JP2000002630A - Probe moving device and sample preparing device using it - Google Patents

Probe moving device and sample preparing device using it

Info

Publication number
JP2000002630A
JP2000002630A JP16661098A JP16661098A JP2000002630A JP 2000002630 A JP2000002630 A JP 2000002630A JP 16661098 A JP16661098 A JP 16661098A JP 16661098 A JP16661098 A JP 16661098A JP 2000002630 A JP2000002630 A JP 2000002630A
Authority
JP
Japan
Prior art keywords
probe
sample
piezoelectric element
bimorph
type piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16661098A
Other languages
Japanese (ja)
Inventor
Hiroshi Toyama
遠山  博
Kaoru Umemura
馨 梅村
Satoshi Tomimatsu
聡 富松
Yasutoku Doi
泰徳 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16661098A priority Critical patent/JP2000002630A/en
Publication of JP2000002630A publication Critical patent/JP2000002630A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize an application to fine operation with a superior operation property, by providing plate-shaped piezoelectric members, a strain gauge being placed between the piezoelectric members, a laminated piezoelectric member at one end of the plate-shaped piezoelectric member, and a probe at the other end. SOLUTION: In the probe-moving device used for the handling or the like of a fine sample on a semiconductor substrate, for example, a laminated piezoelectric element 101 is combined with a bimorph-type piezoelectric element 102, and the bimorph-type piezoelectric element 102 is arranged in an expansion and contraction direction 110 of the lamination-type piezoelectric element 101. The amount of displacement DZ of the bimorph-type piezoelectric element 102 is detected by a strain gauge 103, movement trace 108 of the tip of a probe is converted into the amount of correction that is linearly displaced in the same way as movement trace 109, the laminated piezoelectric element 101 is driven, and deviation DY in a circumference direction is corrected. A sample- preparing device using such probe-moving device is provided with a focusing ion beam application optical system, a deposition gas source, and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細試料のハンド
リング,プロービングなどに使用される装置、特に半導
体ウエハなどの試料基板から摘出した微細試料の移送,
把持,試料基板の微細部位へのプロービングに好適な装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus used for handling and probing a fine sample, and in particular, for transferring a fine sample extracted from a sample substrate such as a semiconductor wafer.
The present invention relates to an apparatus suitable for grasping and probing a minute portion of a sample substrate.

【0002】[0002]

【従来の技術】微細な摘出試料の移送手段として特開平
5−52721号,微細・軽量部品の把持装置として特開平6
−155355号,微細物体操作装置として特開平6−238578
号,微細物用ピンセットとして特開平6−155318 号など
が知られている。これらは、いずれもバイモルフ型圧電
素子を単体、または複数用いて構成している。
2. Description of the Related Art Japanese Patent Application Laid-Open No.
JP-A-5-52721, Japanese Patent Application Laid-Open
No.-155355, JP-A-6-238578 as a fine object operation device
No. 6,155,318 are known as tweezers for fine objects. Each of these is configured by using a single or a plurality of bimorph type piezoelectric elements.

【0003】[0003]

【発明が解決しようとする課題】図5に従来装置におけ
るバイモルフ型圧電素子の変位の特徴を示す。この装置
では、バイモルフ型圧電素子の撓みによって発生するバ
イモルフ型圧電素子1の支点Kを中心とする円周方向の
ずれを補正していない。従って、例えばプローブ3の先
端をZ方向にDZ だけ移動させる場合、バイモルフ型圧
電素子の性質により、Y方向の変位DY が伴うため、目
的の方向以外にも移動してしまう。このため、μmレベ
ルの試料の把持,ハンドリング,μmレベルの部位への
プロービングなどのように、極めて微細な操作が要求さ
れる場合、目的の移動方向以外の方向の移動装置も操作
せねばならず、使用者に煩雑な装置操作が要求されてき
た。
FIG. 5 shows the characteristics of the displacement of the bimorph type piezoelectric element in the conventional apparatus. In this device, the displacement in the circumferential direction around the fulcrum K of the bimorph type piezoelectric element 1 caused by the bending of the bimorph type piezoelectric element is not corrected. Thus, for example, to the tip of the probe 3 is moved in the Z direction by D Z, the nature of the bimorph type piezoelectric element, because it involves the Y direction displacement D Y, thereby moving besides the desired direction. For this reason, when extremely fine operations are required, such as gripping and handling of a μm-level sample and probing to a μm-level site, a moving device in a direction other than the intended movement direction must be operated. In addition, users have been required to perform complicated device operations.

