JPH11135051A - Charged particle beam device - Google Patents

Charged particle beam device

Info

Publication number
JPH11135051A
JPH11135051A JP10225483A JP22548398A JPH11135051A JP H11135051 A JPH11135051 A JP H11135051A JP 10225483 A JP10225483 A JP 10225483A JP 22548398 A JP22548398 A JP 22548398A JP H11135051 A JPH11135051 A JP H11135051A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
support mechanism
detector
moving means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10225483A
Other languages
Japanese (ja)
Other versions
JP3408972B2 (en
Inventor
Takeshi Onishi
毅 大西
Toru Ishitani
亨 石谷
Yasushi Suketa
裕史 助田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1292452A external-priority patent/JPH03154784A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22548398A priority Critical patent/JP3408972B2/en
Publication of JPH11135051A publication Critical patent/JPH11135051A/en
Application granted granted Critical
Publication of JP3408972B2 publication Critical patent/JP3408972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate the handling of fine parts, or an observation object by using a bimorph type piezoelectric device for a support mechanism for supporting a part or an irradiation object of a charged particle beam by its tip part and providing a moving means for moving this support mechanism. SOLUTION: A bimorph type piezoelectric device used for a tweezers mechanism as a support mechanism is formed by sandwiching two piezoelectric materials between three electrode plates and, when a voltage is applied thereon, the piezoelectric element is bent. This tweezers mechanism has a simple constitution and a small size so as to be suited to the utilization for holding a fine part. In this support system having the tweezers mechanism mounted thereon, three laminated type piezoelectric device blocks 3 are piled with their displacement direction inclined at 90 deg. respectively so as to be constituted into a triaxial manipulator. The laminated type piezoelectric device has small drift and hysteresis, while having high positional accuracy and being strong against vibration so that it is suited to the applications required highly precise positioning.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、荷電粒子ビーム装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam apparatus.

【0002】[0002]

【従来の技術】従来、荷電粒子ビームの観察対象になる
ような微細部品の取り扱いは、対象が微細であるが故に
部品の位置合わせが困難であった。また、微細部品であ
るが故に表面張力や静電気の吸引力等の影響が支配的で
あり、部品の移送や特定個所への部品の位置付けが困難
であった。
2. Description of the Related Art Heretofore, it has been difficult to handle a fine component which is to be an object to be observed by a charged particle beam because the object is fine. In addition, the influence of surface tension, electrostatic attraction, and the like is dominant because the component is a fine component, and it has been difficult to transfer the component and position the component at a specific location.

【0003】荷電粒子ビームの観察の場合ではないが、
微細な物品、例えば半導体ペレット等を支持する支持機
構は、特公昭56−52448号公報に記載されている
ように、真空吸着するための開孔を備えた支持具を有
し、これに半導体ペレット等を真空吸着していた。この
支持機構により、微細な物品を損傷を与えることなく支
持することが可能であった。
[0003] Not in the case of observation of a charged particle beam,
As described in Japanese Patent Publication No. 56-52448, a support mechanism for supporting a fine article, for example, a semiconductor pellet or the like has a support provided with an opening for vacuum suction. Etc. were adsorbed in vacuum. With this support mechanism, it was possible to support a fine article without damaging it.

【0004】[0004]

【発明が解決しようとする課題】上記の従来技術は、大
気中での使用を前提としたものであり、荷電粒子ビーム
装置内での使用は原理的に不可能であるという問題があ
った。それ故、荷電粒子ビーム装置では、微細な部品の
位置合わせ、部品の移送や特定個所への部品の位置付け
は困難であった。
The above prior art is based on the premise that it is used in the atmosphere, and has a problem that it cannot be used in a charged particle beam apparatus in principle. Therefore, in the charged particle beam apparatus, it is difficult to align a fine component, transfer the component, or position the component at a specific location.

【0005】本発明の目的は、観察対象となる微細部品
を取り扱うことの可能な荷電粒子ビーム装置を提供する
ことにある。
An object of the present invention is to provide a charged particle beam apparatus capable of handling a fine part to be observed.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の荷電粒子ビーム装置は、収束した荷電粒子
ビームを照射するための荷電粒子ビーム光学系と、荷電
粒子ビームの照射対象から発生する二次荷電粒子を検出
するための検出器と、この検出器で得られた二次荷電粒
子に基づいて荷電粒子像を形成する画像表示装置と、先
端部に部品を支持する支持機構と、この支持機構を移動
する移動手段を備えるようにしたものである。
In order to achieve the above object, a charged particle beam apparatus according to the present invention comprises a charged particle beam optical system for irradiating a converged charged particle beam, and a charged particle beam irradiation system. A detector for detecting the secondary charged particles generated, an image display device that forms a charged particle image based on the secondary charged particles obtained by this detector, and a support mechanism that supports the component at the tip end And a moving means for moving the support mechanism.

