied across the ohmic contact electrodes 3 and 4, lighting is produced at the P-N junction part formed in the light- emitting element layer 2. The emitted light is radiated towards the light-emitting surface side of the surface of the light-emitting element layer, the side surface side and the back surface side of the light-emitting surface. The light radiated towards the back-surface side is reflected at the reflecting layer 6 and discharged to the outside from the side of the light-emitting surface. Thus, the external light emitting efficiency is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体から
なる発光素子に関し、特に、外部発光効率の高い発光素
子の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device made of a compound semiconductor, and more particularly, to a structure of a light emitting device having high external luminous efficiency.

【0002】[0002]

【従来の技術】発光ダイオードは、表示用の可視光発光
ダイオードをはじめとして、各種センサ用あるいはリモ
ートコントロール用の赤外線発光ダイオードなど広い範
囲で利用されている。特に最近では、携帯用小型機器、
リモコンなど利用範囲を広げている。一般に携帯用小型
機器等に使用されるデバイスは、CMOSLSIをはじ
めとして、動作電圧の低下、動作電流の低減が急速に進
んでいる。それに対し、化合物半導体で形成された従来
の発光ダイオードは、消費電流が大きく、電池の寿命を
短くする大きな要因となっており、発光ダイオードの消
費電流の低減が望まれている。
2. Description of the Related Art Light emitting diodes are used in a wide range of applications, such as visible light emitting diodes for display and infrared light emitting diodes for various sensors or remote control. Especially recently, portable small devices,
The range of use such as remote control is expanding. 2. Description of the Related Art In general, devices used for portable small devices and the like are rapidly decreasing in operating voltage and operating current, such as CMOS LSI. On the other hand, a conventional light emitting diode formed of a compound semiconductor consumes a large amount of current, which is a major factor in shortening the life of a battery. Therefore, it is desired to reduce the current consumption of the light emitting diode.

【0003】発光ダイオードの消費電流を低減させるた
めには、外部発光効率を向上させることが必要である。
従来、外部発光効率の向上のためには、結晶の欠陥を減
少させたり、発光波長に対して透明な基板を選択する
等、材料結晶に関する対策と、発光光を遮蔽する発光面
の電極をドット状にして、専有面積を下げたり、発光面
をドーム状に加工する等、発光ダイオードの構造に関す
る対策がとられてきた。
In order to reduce the current consumption of the light emitting diode, it is necessary to improve the external light emitting efficiency.
Conventionally, in order to improve external luminous efficiency, measures such as reducing crystal defects and selecting a substrate that is transparent to the emission wavelength, and taking measures against material crystals and using dots on the light-emitting surface electrodes to block emitted light In order to reduce the occupied area or to process the light emitting surface into a dome shape, measures have been taken regarding the structure of the light emitting diode.

【0004】例えば、構造に関する対策として、本出願
人は、半導体基板裏面側に透過してきた光を、半導体基
板表面から放射する角度で表面(発光面)側に反射する
反射面を有する構造の光半導体装置を提案している(特
願平8−38708号)。
For example, as a measure against the structure, the present applicant has proposed a light having a structure having a reflecting surface which reflects light transmitted through the back surface of the semiconductor substrate toward the front surface (light emitting surface) at an angle radiated from the surface of the semiconductor substrate. A semiconductor device has been proposed (Japanese Patent Application No. 8-38708).

【0005】図4に先に提案した光半導体装置の断面図
を示す。図において1は半導体基板、2はPN接合を備
えた発光素子層、3は発光面となる半導体基板1の表面
に形成されたオーミック接触電極、4は半導体基板1の
裏面の反射面側に形成されたオーミック接触電極、5は
反射面である。
FIG. 4 is a sectional view of the optical semiconductor device proposed above. In the figure, 1 is a semiconductor substrate, 2 is a light emitting element layer having a PN junction, 3 is an ohmic contact electrode formed on the surface of the semiconductor substrate 1 which is a light emitting surface, and 4 is formed on the reflection surface side of the back surface of the semiconductor substrate 1 The formed ohmic contact electrodes 5 are reflection surfaces.