【0004】本発明の目的は、上述の課題を解決し、微
細な操作にも適用できる操作性の良いプローブ移動装置
あるいは微細試料の作成,搬送に好適な試料ハンドリン
グ装置を提供することにある。
[0004] An object of the present invention is to solve the above-mentioned problems and to provide a probe moving device with good operability applicable to fine operations or a sample handling device suitable for preparing and transporting a fine sample.

【0005】[0005]

【課題を解決するための手段】本発明の装置は、板状圧
電部材と前記板状圧電部材を挟んで設けられた歪みゲー
ジと、前記板状圧電部材の一端に積層状圧電部材と、他
端に探針を具備することを特徴とする。
An apparatus according to the present invention comprises a plate-shaped piezoelectric member, a strain gauge provided between the plate-shaped piezoelectric members, a laminated piezoelectric member at one end of the plate-shaped piezoelectric member, and the like. It is characterized by having a probe at the end.

【0006】図1は本発明のプローブ移動装置である。
上述の課題を解決するために、積層型圧電素子101と
バイモルフ型圧電素子102とを組み合わせて構成し、
積層型圧電素子101の伸縮方向110にバイモルフ型
圧電素子102を配置し、それぞれはドライバ106と
107により駆動される。本発明では、積層型圧電素子
101の伸縮により、バイモルフ型圧電素子102の撓
みによって発生する円周方向のずれ112を補正する構
造にした。
FIG. 1 shows a probe moving device according to the present invention.
In order to solve the above-described problem, a multilayer piezoelectric element 101 and a bimorph piezoelectric element 102 are combined and configured.
The bimorph type piezoelectric element 102 is arranged in the expansion / contraction direction 110 of the multilayer piezoelectric element 101, and is driven by drivers 106 and 107, respectively. In the present invention, the structure is such that the circumferential displacement 112 caused by the bending of the bimorph piezoelectric element 102 due to the expansion and contraction of the laminated piezoelectric element 101 is corrected.

【0007】本装置では、バイモルフ型圧電素子102
に貼り付けた歪みゲージ素子103により、バイモルフ
型圧電素子102の変位量DZ を検出する。これを、A
Dコンバータ,ROM,DAコンバータなどで構成され
る補正回路105で、プローブ先端の移動軌跡108を
移動軌跡109の様に直線的に変位する補正量に変換
し、ドライバ106により積層型圧電素子101を駆動
し、円周方向のずれDYを補正する。上述の補正量の変
換手段は、マイクロコンピュータ,パーソナルコンピュ
ータなどの制御装置の場合もある。また、本解決手段
は、把持装置,マイクロピンセットにも適用できる。
In this device, the bimorph type piezoelectric element 102
The strain gauge element 103 affixed to, to detect the displacement amount D Z of the bimorph type piezoelectric element 102. This is A
A correction circuit 105 composed of a D converter, a ROM, a DA converter, and the like converts a movement trajectory 108 of the probe tip into a correction amount that is linearly displaced like a movement trajectory 109, and a driver 106 controls the multilayer piezoelectric element 101 driven to correct the circumferential displacement D Y. The correction amount conversion means described above may be a control device such as a microcomputer or a personal computer. The present solution can be applied to a gripping device and micro tweezers.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例を、図2,
図3,図4を用いて説明する。図2は本発明の試料作製
装置の構成を、図3は本発明のプロービング装置の構成
を、図4は本発明のマイクロピンセットの構成を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
This will be described with reference to FIGS. FIG. 2 shows the configuration of the sample preparation apparatus of the present invention, FIG. 3 shows the configuration of the probing apparatus of the present invention, and FIG. 4 shows the configuration of microtweezers of the present invention.

【0009】<実施例1>本実施例は、本発明によるプ
ローブ移動装置を備えた試料作製装置で、実施例を図2
に示す概略構成図で説明する。
<Embodiment 1> This embodiment is a sample preparation apparatus provided with a probe moving device according to the present invention.
This will be described with reference to the schematic configuration diagram shown in FIG.