【0007】この荷電粒子ビーム装置の移動手段は、支
持機構を微動させるための微動手段及びこの微動手段を
移動させるための粗動手段を備えたもでもよい。この微
動手段は、積層型圧電素子を連結した多軸マニピュレー
ターであってもよい。
The moving means of the charged particle beam apparatus may include fine moving means for finely moving the support mechanism and coarse moving means for moving the fine moving means. This fine movement means may be a multi-axis manipulator in which laminated piezoelectric elements are connected.

【0008】また、上記目的を達成するために、本発明
の荷電粒子ビーム装置は、収束した荷電粒子ビームを照
射するための荷電粒子ビーム光学系と、荷電粒子ビーム
の照射対象から発生する二次荷電粒子を検出するための
検出器と、この検出器で得られた二次荷電粒子に基づい
て荷電粒子像を形成する画像表示装置と、先端部に部品
を支持する支持機構と、この支持機構を移動する移動手
段を備え、この移動手段をバイモルフ型圧電素子を連結
した多軸マニピュレーターとするようにしたものであ
る。
In order to achieve the above object, a charged particle beam apparatus according to the present invention comprises a charged particle beam optical system for irradiating a converged charged particle beam, and a secondary beam generated from an object to be irradiated with the charged particle beam. A detector for detecting charged particles, an image display device for forming a charged particle image based on the secondary charged particles obtained by the detector, a support mechanism for supporting a component at a tip end, and the support mechanism And a multi-axis manipulator to which a bimorph type piezoelectric element is connected.

【0009】また、上記目的を達成するために、本発明
の荷電粒子ビーム装置は、収束した荷電粒子ビームを照
射するための荷電粒子ビーム光学系と、荷電粒子ビーム
の照射対象から発生する二次荷電粒子を検出するための
検出器と、この検出器で得られた二次荷電粒子に基づい
て荷電粒子像を形成する画像表示装置と、先端部に部品
を支持する支持機構と、この支持機構を移動する移動手
段を備え、この移動手段を積層型圧電素子を連結した多
軸マニピュレーターとするようにしたものである。
In order to achieve the above object, a charged particle beam apparatus according to the present invention comprises: a charged particle beam optical system for irradiating a focused charged particle beam; and a secondary beam generated from a charged particle beam irradiation target. A detector for detecting charged particles, an image display device for forming a charged particle image based on the secondary charged particles obtained by the detector, a support mechanism for supporting a component at a tip end, and the support mechanism The moving means is a multi-axis manipulator connected with a laminated piezoelectric element.

【0010】[0010]

【作用】バイモルフ型圧電素子は、電圧を印加すること
により撓み運動をする。それ故、二枚の板状体の少なく
とも一方をバイモルフ型圧電素子とし、両者を重ね合わ
せ、該素子に電圧を印加すれば一端が近接、離隔し、開
閉運動をする。よって支持機構として作用する。
The bimorph type piezoelectric element bends when a voltage is applied. Therefore, at least one of the two plate-like bodies is a bimorph-type piezoelectric element, and the two are overlapped. When a voltage is applied to the element, one end approaches and separates, and opens and closes. Therefore, it acts as a support mechanism.

【0011】[0011]