【0006】オーミック接触電極3、4間に電圧が印加
されると、発光素子層2内に形成されたPN接合部分
で、発光が起こる。この発光光は、発光素子層表面の発
光面側、側面側、発光面の裏面側に向かって放射され
る。このうち発光面の裏面側に向かって放射された光
は、反射面5によって、発光面側から外部に放射する角
度で発光面側に反射され、外部発光効率を高くすること
が可能となる。
When a voltage is applied between the ohmic contact electrodes 3 and 4, light emission occurs at a PN junction formed in the light emitting element layer 2. This emitted light is emitted toward the light emitting surface side, the side surface side of the light emitting element layer surface, and the rear surface side of the light emitting surface. Of the light, the light emitted toward the back surface side of the light emitting surface is reflected by the reflecting surface 5 to the light emitting surface side at an angle to be emitted from the light emitting surface side to the outside, so that the external light emitting efficiency can be increased.

【0007】[0007]

【発明が解決しようとする課題】一般に、このような構
造の光半導体装置をGaAsで形成する場合、オーミッ
ク接触電極は、AuGe合金で形成するのが一般的であ
る。発光素子層2表面および半導体基板1裏面に形成さ
れたオーミック接触電極3および4は、それぞれ面積が
25%程度となるように形成されている。
Generally, when an optical semiconductor device having such a structure is formed of GaAs, the ohmic contact electrode is generally formed of an AuGe alloy. The ohmic contact electrodes 3 and 4 formed on the surface of the light emitting element layer 2 and the back surface of the semiconductor substrate 1 are formed so that the area of each is about 25%.

【0008】しかしながら、オーミック接触電極が形成
された領域は、Geが発光光の一部を吸収してしまい、
反射面として機能しなくなるという問題点があった。本
発明は、上記問題点を解消し、オーミック接触電極を形
成しても、外部発光効率を向上させることができる光半
導体装置を提供することを目的とする。
However, in the region where the ohmic contact electrode is formed, Ge absorbs a part of the emitted light,
There is a problem in that it does not function as a reflecting surface. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide an optical semiconductor device capable of improving external luminous efficiency even when an ohmic contact electrode is formed.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するため、半導体単結晶基板上に発光素子層が積層さ
れ、該発光素子層に接続する少なくとも1対の電極を備
えた光半導体装置において、前記基板と前記発光素子層
との間に、該発光素子層から放出された光を、発光素子
層側に反射する反射層を備えたことを特徴とするもので
ある。
According to the present invention, there is provided an optical semiconductor comprising: a light emitting element layer laminated on a semiconductor single crystal substrate; and at least one pair of electrodes connected to the light emitting element layer. The device is characterized in that a reflection layer is provided between the substrate and the light-emitting element layer, the light-emitting element layer reflecting light emitted from the light-emitting element layer.

【0010】前記基板がIII−V族化合物半導体である
とき、前記反射層がII−VI族化合物半導体の薄膜を含む
積層膜とし、該積層膜を構成する各薄膜の厚さHを、発
光素子層の発光波長をA、薄膜の屈折率をBとしたと
き、H=A/4Bを満たすことによって、外部発光効率
を向上させることができる。
When the substrate is a III-V compound semiconductor, the reflective layer is a laminated film including a thin film of a II-VI compound semiconductor, and the thickness H of each thin film constituting the laminated film is determined by a light emitting element. When the emission wavelength of the layer is A and the refractive index of the thin film is B, by satisfying H = A / 4B, the external luminous efficiency can be improved.