【0010】試料作製装置は、イオンビームと微小試料
の移送手段を用いて、研磨やダイシングなど熟練を要す
る手作業を介さず、半導体ウエハや集積回路チップを劈
開や切断によって分断させることなくTEM(透過型電
子顕微鏡)等の観察装置や分析装置に導入できる微小試
料が作製できる装置であって、次のような構造を有して
いる。
[0010] The sample preparation apparatus uses a transfer means for an ion beam and a minute sample, and does not involve a manual operation requiring skill such as polishing and dicing, and does not divide the semiconductor wafer or the integrated circuit chip by cleavage or cutting. This is a device capable of producing a small sample that can be introduced into an observation device such as a transmission electron microscope) or an analyzer, and has the following structure.

【0011】試料作製装置201は、試料基板や摘出試
料の加工や観察をする集束イオンビーム(FIB)照射
光学系202と、このFIB照射によって試料から放出
する二次電子や二次イオンを検出する二次粒子検出器2
03と、FIB照射領域にデポジション膜を形成するた
めの原材料ガスを供給するデポガス源204と、半導体
ウエハや半導体チップなどの試料基板205を載置する
試料ステージ206と、試料基板205の一部を摘出し
た微小な摘出試料を固定する試料ホルダ207と、試料
ホルダを保持する保持手段208と、摘出試料を試料ホ
ルダに移し変える移送手段209などを少なくとも有し
た構成である。さらに、試料ステージ206の位置を制
御するためのステージ制御装置210,移送手段209
を試料ステージ206と独立に駆動するための移送手段
制御装置211,試料ホルダ207や試料基板205や
移送手段209などを映像化する画像表示手段212,
FIB照射光学系202のFIB制御装置213,デポ
ガス源制御装置214,二次粒子検出制御装置215な
どを有し、これらは計算処理装置216により制御され
る。
A sample preparation apparatus 201 includes a focused ion beam (FIB) irradiation optical system 202 for processing and observing a sample substrate and an extracted sample, and detects secondary electrons and secondary ions emitted from the sample by the FIB irradiation. Secondary particle detector 2
03, a deposition gas source 204 for supplying a raw material gas for forming a deposition film in the FIB irradiation region, a sample stage 206 on which a sample substrate 205 such as a semiconductor wafer or a semiconductor chip is mounted, and a part of the sample substrate 205 And a holding means 208 for holding the sample holder, a holding means 208 for holding the sample holder, and a transfer means 209 for transferring the extracted sample to the sample holder. Further, a stage controller 210 for controlling the position of the sample stage 206 and a transfer unit 209
, A transfer means control device 211 for independently driving the sample stage 206, an image display means 212 for visualizing the sample holder 207, the sample substrate 205, the transfer means 209, and the like.
The FIB irradiation optical system 202 includes a FIB control device 213, a deposition gas source control device 214, a secondary particle detection control device 215, and the like, which are controlled by a calculation processing device 216.

【0012】FIB照射光学系202は、液体金属イオ
ン源から放出したイオンをビーム制限アパチャ,集束レ
ンズ,対物レンズを通すことで10nm径程度から1μ
m径程度のFIB217を形成できる。ここではFIB
照射光学系202の構成については本発明に大きく影響
しないので詳細な説明は省略する。
The FIB irradiation optical system 202 transmits ions emitted from a liquid metal ion source through a beam limiting aperture, a focusing lens, and an objective lens to reduce the diameter from about 10 nm to 1 μm.
FIB 217 having a diameter of about m can be formed. Here FIB
Since the configuration of the irradiation optical system 202 does not significantly affect the present invention, a detailed description thereof will be omitted.

【0013】FIBを偏向器で試料基板上を走査させる
ことで、試料基板に数10μmからサブμmレベルの走
査形状に対応した形状の加工ができる。ここでの加工と
はスパッタリングによる凹部形成や、FIBアシストデ
ポジションによる凸部形成、もしくは、これらを組み合
わせて試料基板の形状を変える操作を指す。FIB照射
によって形成するデポジション膜は、移送手段209の
先端にあるプローブ222と試料基板205を接続した
り、摘出試料を試料ホルダ207に固定するために使用
する。また、FIB照射時に発生する二次電子や二次イ
オンを二次粒子検出器203で検出して画像化すること
で加工領域などを観察することができる。
By scanning the FIB with a deflector over the sample substrate, the sample substrate can be processed into a shape corresponding to a scanning shape of several tens of μm to sub-μm. The processing here refers to forming a concave portion by sputtering, forming a convex portion by FIB assist deposition, or an operation of changing the shape of the sample substrate by combining these. The deposition film formed by the FIB irradiation is used to connect the probe 222 at the tip of the transfer means 209 to the sample substrate 205 and to fix the extracted sample to the sample holder 207. Further, by processing secondary electrons and secondary ions generated at the time of FIB irradiation with the secondary particle detector 203 and forming an image, a processed region or the like can be observed.