【実施例】以下、本発明の実施例を図を用いて説明す
る。 実施例 1 第1図は本発明の支持機構の一実施例であるピンセット
機構を示す構成図である。ここで用たバイモルフ型圧電
素子は、第1図(a)に示すように、3枚の電極板の間
に2枚の圧電材料102(ジルコン酸チタン酸塩)を挾
み込んだもので、中間電極100と外側の側壁電極10
1との間に電源2から電圧を印加すると圧電素子はわん
曲する。第1図(b)及び(c)に示すように、くさび
型に加工した一対のバイモルフ型圧電素子1a、1bを
重ね合わせ、ピンセット機構を形成した。すなわち、圧
電素子板一枚から、くさび型図形を線対象に一組切り抜
き、印加電圧の極性に対するわん曲方向が相反するよう
に重ね合わせ、ピンセット先端の開閉運動を可能とし
た。第1図(b)は電源2の出力電圧を0Vとし、ピン
セットが閉じた状態を示したものである。この場合、圧
電素子の弾性力により、ピンセットは閉じている。試料
を挾む力が不足する場合は、電源2の出力電圧極性を変
えて、圧電素子を内側にわん曲させ、挾む力を増大させ
る。第1図(c)は中間電極に+30Vの電圧を印加
し、ピンセットを開いた様子を示したものである。ピン
セット長30mmで500μmの開口距離が得られた。
より大きな試料を掴みたい場合やピンセットと試料との
接触状態を最適化したい場合は、ピンセットを構成する
2枚の板の間にスペーサを挿入すれば良い。本実施例の
ピンセット機構は構成がシンプルで軽量小型であり、特
に真空中で微細部品をソフトに掴む用途に好適である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 is a configuration diagram showing a tweezers mechanism which is one embodiment of a support mechanism of the present invention. The bimorph type piezoelectric element used here is one in which two piezoelectric materials 102 (zirconate titanate) are sandwiched between three electrode plates as shown in FIG. 100 and outer side wall electrode 10
When a voltage is applied from the power supply 2 to the piezoelectric element 1, the piezoelectric element bends. As shown in FIGS. 1 (b) and 1 (c), a pair of wedge-shaped bimorph type piezoelectric elements 1a and 1b were overlapped to form a tweezers mechanism. That is, a set of wedge-shaped figures was cut out from a single piezoelectric element plate in a line object and superposed such that the bending directions with respect to the polarity of the applied voltage were opposite to each other, thereby enabling the opening and closing movement of the tip of the tweezers. FIG. 1B shows a state in which the output voltage of the power supply 2 is 0 V and the tweezers are closed. In this case, the tweezers are closed by the elastic force of the piezoelectric element. When the force for holding the sample is insufficient, the output voltage polarity of the power supply 2 is changed to bend the piezoelectric element inward, thereby increasing the holding force. FIG. 1 (c) shows a state where a voltage of +30 V is applied to the intermediate electrode and the tweezers are opened. An opening distance of 500 μm was obtained with a tweezer length of 30 mm.
If a larger sample is to be gripped or if the contact between the tweezers and the sample is to be optimized, a spacer may be inserted between the two plates constituting the tweezers. The tweezers mechanism of the present embodiment has a simple configuration, is lightweight and small, and is particularly suitable for use in softly grasping fine parts in a vacuum.

【0012】実施例 2 第2図に、ピンセット機構をバイモルフ型圧電素子を連
結した3軸マニピュレーター先端に装着し、試料の3次
元移動を可能とした支持システムを示す。バイモルフ型
圧電素子1c、1d、1eを90度ずつ曲げて接続し、
x、y、zの3軸の駆動を可能とし、先端に実施例1で
示したピンセット機構を装着した。圧電素子寸法は10
mm×30mm、厚みは0.5mmである。中間電極と
側壁電極との間に±30V印加すると約±500μmの
変位が得られる。本実施例では、各圧電素子1c、1
d、1eに3個の電源(図示せず)を直接接続した。バ
イモルフ型圧電素子はたわみ運動するため、各素子の先
端部は一軸の変位とはならない。つまり、圧電素子1c
に印加する出力電圧を変えることで、ピンセット機構先
端はx軸とy軸の2軸変化する。このような構成でも、
試料を顕微鏡等で観察しながら電源を操作することによ
り、マニピュレーターとして十分実用になる。各軸単独
に操作したい場合は、直交座標系の移動データー信号か
ら各圧電素子の駆動電圧を発生する補正回路を用いれば
よい。この補正回路を実現する手法として、演算による
ものと対応表によるものとがある。
Embodiment 2 FIG. 2 shows a support system in which a tweezers mechanism is mounted on the tip of a three-axis manipulator to which a bimorph-type piezoelectric element is connected to enable three-dimensional movement of a sample. The bimorph-type piezoelectric elements 1c, 1d, and 1e are bent at 90 degrees and connected,
Driving in three axes of x, y, and z was enabled, and the tweezers mechanism shown in Example 1 was attached to the end. Piezoelectric element size is 10
mm × 30 mm, and the thickness is 0.5 mm. When ± 30 V is applied between the intermediate electrode and the side wall electrode, a displacement of about ± 500 μm is obtained. In this embodiment, each of the piezoelectric elements 1c, 1c
Three power supplies (not shown) were directly connected to d and 1e. Since the bimorph type piezoelectric element bends, the tip of each element is not uniaxially displaced. That is, the piezoelectric element 1c
, The tip of the tweezers mechanism changes in two axes, x-axis and y-axis. Even in such a configuration,
By operating the power supply while observing the sample with a microscope or the like, it becomes practical enough as a manipulator. When it is desired to operate each axis independently, a correction circuit that generates a drive voltage for each piezoelectric element from a movement data signal in the rectangular coordinate system may be used. As a method of realizing this correction circuit, there are a method by calculation and a method by a correspondence table.