【0011】特に、前記基板および発光素子層がGaA
sであるとき、前記反射層をGaAs層とZnSe層の
積層膜とし、該GaAs層とZnSe層がそれぞれ少な
くとも4層ずつ交互に積層させる構造とすること、ある
いはZnSe層とZnS層の積層膜、またはZnSSe
層とZnCdS層の積層膜とし、各層がそれぞれ少なく
とも20層ずつ交互に積層させる構造とすることで、外
部発光効率を向上させることができる。
Particularly, the substrate and the light emitting element layer are made of GaAs.
When s, the reflective layer is a laminated film of a GaAs layer and a ZnSe layer, and the GaAs layer and the ZnSe layer each have at least four layers alternately laminated, or a laminated film of a ZnSe layer and a ZnS layer, Or ZnSSe
The external luminous efficiency can be improved by employing a structure in which a layer and a ZnCdS layer are stacked and each layer is alternately stacked by at least 20 layers.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1に本発明の光半導体装置の断面図を示
す。図において、1は半導体基板、2はPN接合を備え
た発光素子層、3は発光面側のオーミック接触電極、4
は発光面の裏面側のオーミック接触電極、6は薄層が積
層した構造の反射層である。オーミック接触電極3、4
間に電圧が印加されると、発光素子層2内に形成された
PN接合部分で、発光が起こる。この発光光は、発光素
子層表面の発光面側、側面側、発光面の裏面側に向かっ
て放射される。
Embodiments of the present invention will be described below. FIG. 1 shows a cross-sectional view of the optical semiconductor device of the present invention. In the figure, 1 is a semiconductor substrate, 2 is a light emitting element layer having a PN junction, 3 is an ohmic contact electrode on the light emitting surface side,
Is an ohmic contact electrode on the back side of the light emitting surface, and 6 is a reflective layer having a structure in which thin layers are stacked. Ohmic contact electrodes 3, 4
When a voltage is applied therebetween, light emission occurs at the PN junction formed in the light emitting element layer 2. This emitted light is emitted toward the light emitting surface side, the side surface side of the light emitting element layer surface, and the rear surface side of the light emitting surface.

【0013】発光光のうち発光面の裏面側に向かって放
射された光は、反射層6で反射し、発光面側に放射され
る。反射層6によって、発光面の裏面に到達する光はほ
とんどなくなり、外部発光効率は、オーミック接触電極
4の形状に影響を受けないことになる。従って、オーミ
ック接触電極に吸収され、外部に放射されなかった光
が、外部に放射されるようになり、外部発光効率が高く
なることになる。また、オーミック接触電極4の面積を
従来より広く形成することが可能となり、接触抵抗を低
減することができるという利点もある。
[0013] Of the emitted light, the light emitted toward the back surface side of the light emitting surface is reflected by the reflective layer 6 and emitted to the light emitting surface side. Due to the reflection layer 6, almost no light reaches the back surface of the light emitting surface, and the external light emission efficiency is not affected by the shape of the ohmic contact electrode 4. Therefore, the light absorbed by the ohmic contact electrode and not emitted to the outside is emitted to the outside, and the external luminous efficiency is increased. In addition, there is an advantage that the area of the ohmic contact electrode 4 can be formed wider than before, and the contact resistance can be reduced.

【0014】ここで反射層6は、半導体基板1と格子不
整合がなく、バンド不連続の影響が少ない材料を選択す
る必要がある。また、反射率を高くするため、屈折率の
異なる薄層を積層し、かつ各層の厚さが発光波長の4分
の1の厚さに設定する必要がある。更に、順方向電圧が
必要以上に上がらないようにするため、低抵抗の膜であ
ることが望ましい。
Here, it is necessary to select a material for the reflective layer 6 which has no lattice mismatch with the semiconductor substrate 1 and is less affected by band discontinuity. Further, in order to increase the reflectance, it is necessary to stack thin layers having different refractive indices, and to set the thickness of each layer to a quarter of the emission wavelength. Furthermore, in order to prevent the forward voltage from rising more than necessary, it is desirable that the film has a low resistance.

【0015】具体的に、本発明の光半導体装置は、次の
ように形成される。不純物濃度が1017atom/c
m3オーダーのN型GaAs基板上に、通常のMBE法
により、GaAs薄膜とII−VI族化合物半導体であるZ
nSe薄膜を交互に積層形成する。図2に反射層部分の
拡大図を示す。図において7はGaAs膜、8はZnS
e膜である。MBE法で形成したZnSe膜、GaAs
膜は、それぞれGa、Seが各層のドナードーパントと
なり、反射層6は、低抵抗N型層を形成する。
Specifically, the optical semiconductor device of the present invention is formed as follows. Impurity concentration is 1017 atom / c
On an n-type GaAs substrate of the order of m3, a GaAs thin film and Z-VI compound semiconductor
The nSe thin films are alternately laminated. FIG. 2 shows an enlarged view of the reflection layer portion. In the figure, 7 is a GaAs film, 8 is ZnS
e film. ZnSe film formed by MBE method, GaAs
In the film, Ga and Se serve as donor dopants for each layer, and the reflection layer 6 forms a low-resistance N-type layer.