【0014】試料ステージ206は試料室218内に設
置され、FIB照射光学系202等も真空容器内に配置
されている。試料ステージ206は、試料ホルダ207
を搭載した保持手段(試料ホルダカセット)208が着
脱でき、ステージ制御装置210によって、3次元XY
Z方向の移動および傾斜,回転が制御される。
The sample stage 206 is set in a sample chamber 218, and the FIB irradiation optical system 202 and the like are also set in a vacuum vessel. The sample stage 206 includes a sample holder 207
The holding means (sample holder cassette) 208 on which the camera is mounted can be attached and detached.
The movement, tilt, and rotation in the Z direction are controlled.

【0015】試料作製装置201のうち、特に、本発明
によるプローブ移動装置は移送手段に用いた。以下、移
送手段について詳述する。
In the sample preparation apparatus 201, the probe moving apparatus according to the present invention was used as a transfer means. Hereinafter, the transfer means will be described in detail.

【0016】移送手段209はFIBによって試料基板
205から摘出した微小試料を試料ホルダに移設する手
段であり、図2において粗動部220と微動部221の
部分から構成され、微動部221の先端には微小試料を
ピックアップするための尖鋭化したプローブ222が固
定してある。粗動部220はXYZ方向駆動可能なポジ
ショナであり、1mm程度のストロークで1μm程度の移
動分解能を有している。微動部221はできるだけコン
パクトで精密移動することが要求されるため、Z方向
(イオンビーム光学軸方向)にはバイモルフ型圧電素子
223を用いている。
The transfer means 209 is means for transferring a micro sample extracted from the sample substrate 205 by the FIB to the sample holder, and comprises a coarse moving part 220 and a fine moving part 221 in FIG. A sharpened probe 222 for picking up a minute sample is fixed. The coarse moving section 220 is a positioner that can be driven in the XYZ directions, and has a moving resolution of about 1 μm with a stroke of about 1 mm. Since the fine movement unit 221 is required to be as compact and precise as possible, a bimorph piezoelectric element 223 is used in the Z direction (the direction of the ion beam optical axis).

【0017】バイモルフ型圧電素子は他の圧電素子に比
べて比較的大きなストローク(数100μm以上)を持
つ利点を有するため、粗動部220には高い位置精度を
要求する必要がなくなり、粗動部220の製作が容易に
なる。また、プローブ先端の位置制御はμmオーダの分
解能があればよいので、圧電素子のなかでは比較的分解
能が悪いが、バイモルフ型圧電素子でも十分対応できて
安価に作製できる。
Since the bimorph type piezoelectric element has an advantage of having a relatively large stroke (several hundreds μm or more) as compared with other piezoelectric elements, it is not necessary to request the coarse moving section 220 to have high positional accuracy. 220 is easier to manufacture. Further, since the position control of the tip of the probe only needs to have a resolution on the order of μm, the resolution is relatively low among the piezoelectric elements, but a bimorph type piezoelectric element can be used sufficiently and can be manufactured at low cost.