【0013】本実施例の支持システムは、バイモルフ型
圧電素子を利用しているため、小型軽量にもかかわらず
移動距離が大きく、例えば、半導体チップ等の軽量部品
をソフトに運搬する用途に適している。
Since the support system of this embodiment uses a bimorph type piezoelectric element, it has a large moving distance in spite of its small size and light weight. For example, it is suitable for softly transporting lightweight components such as semiconductor chips. I have.

【0014】実施例 3 第3図は、積層型圧電素子ブロック3を変位の方向を各
90度傾けて3個積み重ねて構成した3軸マニピュレー
ターに、実施例1に示したピンセット機構を搭載した支
持システムの例である。積層型圧電素子は移動距離が小
さい欠点を有するが、ドリフトやヒステリシスが小さ
く、位置精度が高く振動にも強いため、高精度の位置決
めが要求される用途に好適である。
Embodiment 3 FIG. 3 shows a support in which the tweezers mechanism shown in Embodiment 1 is mounted on a three-axis manipulator in which three stacked piezoelectric element blocks 3 are stacked with a displacement direction inclined by 90 degrees and stacked. It is an example of a system. Although the multilayer piezoelectric element has a drawback that the moving distance is short, it has a small drift and hysteresis, and has a high positional accuracy and is resistant to vibration. Therefore, it is suitable for applications requiring high-precision positioning.

【0015】実施例 4 実用的な駆動距離を確保するために、第3図に示した3
軸マニピュレーターを別の広範囲に移動できるマニピュ
レーターにさらに連結して装置構成した例を示す。本実
施例の支持システムは、第4図に示すように、実施例1
に示したピンセット機構20を、実施例3に示した積層
型圧電ブロックを連結した3軸マニピュレーターよりな
る微動手段21に搭載し、この微動手段21をさらにス
テッピングモーターとウォームギヤを用いた粗動手段2
2に連結し、これらを制御する制御手段23を設けたも
のである。積層型圧電ブロックを用いた3軸マニピュレ
ーターは高精度の位置決めが可能であるが、変位量が1
0〜100μmと小さいので本実施例のように粗動手段
と組み合わせて用いることが好ましい。また微動手段2
1として変位量が大きいものを用いれば粗動手段はなく
てもよい。
Embodiment 4 In order to secure a practical driving distance, the driving distance shown in FIG.
An example is shown in which the axis manipulator is further connected to another manipulator that can move over a wide range and the apparatus is configured. As shown in FIG. 4, the support system of the present embodiment is the same as that of the first embodiment.
The tweezers mechanism 20 shown in FIG. 3 is mounted on the fine movement means 21 composed of a three-axis manipulator connected to the laminated piezoelectric block shown in the third embodiment, and this fine movement means 21 is further provided with a coarse movement means 2 using a stepping motor and a worm gear.
2 and a control means 23 for controlling them. A three-axis manipulator using a laminated piezoelectric block can perform high-precision positioning, but has a displacement of 1
Since it is as small as 0 to 100 μm, it is preferable to use it in combination with the coarse moving means as in this embodiment. Fine movement means 2
If a large displacement amount is used as 1, the coarse movement means may be omitted.

【0016】実施例 5 第5図に、実施例1に示したピンセット機構を有する組
立て装置を示す。この組立て装置は、真空装置(図示せ
ず)内に、試料台40、集束した荷電粒子ビームを試料
台上の試料41に照射するための集束イオンビーム光学
系30、試料41から発生する二次荷電粒子を検出する
2次荷電粒子検出器33、試料を保持し、移動させるた
めのピンセット機構20、ピンセット機構20を移動さ
せる微動手段21及びガスを導入するノズル9を配置
し、さらにピンセット機構20と微動手段 21を制御
する制御手段23、試料からビーム掃引に同期して発生
した二次荷電粒子を検出して画像でモニターするための
画像表示装置(CRT)32及び集束イオンビーム光学
系を制御する偏向制御装置31を設けてある。また、上
記ピンセット機構を介して試料に電圧を印加するための
電源(図示せず)が設けられている。なお、本実施例に
おいて、微動手段21として、実施例2に記載のバイモ
ルフ型圧電素子を連結した3軸マニピュレーターを用い
た。
Fifth Embodiment FIG. 5 shows an assembling apparatus having the tweezers mechanism shown in the first embodiment. This assembling apparatus includes, in a vacuum apparatus (not shown), a sample stage 40, a focused ion beam optical system 30 for irradiating the sample 41 on the sample stage with the focused charged particle beam, and a secondary beam generated from the sample 41. A secondary charged particle detector 33 for detecting charged particles, a tweezer mechanism 20 for holding and moving the sample, fine movement means 21 for moving the tweezer mechanism 20, and a nozzle 9 for introducing gas are arranged. Control means 23 for controlling fine movement means 21; controlling image display device (CRT) 32 for detecting secondary charged particles generated from the sample in synchronization with beam sweep and monitoring the image; and focused ion beam optical system. A deflection control device 31 is provided. Further, a power supply (not shown) for applying a voltage to the sample via the tweezers mechanism is provided. In this embodiment, a three-axis manipulator to which the bimorph type piezoelectric element described in the second embodiment is connected is used as the fine movement means 21.