【0016】GaAs膜7、ZnSe膜8は、反射層を
形成するため、それぞれの厚さを、次のように設定す
る。即ち、発光波長をA、膜の屈折率をBとしたとき、
層の厚さHは、H=A/4Bと設定する。
The thicknesses of the GaAs film 7 and the ZnSe film 8 are set as follows in order to form a reflection layer. That is, when the emission wavelength is A and the refractive index of the film is B,
The thickness H of the layer is set as H = A / 4B.

【0017】GaAsとZnSeは、屈折率がそれぞれ
3.62、2.50であり、屈折率の差が大きく、積層
する膜が比較的少なくても、反射率が大きくなる。図3
に、積層回数と反射率の関係を示したグラフを示す。図
3(A)に示すように、積層回数が4回(各層が交互に
4層ずつ積層される)を越えると、反射率が90%を越
え、良好な反射層となることがわかる。ここで、発光層
がGaAsの場合、発光波長は850nmとなり、効果
的な反射層を形成するためには、上述の式に従い、Ga
As、ZnSeそれぞれの膜厚は、58.7nm、8
5.0nmとなる。
GaAs and ZnSe have refractive indices of 3.62 and 2.50, respectively, and have a large difference in refractive index. Therefore, even if the number of films to be laminated is relatively small, the reflectance is large. FIG.
2 is a graph showing the relationship between the number of laminations and the reflectance. As shown in FIG. 3A, when the number of laminations exceeds four (each layer is alternately laminated by four layers), the reflectivity exceeds 90%, indicating that a good reflection layer is obtained. Here, when the light emitting layer is made of GaAs, the light emission wavelength becomes 850 nm. In order to form an effective reflection layer, Ga is calculated according to the above equation.
The thickness of each of As and ZnSe is 58.7 nm, 8
It becomes 5.0 nm.

【0018】その後、発光素子層3となる不純物濃度が
1018atom/cm3オーダーのN型GaAs層と
ほぼ等しい不純物濃度のP型GaAs層とを順に積層す
る。必要に応じて、接触抵抗を低減するためのコンタク
ト層を形成し、GaAs基板およびP型GaAs層のそ
れぞれオーミック接触する電極を形成し、光半導体装置
を形成する。
Thereafter, an N-type GaAs layer having an impurity concentration of the order of 1018 atoms / cm 3 and a P-type GaAs layer having an impurity concentration substantially equal to that of the light-emitting element layer 3 are sequentially stacked. If necessary, a contact layer for reducing contact resistance is formed, electrodes for making ohmic contact with the GaAs substrate and the P-type GaAs layer are formed, and an optical semiconductor device is formed.

【0019】ZnSeは、閃亜鉛鉱型の結晶構造を有
し、GaAsとの格子不整合が0.3%と小さく、バン
ド不連続の影響がほとんどない。また、バンドギャップ
が、GaAsに比べて十分に広いことから、発光光の吸
収がなく、発光効率に影響を与えることもないので、反
射層を構成する材料として適している。
ZnSe has a zinc blende type crystal structure, has a small lattice mismatch with GaAs of 0.3%, and is hardly affected by band discontinuity. In addition, since the band gap is sufficiently wide as compared with GaAs, there is no absorption of emitted light and there is no influence on luminous efficiency, so that it is suitable as a material forming a reflective layer.

【0020】さらに、反射層として、ZnSe薄膜とG
aAs薄膜の積層膜の代わりに、ZnSe薄層(屈折率
2.5)とZnS薄層(屈折率2.3)の積層膜、ある
いはZnSSe薄層(屈折率2.5)とZnCdS薄膜
(屈折率2.3)の積層膜であっても良い。これらの薄
膜の組み合わせは、屈折率の差が少ないため、図3
(B)に示すように、積層回数が20回を越えると、反
射率が90%を越え、良好な反射層となることがわか
る。
Further, a ZnSe thin film and G
Instead of the laminated film of the aAs thin film, a laminated film of a ZnSe thin layer (refractive index: 2.5) and a ZnS thin layer (refractive index: 2.3) or a ZnSSe thin layer (refractive index: 2.5) and a ZnCdS thin film (refractive index) A laminated film having a ratio of 2.3) may be used. The combination of these thin films has a small difference in refractive index.
As shown in (B), when the number of laminations exceeds 20, the reflectance exceeds 90%, and it can be seen that a good reflection layer is obtained.