【0018】公知の技術(特開平5−52721号)では、分
離試料を搬送する搬送手段はバイモルフ型圧電素子3個
をXYZ軸に対応して構成した例が知られている。バイ
モルフ型圧電素子は一端を支点にして他端がたわむ動き
をするため、他端は印加電圧に従って円弧を描く。つま
り、XY平面内の移動では、1個のバイモルフ型圧電素
子の動作のみでは搬送手段先端のプローブが1軸方向に
直線的に動作しない。従って、3個のバイモルフ型圧電
素子で微動部を構成し、プローブ先端を所望の位置に移
動させるためにはそれら3個のバイモルフ型圧電素子を
複雑に制御しなければならない。これに対して、正確に
直線駆動が可能な3軸の駆動手段を用いればよいが、1
00μmから数mmの長いストロークとμmオーダの分解
能を兼ね備えた機構のみで移動手段を構成しようとする
と、機構の複雑化,高価格化,試料周辺の2次粒子検出
器やデポガス源など他の構造物との物理的干渉など、更
に別の問題を生み出してしまう。
In a known technique (Japanese Patent Application Laid-Open No. 5-52721), an example is known in which three bimorph type piezoelectric elements are configured to correspond to the XYZ axes as a transport means for transporting a separated sample. Since the bimorph type piezoelectric element bends with the other end fulcrum, the other end draws an arc according to the applied voltage. That is, in the movement in the XY plane, the probe at the tip of the transport means does not move linearly in one axial direction only by the operation of one bimorph type piezoelectric element. Accordingly, a fine movement section is constituted by three bimorph-type piezoelectric elements, and in order to move the tip of the probe to a desired position, the three bimorph-type piezoelectric elements must be controlled in a complicated manner. On the other hand, it is sufficient to use a three-axis driving means capable of accurately performing linear driving.
If the moving means is constituted only by a mechanism having a long stroke of 00 μm to several mm and a resolution of the order of μm, other structures such as a complicated mechanism, high cost, a secondary particle detector around a sample, a depot gas source, etc. It creates other problems, such as physical interference with objects.

【0019】しかし、本実施例においてもZ方向の微動
手段としてバイモルフ型圧電素子223を用いている
が、上述のようにバイモルフ型圧電素子223のみで構
成すると、試料と接触するプローブはZ微動の際、Z以
外の面内で位置ズレを起こしてしまうので、目的とする
位置に正確にプローブを接触させることができない。そ
こで、Z方向の微動手段に本発明のプローブ移動装置を
用いることで、プローブ先端のバイモルフ型圧電素子2
23によるZ以外の面内のズレを積層型圧電素子224
で補正し、目的とする位置に正確にプローブを接触でき
る。このような構成により、試料基板205の所望の微
細領域の微小試料を摘出することができる。
However, also in this embodiment, the bimorph type piezoelectric element 223 is used as the fine movement means in the Z direction. However, if only the bimorph type piezoelectric element 223 is used as described above, the probe which comes into contact with the sample will have the Z fine movement. In such a case, a positional shift occurs in a plane other than Z, so that the probe cannot be brought into contact with a target position accurately. Therefore, by using the probe moving device of the present invention for the fine movement means in the Z direction, the bimorph type piezoelectric element 2 at the tip of the probe can be used.
23, the displacement in the plane other than Z is reduced.
And the probe can be accurately brought into contact with the target position. With such a configuration, a minute sample in a desired minute region of the sample substrate 205 can be extracted.

【0020】<実施例2>本実施例は電気回路特性を計
測するプローブ検査装置である。図3に、プローブ検査
装置のプロービング装置を示す。
<Embodiment 2> This embodiment is a probe inspection apparatus for measuring electric circuit characteristics. FIG. 3 shows a probing device of the probe inspection device.

【0021】プローブ検査装置は複数本の尖鋭化したプ
ローブを独立に駆動させ、半導体デバイスなどμmレベ
ルの領域にある配線に接触させ、プローブ間の電気的特
性を計測して、電気回路の良不良を検査する装置であ
る。昨今のデバイスの配線寸法はサブμmレベルである
ため、プローブの移動には高精度が要求される。プロー
ブ104はXYZ軸方向の粗動機構301とさらにXY
軸方向に積層型圧電素子302,303、Z方向(回路
面に垂直な方向)にバイモルフ型圧電素子102を用い
て微動できるようにした。プローブ104は走査型電子
顕微鏡や走査型イオン顕微鏡の真空容器内にあり、測定
すべき半導体デバイスなどの回路は試料室内に設置でき
る。
The probe inspection apparatus independently drives a plurality of sharpened probes, contacts the wires in a μm level region such as a semiconductor device, measures the electrical characteristics between the probes, and determines whether the electrical circuit is defective or defective. It is a device for inspecting. Since the wiring dimensions of recent devices are on the order of sub-μm, high precision is required for probe movement. The probe 104 has a coarse movement mechanism 301 in the XYZ axis direction and
The piezoelectric element can be finely moved by using the laminated piezoelectric elements 302 and 303 in the axial direction and the bimorph piezoelectric element 102 in the Z direction (the direction perpendicular to the circuit surface). The probe 104 is in a vacuum vessel of a scanning electron microscope or a scanning ion microscope, and a circuit such as a semiconductor device to be measured can be installed in a sample chamber.