【0017】次にこの装置を用いて半導体レーザーを実
装した例を示す。第6図は、実装する試料近傍の斜視図
である。半導体レーザーチップ5を導波路6端面に実装
する場合、良好な結合効率を得るためには正確な位置合
わせが必要である。これを行なうには、(1)半導体レ
ーザーを実際に発光させ、導波路に入射した光の強度を
測定しながら位置合わせを行なう方法と、(2)導波路
の出力端から逆に光を入射し、半導体レーザーを光セン
サーとして動作させて、光強度を測定しながら位置合わ
せを行なう方法がある。本実施例は前者の方法を用いた
もので、ピンセット機構20を介して半導体レーザーチ
ップ5に電源11を接続し、位置合わせを行なった。半
導体レーザーチップ5の固定及び配線はW(CO)6金属
ガス10雰囲気中での集束イオンビーム(FIB)4照
射によるW堆積膜7により電源ライン8に接続すること
で行なった。ガスはノズル9により加工部に局所照射し
た。本実施例のように、ピンセット機構を介して、試料
と外部回路との電気的接続を行なうと、試料を動作させ
ながら運搬することが可能となる。
Next, an example in which a semiconductor laser is mounted using this apparatus will be described. FIG. 6 is a perspective view near the sample to be mounted. When the semiconductor laser chip 5 is mounted on the end face of the waveguide 6, accurate positioning is required to obtain good coupling efficiency. To do this, (1) a method of actually causing the semiconductor laser to emit light and performing alignment while measuring the intensity of light incident on the waveguide, and (2) light incident from the output end of the waveguide in reverse. Then, there is a method in which the semiconductor laser is operated as an optical sensor to perform alignment while measuring light intensity. In this embodiment, the former method is used, and the power source 11 is connected to the semiconductor laser chip 5 via the tweezers mechanism 20 to perform the alignment. The fixing and wiring of the semiconductor laser chip 5 were performed by connecting to a power supply line 8 by a W deposited film 7 by irradiation of a focused ion beam (FIB) 4 in an atmosphere of W (CO) 6 metal gas 10. The gas was locally irradiated to the processing portion by the nozzle 9. When the sample and the external circuit are electrically connected via the tweezers mechanism as in the present embodiment, the sample can be transported while operating.

【0018】本実施例のように、FIBを利用して試料
の固定や配線を行なう場合、デバイスの状況を、FIB
掃引に同期して検出した二次荷電粒子(二次電子、二次
イオン)による画像でモニターする。二次荷電粒子は低
エネルギー粒子であり、それらの運動軌道は1次ビーム
照射部近傍の電界及び磁界に影響されやすい。従って、
ピンセット機構の電位は、二次電子を検出する場合0V
以下の負電位に、正の二次イオンを検出する場合0V以
上の正電位にする必要があり、これにより荷電粒子が捕
獲されず、検出感度の低下を防ぐことができる。試料に
異なる電位を供給する必要のない場合や、ピンセット先
端部でコンタクト点を有する配線を這わせ、試料に電源
供給等を行なう場合は、圧電素子側壁を接地電位とする
ことで、1次ビーム及び2次ビームへの影響を無くすこ
とができる。バイモルフ型圧電素子は積層構造の見える
端面に中間電極が露出する。これにより、周囲に電界が
しみだし、これがビーム照射部近傍にある場合、二次電
子等に影響を与える。従って、中間電極を側壁電極より
小さくする等により、側壁電極で中間電極により発生す
る電界をシールドすることが望ましい。
When a sample is fixed or wired using FIB as in this embodiment, the status of the device is changed to FIB.
Monitoring is performed using an image of secondary charged particles (secondary electrons, secondary ions) detected in synchronization with the sweep. Secondary charged particles are low energy particles, and their trajectories are easily affected by electric and magnetic fields near the primary beam irradiation part. Therefore,
The potential of the tweezer mechanism is 0 V when secondary electrons are detected.
When a positive secondary ion is detected at the following negative potential, it is necessary to set the positive potential at 0 V or more, whereby charged particles are not captured, and a decrease in detection sensitivity can be prevented. When it is not necessary to supply a different potential to the sample, or when power is supplied to the sample by laying wires with contact points at the tip of the tweezers, the primary beam is set by setting the piezoelectric element side wall to the ground potential. And the influence on the secondary beam can be eliminated. In the bimorph type piezoelectric element, the intermediate electrode is exposed on the visible end face of the laminated structure. As a result, an electric field seeps around, and if this is near the beam irradiation part, it affects secondary electrons and the like. Therefore, it is desirable to shield the electric field generated by the intermediate electrode at the side wall electrode by making the intermediate electrode smaller than the side wall electrode.