【0021】ZnS、ZnSSeあるいはZnCdSと
も、ZnSe同様、閃亜鉛鉱型の結晶構造を有し、Ga
Asとの格子不整合が小さく、バンド不連続の影響がほ
とんどない。また、バンドギャップが、GaAsと比べ
て十分に広いことから、発光光の吸収がなく、発光効率
に影響を与えることもなく、反射層を構成する材料とし
て適している。
Like ZnSe, ZnS, ZnSSe or ZnCdS has a zinc-blende type crystal structure.
The lattice mismatch with As is small, and there is almost no influence of band discontinuity. Further, since the band gap is sufficiently wider than that of GaAs, it does not absorb emitted light and does not affect luminous efficiency, so that it is suitable as a material forming a reflective layer.

【0022】以上、GaAsからなる光半導体素子につ
いて説明を行ったが、これに限定されることなく、他の
光半導体素子について適用することができる。特に、基
板がIII−V族化合物半導体である場合、反射層がII−V
I族化合物半導体の薄膜を含む積層膜を選択すると、比
較的簡便に特性の優れた反射層を形成することができ
る。
The optical semiconductor device made of GaAs has been described above. However, the present invention is not limited to this and can be applied to other optical semiconductor devices. In particular, when the substrate is a group III-V compound semiconductor, the reflective layer
When a laminated film including a group I compound semiconductor thin film is selected, a reflective layer having excellent characteristics can be formed relatively easily.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、発
光面の裏面側に形成されるオーミック接触電極の形状に
よらず、外部発光効率の高い光半導体装置を提供するこ
とができた。本発明の反射層は、通常のMBE法によっ
て形成することができ、簡便に形成することができる。
As described above, according to the present invention, an optical semiconductor device having high external luminous efficiency can be provided irrespective of the shape of the ohmic contact electrode formed on the back surface side of the light emitting surface. The reflective layer of the present invention can be formed by an ordinary MBE method, and can be formed easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を説明する図である。FIG. 1 is a diagram illustrating an embodiment of the present invention.

【図2】本発明の実施の形態を説明する図である。FIG. 2 is a diagram illustrating an embodiment of the present invention.

【図3】本発明の実施の形態を説明する図である。FIG. 3 is a diagram illustrating an embodiment of the present invention.