【0022】プローブ検査に際しては、回路面を二次電
子像などで拡大して観察しながら、同一視野内でプロー
ブ104を回路面に平行に移動させ、プローブ104の
先端が所望の計測すべきポイント305の上にさしかか
った時、プローブ移動を停止して配線や電極などに近づ
ける(Z軸駆動する)。このとき、Z軸微動がバイモル
フ圧電素子のみによって駆動していると、プローブ10
4のZ軸方向の動きとともにXY面内にもズレを生じて
所望の配線にプローブ104を接触させることができな
い。
In the probe inspection, the probe 104 is moved in parallel with the circuit surface within the same field of view while observing the circuit surface with a secondary electron image or the like, and the tip of the probe 104 is moved to a desired point to be measured. When the probe reaches the position 305, the movement of the probe is stopped and the probe is moved closer to the wiring or the electrode (Z-axis driving). At this time, if the Z-axis fine movement is driven only by the bimorph piezoelectric element, the probe 10
4, the displacement in the XY plane occurs with the movement in the Z-axis direction, and the probe 104 cannot be brought into contact with the desired wiring.

【0023】そこで、本発明によるプローブ移動装置を
用いてプローブのZ軸微動機構を構成した。この構成に
よりプローブ104の先端は直線的に移動するため、位
置ズレすることなく、所望の配線に正確にプローブ10
4を接触(プロービング)させることができ、所望の電
気的特性を計測することができる。プローブ104の数
は1本ばかりでなく複数本の場合も同様で、本発明によ
るプロービング装置の本質には全く問題を生じない。ま
た、プローブ検査装置には、プロービング装置を1台ば
かりでなく複数台搭載することもある。
Therefore, a Z-axis fine movement mechanism of the probe is constituted by using the probe moving device according to the present invention. With this configuration, since the tip of the probe 104 moves linearly, the probe 10 can be accurately connected to the desired wiring without displacement.
4 can be brought into contact (probing), and desired electrical characteristics can be measured. The same applies to the case where the number of the probes 104 is not only one but also a plurality of them, and there is no problem in the essence of the probing apparatus according to the present invention. Further, the probe inspection apparatus may include not only one probing device but also a plurality of probing devices.

【0024】<実施例3>さらに別の実施例は図4に示
すマイクロピンセットである。マイクロピンセットはμ
mレベルの微細な物体を摘む道具であって、XYZ移動
機構401に搭載された積層型圧電素子101上に、離
間して設置した2枚のバイモルフ型圧電素子102,4
03のそれぞれの一端に微小プローブ104,404を
固定した基本構造で、両者もしくは片方のバイモルフ型
圧電素子への電圧印加によって上記微小プローブ先端の
間隔が狭まることを利用してμmレベルの微細な物体を
摘むようにした。
<Embodiment 3> Still another embodiment is a micro-tweezer shown in FIG. Micro tweezers are μ
A tool for picking an m-level fine object, and two bimorph-type piezoelectric elements 102 and 4 spaced apart from each other on a laminated piezoelectric element 101 mounted on an XYZ moving mechanism 401.
The microstructure is a basic structure in which the microprobes 104 and 404 are fixed to one end of each of the microprobes 03, and the distance between the tips of the microprobes is reduced by applying a voltage to both or one of the bimorph type piezoelectric elements. I picked it.

【0025】ところが、単純にバイモルフ型圧電素子の
みで構成すると、上述のようにバイモルフ型圧電素子は
一端を支点にして撓む動きをするため、他端は印加電圧
に従って円弧を描き微小プローブの間隔が狭まるにつれ
て、両微小プローブの先端を結ぶ線分は移動するため、
目的とするμmレベルの微細な物体を摘むことができな
い。
However, if the bimorph type piezoelectric element is simply composed of only the bimorph type piezoelectric element, the bimorph type piezoelectric element bends with one end as a fulcrum as described above. As the line segment connecting the tips of both microprobes moves as
It is not possible to pick up a fine object of the desired μm level.

【0026】そこで、本発明によるプローブ移動装置を
応用してマイクロピンセットを構成した。この構成によ
り両微小プローブ104,404の先端は位置ずれする
ことなく間隔を制御できるため、微細な物体を正確にか
つ容易に摘むことができる。本実施例では、2枚のバイ
モルフ型圧電素子102,403を積層型圧電素子10
1上に搭載したが、XYZ移動機構401上に、本発明
のプローブ移動装置(図2)を2台搭載してもよい。
Therefore, a micro-tweezer was constructed by applying the probe moving device according to the present invention. With this configuration, the distance between the tips of the micro-probes 104 and 404 can be controlled without displacement, so that a fine object can be pinched accurately and easily. In the present embodiment, two bimorph piezoelectric elements 102 and 403 are
However, two probe moving devices (FIG. 2) of the present invention may be mounted on the XYZ moving mechanism 401.

【0027】[0027]

【発明の効果】本発明によれば、バイモルフ型圧電素子
の撓みによって発生するバイモルフ型圧電素子の支点を
中心とする円周方向のずれを補正することによって、
(1)μmレベルの微細な物体の移送、(2)μmレベ
ルの微細な部位へのプロービング、(3)μmレベルの
微細な物体の正確かつ操作性良い把持などが可能とな
る。
According to the present invention, by correcting a circumferential displacement centered on a fulcrum of a bimorph type piezoelectric element caused by bending of the bimorph type piezoelectric element,
(1) The transfer of a fine object at the μm level, (2) the probing to a fine part at the μm level, and (3) the accurate and operable grip of the fine object at the μm level can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のプローブ移動装置の構成を
示す概略図。
FIG. 1 is a schematic diagram showing a configuration of a probe moving device according to one embodiment of the present invention.

【図2】本発明の一実施例の試料作製装置の構成を示す
概略図。
FIG. 2 is a schematic diagram showing a configuration of a sample manufacturing apparatus according to one embodiment of the present invention.

【図3】本発明の一実施例のプロービング装置の構成を
示す概略図。
FIG. 3 is a schematic diagram showing a configuration of a probing device according to an embodiment of the present invention.

【図4】本発明の一実施例のマイクロピンセット装置の
構成を示す概略図。
FIG. 4 is a schematic diagram showing the configuration of a micro-tweezer device according to one embodiment of the present invention.

【図5】従来のバイモルフ型圧電素子の動作説明図。FIG. 5 is an operation explanatory view of a conventional bimorph type piezoelectric element.

【符号の説明】[Explanation of symbols]

101…積層型圧電素子、102…バイモルフ型圧電素
子、103…バイモルフ型圧電素子の変位量(DZ )を
検出する歪みゲージ素子、104…プローブ、105…
補正回路、108…補正前のプローブ先端の移動軌跡、
109…補正後のプローブ先端の移動軌跡、110…積
層型圧電素子の変位方向、111…バイモルフ型圧電素
子の変位量(DZ )を指す、112…補正すべきずれ
(DY )を指す。
101: laminated piezoelectric element, 102: bimorph piezoelectric element, 103: strain gauge element for detecting the displacement (D Z ) of the bimorph piezoelectric element, 104: probe, 105 ...
Correction circuit, 108: movement trajectory of the probe tip before correction,
Reference numeral 109 denotes the movement trajectory of the probe tip after the correction, 110 denotes the displacement direction of the multilayer piezoelectric element, 111 denotes the displacement amount (D Z ) of the bimorph piezoelectric element, and 112 denotes the displacement (D Y ) to be corrected.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富松 聡 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 土井 泰徳 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Satoshi Tomimatsu 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Central Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】板状圧電部材と前記板状圧電部材の一端に
積層状圧電部材と、他端に探針を具備することを特徴と
するプローブ移動装置。
1. A probe moving device comprising: a plate-shaped piezoelectric member; a laminated piezoelectric member at one end of the plate-shaped piezoelectric member; and a probe at the other end.
【請求項2】イオン源と、前記イオン源からのイオンビ
ームを試料に照射するための照射光学系と、上記試料の
一部を摘出し移動させるために板状圧電部材と前記板状
圧電部材の一端に積層状圧電部材と、他端に探針を有す
るプローブ部と、前記探針と試料を接着するためのガス
を供給するガス源と、前記試料を保持する試料ステージ
とを具備したことを特徴とする試料作製装置。
2. An ion source, an irradiation optical system for irradiating a sample with an ion beam from the ion source, a plate-shaped piezoelectric member for extracting and moving a part of the sample, and the plate-shaped piezoelectric member A probe portion having a laminated piezoelectric member at one end, a probe at the other end, a gas source for supplying a gas for bonding the probe to the sample, and a sample stage for holding the sample. A sample preparation apparatus characterized by the above-mentioned.
【請求項3】前記ガス源がデポジョンガス源であること
を特徴とする請求項2記載の試料作製装置。
3. The sample preparation apparatus according to claim 2, wherein said gas source is a deposition gas source.
【請求項4】前記摘出した試料を収納する試料ホルダを
前記試料ステージ上に設けたことを特徴とする請求項2
または3記載の試料作製装置。
4. The apparatus according to claim 2, wherein a sample holder for storing the extracted sample is provided on the sample stage.
Or the sample preparation device according to 3.
JP16661098A 1998-06-15 1998-06-15 Probe moving device and sample preparing device using it Pending JP2000002630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16661098A JP2000002630A (en) 1998-06-15 1998-06-15 Probe moving device and sample preparing device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16661098A JP2000002630A (en) 1998-06-15 1998-06-15 Probe moving device and sample preparing device using it

Publications (1)

Publication Number Publication Date
JP2000002630A true JP2000002630A (en) 2000-01-07

Family

ID=15834507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16661098A Pending JP2000002630A (en) 1998-06-15 1998-06-15 Probe moving device and sample preparing device using it

Country Status (1)

Country Link
JP (1) JP2000002630A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292766A (en) * 2006-05-31 2006-10-26 Hitachi Ltd Beam member, and sample processing device and sample extraction method using beam member
US7404339B2 (en) 2004-07-16 2008-07-29 Sii Nano Technology Inc. Probe and small sample pick up mechanism
JP2009115582A (en) * 2007-11-06 2009-05-28 Sii Nanotechnology Inc Sample preparation method for transmission electron microscope, sample support structure for the transmission electron microscope, sample holder and charged particle beam apparatus
JP2011013223A (en) * 2010-07-30 2011-01-20 Hitachi Ltd Beam member and sample processing device using beam member
JP2011133493A (en) * 2011-03-25 2011-07-07 Hitachi Ltd Sample processing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404339B2 (en) 2004-07-16 2008-07-29 Sii Nano Technology Inc. Probe and small sample pick up mechanism
JP2006292766A (en) * 2006-05-31 2006-10-26 Hitachi Ltd Beam member, and sample processing device and sample extraction method using beam member
JP2009115582A (en) * 2007-11-06 2009-05-28 Sii Nanotechnology Inc Sample preparation method for transmission electron microscope, sample support structure for the transmission electron microscope, sample holder and charged particle beam apparatus
JP2011013223A (en) * 2010-07-30 2011-01-20 Hitachi Ltd Beam member and sample processing device using beam member
JP2011133493A (en) * 2011-03-25 2011-07-07 Hitachi Ltd Sample processing apparatus

Similar Documents

Publication Publication Date Title
JP4200665B2 (en) Processing equipment
TWI575549B (en) Through process flow intra-chip and inter-chip electrical analysis and process control using in-line nanoprobing
JP4524002B2 (en) A modular manipulation system for microscopic specimen manipulation
US7476872B2 (en) Method and apparatus for observing inside structures, and specimen holder
US7404339B2 (en) Probe and small sample pick up mechanism
JP3851464B2 (en) Manipulator, probe device using the same, and sample preparation device
JP4166934B2 (en) electronic microscope
JP4436942B2 (en) Micromanipulation device for fine work and microprobe for fine work
JP2005167146A (en) Compound microscope equipped with probe, method of calculating height of probe, and method of driving probe
JP2000002630A (en) Probe moving device and sample preparing device using it
JP4747952B2 (en) Sample processing apparatus and sample processing method
JP3851640B2 (en) Manipulator, probe device using the same, and sample preparation device
JP2002033366A (en) Probe unit and sample manipulating device using the same
JP4618744B2 (en) Tweezers and manipulator system having the same
JP3838488B2 (en) Sample sampling method and apparatus
JP4177176B2 (en) Micro hand
JP4607927B2 (en) Micromanipulator
JP5024468B2 (en) Sample processing equipment
JP3652144B2 (en) Probe device
JP4087054B2 (en) electronic microscope
JP2004309499A (en) Apparatus for preparing testpiece and method for preparing testpiece
JP4300211B2 (en) manipulator
JP4826680B2 (en) Beam member
JP3771926B2 (en) Sample preparation equipment
KR20030050320A (en) Method and apparatus for inspecting semiconductor substrate