【0019】[0019]

【発明の効果】本発明によれば、真空中で微細部品をソ
フトに保持することができる。また、試料を電気的動作
させながら運搬することもできる。
According to the present invention, a fine component can be softly held in a vacuum. In addition, the sample can be transported while being electrically operated.

【図面の簡単な説明】[Brief description of the drawings]

【第1図】本発明に用いる支持機構の基本構成を示す一
実施例の構成図。
FIG. 1 is a configuration diagram of an embodiment showing a basic configuration of a support mechanism used in the present invention.

【第2図】本発明に用いる3軸マニピュレーターと支持
機構とを組み合わせた一実施例の構成図。
FIG. 2 is a configuration diagram of an embodiment in which a three-axis manipulator and a support mechanism used in the present invention are combined.

【第3図】本発明に用いる3軸マニピュレーターと支持
機構とを組み合わせた一実施例の構成図。
FIG. 3 is a configuration diagram of an embodiment in which a three-axis manipulator and a support mechanism used in the present invention are combined.

【第4図】本発明に用いる支持システムの一実施例の構
成図。
FIG. 4 is a configuration diagram of one embodiment of a support system used in the present invention.

【第5図】本発明に用いる組立装置の一実施例の構成
図。
FIG. 5 is a configuration diagram of an embodiment of an assembling apparatus used in the present invention.

【第6図】第5図に示した組立装置の試料近傍の斜視
図。
FIG. 6 is a perspective view showing the vicinity of a sample of the assembling apparatus shown in FIG. 5;

【符号の説明】[Explanation of symbols]

1a、1b、1c、1d、1e…バイモルフ型圧電素子 2…電源 3…積層型圧電素子ブロック 4…集束イオンビーム 5…半導体レーザーチップ 6…導波路 7…堆積膜 8…電源ライン 9…ノズル 10…ガス 11…電源 20…ピンセット機構 21…微動手段 22…粗動手段 23…制御手段 30…集束イオンビーム光学系 31…偏向制御装置 32…画像表示装置 33…2次荷電粒子検出器 40…試料台 41…試料 100…中間電極 101…側壁電極 102…圧電材料 1a, 1b, 1c, 1d, 1e: Bimorph type piezoelectric element 2: Power source 3: Stacked piezoelectric element block 4: Focused ion beam 5: Semiconductor laser chip 6: Waveguide 7: Deposited film 8: Power supply line 9: Nozzle 10 ... gas 11 ... power supply 20 ... tweezers mechanism 21 ... fine movement means 22 ... coarse movement means 23 ... control means 30 ... focused ion beam optical system 31 ... deflection control device 32 ... image display device 33 ... secondary charged particle detector 40 ... sample Table 41: Sample 100: Intermediate electrode 101: Side wall electrode 102: Piezoelectric material