【図4】従来のこの種の光半導体装置の断面図である。FIG. 4 is a sectional view of a conventional optical semiconductor device of this type.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 発光素子層 3、4 オーミック接触電極 5 反射面 6 反射層 7 GaAs層 8 ZnSe層 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Light emitting element layer 3, 4 Ohmic contact electrode 5 Reflection surface 6 Reflection layer 7 GaAs layer 8 ZnSe layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体単結晶基板上に発光素子層が積層
され、該発光素子層に接続する少なくとも1対の電極を
備えた光半導体装置において、 前記基板と前記発光素子層との間に、該発光素子層から
放出された光を、発光素子層側に反射する反射層を備え
たことを特徴とする光半導体装置。
1. An optical semiconductor device comprising: a light emitting element layer laminated on a semiconductor single crystal substrate; and at least one pair of electrodes connected to the light emitting element layer, wherein between the substrate and the light emitting element layer: An optical semiconductor device, comprising: a reflection layer that reflects light emitted from the light emitting element layer toward the light emitting element layer.
【請求項2】 請求項1記載の光半導体装置において、
前記基板がIII−V族化合物半導体であることと、前記
反射層がII−VI族化合物半導体の薄膜を含む積層膜であ
ることと、該積層膜を構成する各薄膜の厚さHが、発光
素子層の発光波長をA、薄膜の屈折率をBとしたとき、
H=A/4Bをほぼ満たすことを特徴とする光半導体装
置。
2. The optical semiconductor device according to claim 1, wherein
The substrate is a III-V compound semiconductor, the reflective layer is a laminated film including a II-VI compound semiconductor thin film, and the thickness H of each thin film constituting the laminated film is light emission. When the emission wavelength of the element layer is A and the refractive index of the thin film is B,
An optical semiconductor device substantially satisfying H = A / 4B.
【請求項3】 請求項2記載の光半導体装置において、
前記基板および発光素子層がGaAsであることと、前
記反射層がGaAs層とZnSe層の積層膜であること
と、該GaAs層とZnSe層がそれぞれ交互に少なく
とも4層ずつ積層していることを特徴とする光半導体装
置。
3. The optical semiconductor device according to claim 2, wherein
The substrate and the light-emitting element layer are made of GaAs, the reflective layer is a laminated film of a GaAs layer and a ZnSe layer, and the GaAs layer and the ZnSe layer are each alternately laminated in at least four layers. An optical semiconductor device characterized by the following.
【請求項4】 請求項2記載の光半導体装置において、
前記基板および発光素子層がGaAsであることと、前
記反射層がZnSe層とZnS層の積層膜であること
と、該ZnSe層とZnS層がそれぞれ交互に少なくと
も20層ずつ積層していることを特徴とする光半導体装
置。
4. The optical semiconductor device according to claim 2, wherein
The substrate and the light emitting element layer are made of GaAs, the reflective layer is a laminated film of a ZnSe layer and a ZnS layer, and the ZnSe layer and the ZnS layer are alternately laminated at least 20 layers each. An optical semiconductor device characterized by the following.
【請求項5】 請求項2記載の光半導体装置において、
前記基板および発光素子層が、GaAsであることと、
前記反射層がZnSSe層とZnCdS層の積層膜であ
ることと、該ZnSSe層とZnCdS層がそれぞれ交
互に少なくとも20層ずつ積層していることを特徴とす
る光半導体装置。
5. The optical semiconductor device according to claim 2, wherein
The substrate and the light emitting element layer are made of GaAs;
An optical semiconductor device, wherein the reflection layer is a laminated film of a ZnSSe layer and a ZnCdS layer, and at least 20 layers of the ZnSSe layer and the ZnCdS layer are alternately laminated.
JP31422697A 1997-10-30 1997-10-30 Optical semiconductor device Pending JPH11135833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31422697A JPH11135833A (en) 1997-10-30 1997-10-30 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31422697A JPH11135833A (en) 1997-10-30 1997-10-30 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH11135833A true JPH11135833A (en) 1999-05-21

Family

ID=18050811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31422697A Pending JPH11135833A (en) 1997-10-30 1997-10-30 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH11135833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503090A (en) * 2004-06-18 2008-01-31 スリーエム イノベイティブ プロパティズ カンパニー II-VI / III-V layered structure on InP substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503090A (en) * 2004-06-18 2008-01-31 スリーエム イノベイティブ プロパティズ カンパニー II-VI / III-V layered structure on InP substrate
KR101227293B1 (en) 2004-06-18 2013-01-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Ii-vi/iii-v layered construction on inp substrate

Similar Documents

Publication Publication Date Title
US6015719A (en) Transparent substrate light emitting diodes with directed light output
US6646292B2 (en) Semiconductor light emitting device and method
US7683378B2 (en) Light emitting diode and method for fabricating same
US20110133208A1 (en) Semiconductor element
US8648990B2 (en) Optical device
KR20080070696A (en) Nitride semiconductor light emitting device
KR20130024852A (en) Semiconductor light emitting device including metal reflecting layer
US20040238811A1 (en) Semiconductor light-emitting device
US20030183824A1 (en) Semiconductor light-emitting device, method for fabricating semiconductor light-emitting device, and electrode layer connection structure
JP2007019488A (en) Semiconductor light emitting element
TWI636582B (en) Light emitting device
JP2005268601A (en) Compound semiconductor light-emitting device
JP2007258277A (en) Semiconductor light emitting device
JPS59205774A (en) Semiconductor light-emitting element
EP3882988A1 (en) Light-emitting diode
CN111164770B (en) Micro light-emitting diode chip, manufacturing method thereof and display device
JP2004349301A (en) Light emitting diode element electrode and light emitting diode element
CN102299224A (en) Light-emitting diode
JP3212008B2 (en) Gallium nitride based compound semiconductor laser device
JPH11135833A (en) Optical semiconductor device
US20230343893A1 (en) Led epitaxial structure and led chip
CN202282380U (en) Light-emitting diode
CN115274969A (en) Micro-LED chip structure and manufacturing method thereof
JP2005136033A (en) Semiconductor light emitting element
JPH07122780A (en) Led array and manufacture thereof