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】収束した荷電粒子ビームを照射するための
荷電粒子ビーム光学系と、上記荷電粒子ビームの照射対
象から発生する二次荷電粒子を検出するための検出器
と、該検出器で得られた二次荷電粒子に基づいて荷電粒
子像を形成する画像表示装置を備えた荷電粒子ビーム装
置において、先端部に部品を支持する支持機構と、該支
持機構を移動する移動手段を備えたことを特徴とする荷
電粒子ビーム装置。
1. A charged particle beam optical system for irradiating a converged charged particle beam, a detector for detecting secondary charged particles generated from an irradiation target of the charged particle beam, and a detector obtained by the detector. In a charged particle beam apparatus having an image display device for forming a charged particle image based on the obtained secondary charged particles, a support mechanism for supporting a component at a tip portion and a moving means for moving the support mechanism are provided. A charged particle beam device characterized by the above-mentioned.
【請求項2】請求項1記載の荷電粒子ビーム装置におい
て、上記移動手段は、バイモルフ型圧電素子を連結した
多軸マニピュレーターであることを特徴とする荷電粒子
ビーム装置。
2. A charged particle beam apparatus according to claim 1, wherein said moving means is a multi-axis manipulator connected to a bimorph type piezoelectric element.
【請求項3】請求項1記載の荷電粒子ビーム装置におい
て、上記移動手段は、積層型圧電素子を連結した多軸マ
ニピュレーターであることを特徴とする荷電粒子ビーム
装置。
3. A charged particle beam apparatus according to claim 1, wherein said moving means is a multi-axis manipulator connected to a stacked piezoelectric element.
【請求項4】請求項1記載の荷電粒子ビーム装置におい
て、上記移動手段は、上記支持機構を微動させるための
微動手段及び該微動手段を移動させるための粗動手段を
備えてなることを特徴とする荷電粒子ビーム装置。
4. A charged particle beam apparatus according to claim 1, wherein said moving means comprises fine moving means for finely moving said support mechanism and coarse moving means for moving said fine moving means. Charged particle beam device.
【請求項5】請求項4記載の荷電粒子ビーム装置におい
て、上記微動手段は、積層型圧電素子を連結した多軸マ
ニピュレーターであることを特徴とする荷電粒子ビーム
装置。
5. A charged particle beam apparatus according to claim 4, wherein said fine movement means is a multi-axis manipulator connected with a laminated piezoelectric element.
【請求項6】請求項1記載の荷電粒子ビーム装置におい
て、上記支持機構の先端部に支持された部品と他の部品
との間を、上記荷電粒子ビームの照射を伴うガス放出に
よって接続するためのガス源を備えたことを特徴とする
荷電粒子ビーム装置。
6. A charged particle beam apparatus according to claim 1, wherein a part supported by the tip of said support mechanism and another part are connected by gas discharge accompanied by irradiation of said charged particle beam. A charged particle beam apparatus comprising: a gas source;
【請求項7】収束した荷電粒子ビームを照射するための
荷電粒子ビーム光学系と、上記荷電粒子ビームの照射対
象から発生する二次荷電粒子を検出するための検出器
と、該検出器で得られた二次荷電粒子に基づいて荷電粒
子像を形成する画像表示装置を備えた荷電粒子ビーム装
置において、先端部に部品を支持する支持機構と、該支
持機構を移動する移動手段を備え、該移動手段がバイモ
ルフ型圧電素子を連結した多軸マニピュレーターである
ことを特徴とする荷電粒子ビーム装置。
7. A charged particle beam optical system for irradiating a converged charged particle beam, a detector for detecting secondary charged particles generated from an object to be irradiated with the charged particle beam, and a detector obtained by the detector. In a charged particle beam apparatus including an image display device that forms a charged particle image based on the secondary charged particles, a support mechanism that supports a component at a tip portion, and a moving unit that moves the support mechanism, A charged particle beam apparatus, wherein the moving means is a multi-axis manipulator to which a bimorph type piezoelectric element is connected.
【請求項8】収束した荷電粒子ビームを照射するための
荷電粒子ビーム光学系と、上記荷電粒子ビームの照射対
象から発生する二次荷電粒子を検出するための検出器
と、該検出器で得られた二次荷電粒子に基づいて荷電粒
子像を形成する画像表示装置を備えた荷電粒子ビーム装
置において、先端部に部品を支持する支持機構と、該支
持機構を移動する移動手段を備え、該移動手段が積層型
圧電素子を連結した多軸マニピュレーターであることを
特徴とする荷電粒子ビーム装置。
8. A charged particle beam optical system for irradiating a converged charged particle beam, a detector for detecting secondary charged particles generated from an object to be irradiated with the charged particle beam, and a detector obtained by the detector. In a charged particle beam apparatus including an image display device that forms a charged particle image based on the secondary charged particles, a support mechanism that supports a component at a tip portion, and a moving unit that moves the support mechanism, A charged particle beam apparatus, wherein the moving means is a multi-axis manipulator connected to a stacked piezoelectric element.
JP22548398A 1989-11-13 1998-08-10 Charged particle beam apparatus and processing method Expired - Fee Related JP3408972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22548398A JP3408972B2 (en) 1989-11-13 1998-08-10 Charged particle beam apparatus and processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1292452A JPH03154784A (en) 1989-11-13 1989-11-13 Support mechanism, support system, assembly method and assembly device using thereof
JP22548398A JP3408972B2 (en) 1989-11-13 1998-08-10 Charged particle beam apparatus and processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1292452A Division JPH03154784A (en) 1989-11-13 1989-11-13 Support mechanism, support system, assembly method and assembly device using thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003032000A Division JP3495037B2 (en) 2003-02-10 2003-02-10 Charged particle beam apparatus and method of assembling parts using the same

Publications (2)

Publication Number Publication Date
JPH11135051A true JPH11135051A (en) 1999-05-21
JP3408972B2 JP3408972B2 (en) 2003-05-19

Family

ID=34466501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22548398A Expired - Fee Related JP3408972B2 (en) 1989-11-13 1998-08-10 Charged particle beam apparatus and processing method

Country Status (1)

Country Link
JP (1) JP3408972B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031789A3 (en) * 2003-09-23 2005-05-06 Zyvex Corp Method, system and device for microscopic examination employing fib-prepared sample grasping element
US7285778B2 (en) 2004-02-23 2007-10-23 Zyvex Corporation Probe current imaging
JP2008021657A (en) * 2007-08-27 2008-01-31 Hitachi Ltd Micromanipulator
US7799132B2 (en) 2004-03-26 2010-09-21 Zyvex Labs, Llc Patterned atomic layer epitaxy
JP2010217120A (en) * 2009-03-18 2010-09-30 National Institute Of Advanced Industrial Science & Technology Temperature sensor by mems technology and method of manufacturing the same
KR100995245B1 (en) * 2008-07-10 2010-11-18 인하대학교 산학협력단 Micro Multi-DOF Manipulator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031789A3 (en) * 2003-09-23 2005-05-06 Zyvex Corp Method, system and device for microscopic examination employing fib-prepared sample grasping element
US7285778B2 (en) 2004-02-23 2007-10-23 Zyvex Corporation Probe current imaging
US7319336B2 (en) 2004-02-23 2008-01-15 Zyvex Instruments, Llc Charged particle beam device probe operation
US7675300B2 (en) 2004-02-23 2010-03-09 Zyvex Instruments, Llc Charged particle beam device probe operation
US7799132B2 (en) 2004-03-26 2010-09-21 Zyvex Labs, Llc Patterned atomic layer epitaxy
JP2008021657A (en) * 2007-08-27 2008-01-31 Hitachi Ltd Micromanipulator
JP4607927B2 (en) * 2007-08-27 2011-01-05 株式会社日立製作所 Micromanipulator
KR100995245B1 (en) * 2008-07-10 2010-11-18 인하대학교 산학협력단 Micro Multi-DOF Manipulator
JP2010217120A (en) * 2009-03-18 2010-09-30 National Institute Of Advanced Industrial Science & Technology Temperature sensor by mems technology and method of manufacturing the same

Also Published As

Publication number Publication date
JP3408972B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US8063383B2 (en) Inertial positioner and an optical instrument for precise positioning
KR101279028B1 (en) Electron beam apparatus
JP4919604B2 (en) Joining method and joining apparatus
CN100595625C (en) Modular manipulation system for manipulating a sample under study with a microscope
Pérez et al. Modeling, fabrication, and validation of a high-performance 2-DoF piezoactuator for micromanipulation
Zhou et al. A closed-loop controlled nanomanipulation system for probing nanostructures inside scanning electron microscopes
Xie et al. Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback
US20100213386A1 (en) Focused ion beam system and sample processing method using the same
EP0579524B1 (en) Focused ion beam implantation apparatus
Zhang et al. A 3-DOF piezoelectric micromanipulator based on symmetric and antisymmetric bending of a cross-shaped beam
JPH11135051A (en) Charged particle beam device
JP2008157673A (en) Method for forming grasping surface of sample grasping member
JP2002103298A (en) Electronic microscope
Feinerman et al. Sub‐centimeter micromachined electron microscope
JPH03154784A (en) Support mechanism, support system, assembly method and assembly device using thereof
Wörn et al. From decimeter-to centimeter-sized mobile microrobots: the development of the MINIMAN system
Aoyama et al. Flexible micro-processing by multiple microrobots in SEM
JP3495037B2 (en) Charged particle beam apparatus and method of assembling parts using the same
JPH0215648A (en) Apparatus for observing cross section of fine structure element
JP3838488B2 (en) Sample sampling method and apparatus
JP4177176B2 (en) Micro hand
JPH03132082A (en) Multiple axis manipulator
JP2000002630A (en) Probe moving device and sample preparing device using it
JP2002150983A (en) Manipulator
Nakao et al. Integration of 3-D shape construction and assembly to realize micro systems

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees