JPH11134630A - Substrate for magnetic disk and its production - Google Patents

Substrate for magnetic disk and its production

Info

Publication number
JPH11134630A
JPH11134630A JP29854297A JP29854297A JPH11134630A JP H11134630 A JPH11134630 A JP H11134630A JP 29854297 A JP29854297 A JP 29854297A JP 29854297 A JP29854297 A JP 29854297A JP H11134630 A JPH11134630 A JP H11134630A
Authority
JP
Japan
Prior art keywords
substrate
magnetic disk
ceramics
strength
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29854297A
Other languages
Japanese (ja)
Inventor
Masahiro Nakahara
正博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29854297A priority Critical patent/JPH11134630A/en
Publication of JPH11134630A publication Critical patent/JPH11134630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the breakage and deformation of a substrate for a magnetic disk even if the substrate is thinned and to attain high magnetic recording density by using ceramics having a specified Young's modules, a specified deflective strength and a specified average void diameter. SOLUTION: Stock power for ceramics having >=30 GPa Young's modulus, >=700 MPa deflective strength and <=0.3 μm average void diameter is compacted in a prescribed shape by centrifugal compacting. Since the stock powder can be filled to the closest state, a sintered compact having very small voids is obtd. without carrying out any special treatment. When a substrate 1 for a magnetic disk is formed from the ceramics, high density recording is enabled and the deformation and breakage of the substrate 1 are not caused because of high rigidity and high strength of the ceramics even if the substrate 1 is thinned. Since the stock powder can be filled to the closest state, sinterability is improved, firing temp. is lowered and the grain diameter of the sintered compact is reduced. The amt. of a grain boundary phase existing at grain boundaries can be made very small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録装置にお
けるメディアとして利用する磁気ディスク用の基板及び
その製造方法に関する。
The present invention relates to a substrate for a magnetic disk used as a medium in a magnetic recording apparatus and a method for manufacturing the same.

【0002】[0002]

【従来の技術】コンピュータの外部記憶装置の中で、磁
気ディスク装置は、大容量で高速かつランダムアクセス
できるメモリとして中心的な位置を占めている。また、
LSIと同様に磁気ディスク装置も、大容量化、高密度
化を図っており、具体的には年率60%程度の記録密度
向上が図られている。
2. Description of the Related Art Among external storage devices of a computer, a magnetic disk device occupies a central position as a large-capacity, high-speed, random-access memory. Also,
Like the LSI, the magnetic disk device has also been increased in capacity and density, and more specifically, the recording density has been improved by about 60% per year.

【0003】この磁気ディスク装置では、基板上に磁気
記録層としての磁性膜を形成した磁気ディスクと、この
磁気ディスク上で微小に浮上して情報の記録再生を行う
ための磁気ヘッドから構成される。
This magnetic disk device is composed of a magnetic disk having a magnetic film as a magnetic recording layer formed on a substrate, and a magnetic head for slightly recording and reproducing information on the magnetic disk. .

【0004】そして、上記の高記録密度化に伴って磁気
ヘッドの浮上量減少が必須となっている。浮上量の減少
と安定浮上を実現するためには、高い形状精度、寸法精
度に加工された磁気ディスク用基板が必要不可欠となっ
ている。
[0004] With the increase in the recording density, the flying height of the magnetic head must be reduced. In order to reduce the flying height and achieve stable flying, a magnetic disk substrate processed with high shape accuracy and dimensional accuracy is indispensable.

【0005】このような高記録密度用磁気ディスク基板
に要求される特性としては、非磁性であること、高
速回転時(3600〜10000rpm)の変形や歪み
に対して耐久性があり高強度・高靱性であること、ボ
イド欠陥のないこと、硬度が高いこと、熱膨張係数
が小さいこと、磁気ディスクの製造プロセスや使用過
程において機能が損なわれないような物理的・化学的安
定性と耐久性・耐食性があること、必要な形状精度、
表面精度が確保できること、等がある。
The characteristics required of such a magnetic disk substrate for high recording density include non-magnetic properties, durability against deformation and distortion during high-speed rotation (3600 to 10000 rpm), high strength and high strength. It has toughness, no void defects, high hardness, low thermal expansion coefficient, physical and chemical stability and durability that do not impair the function during the manufacturing and use process of magnetic disks. Corrosion resistance, required shape accuracy,
That surface accuracy can be ensured.

【0006】これらの要求に対し、現在使用されている
磁気ディスク用基板としては、Ni−Pメッキ処理アル
ミニウム合金が一般的であり、その他にガラス等も用い
られている。また、この磁気ディスク用基板の材質とし
て各種セラミックスを用いることを本件出願人は既に提
案した(特公平6−22055号、特公平7−4035
0号、特公平6−101115号公報等参照)。
In response to these requirements, Ni-P plated aluminum alloys are generally used as magnetic disk substrates currently used, and glass and the like are also used. The applicant of the present application has already proposed the use of various ceramics as a material for the magnetic disk substrate (Japanese Patent Publication Nos. 6-22055 and 7-4035).
0, Japanese Patent Publication No. 6-101115, etc.).

【0007】[0007]

【発明が解決しようとする課題】ところが、上述した各
種材質からなる磁気ディスク用基板は、上記の要求特性
を完全に満足するものではなかった。
However, the magnetic disk substrates made of the above-mentioned various materials have not completely satisfied the above-mentioned required characteristics.

【0008】例えば、アルミニウム合金やガラスからな
る基板では、硬度、剛性、耐熱性が低いという問題があ
った。即ち、アルミニウム合金やガラスのビッカース硬
度は4〜7GPa程度と低いため、使用時や携帯時等に
磁気ヘッドと接触すると基板が損傷、変形しやすいとい
う不都合があった。また、高記録密度化に伴い基板を薄
くする必要があるが、アルミニウム合金やガラスでは剛
性が低いために、基板の加工時や取付時、使用時等に変
形しやすく、高密度記録に適した正確なデータ処理がで
きないという不都合があった。さらに、磁気記録層の高
容量化のために磁性膜の成膜温度が高くなっており、中
にはグラニュラー膜のように600℃を超える温度で成
膜するものもあり、アルミニウム合金やガラスでは耐熱
性の点で適用できなかった。
For example, a substrate made of an aluminum alloy or glass has a problem that hardness, rigidity and heat resistance are low. That is, since the Vickers hardness of the aluminum alloy or glass is as low as about 4 to 7 GPa, there is an inconvenience that the substrate is easily damaged or deformed when it comes into contact with the magnetic head during use or carrying. In addition, it is necessary to make the substrate thinner with the increase in recording density, but aluminum alloy or glass has low rigidity, so it is easily deformed during processing, mounting, or use of the substrate, and is suitable for high-density recording. There was a disadvantage that accurate data processing could not be performed. Further, the film formation temperature of the magnetic film is increased to increase the capacity of the magnetic recording layer. Some of the films are formed at a temperature exceeding 600 ° C., such as a granular film. Not applicable due to heat resistance.

【0009】一方、セラミックスからなる磁気ディスク
用基板では、内部欠陥としてボイドが発生することが避
けられず、このまま基板として用いることはできなかっ
た。このボイドをなくすために、熱間静水圧加圧(HI
P)処理等を施すこともできるが、製造工程に手間がか
かるという課題がある。また、セラミックス表面にグレ
ーズ層を形成することもできるが、硬度、強度、耐熱性
が低下するという課題がある。
On the other hand, in a magnetic disk substrate made of ceramics, it is inevitable that voids are generated as internal defects, and it cannot be used as a substrate as it is. In order to eliminate this void, hot isostatic pressing (HI
P) Although a treatment or the like can be performed, there is a problem that the manufacturing process is troublesome. Although a glaze layer can be formed on the ceramic surface, there is a problem that hardness, strength and heat resistance are reduced.

【0010】さらに、一般にセラミックスは金属材に比
べて強度が低いため、基板を薄くすると破損しやすくな
るという問題がある。この点に関し、ジルコニアセラミ
ックスのように強度の高いセラミックスでは、ヤング率
が低いために、変形しやすくなる。このように、セラミ
ックス製の磁気ディスク用基板では、強度、剛性の両方
を満足することができなかった。
[0010] Further, since ceramics generally have lower strength than metal materials, there is a problem that the substrate is easily broken when the substrate is made thinner. In this regard, ceramics having high strength, such as zirconia ceramics, have a low Young's modulus and are therefore easily deformed. As described above, the ceramic magnetic disk substrate could not satisfy both the strength and the rigidity.

【0011】[0011]

【課題を解決するための手段】そこで、本発明は、セラ
ミックス原料粉末を分散させたスラリーを所定形状の成
形型に注入し、この成形型を回転させることによって発
生する遠心力で上記セラミックス原料粉末を成形し、得
られた成形体を焼成する工程から磁気ディスク用基板を
製造することを特徴とする。
SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a method of molding a ceramic material powder by centrifugal force generated by injecting a slurry in which ceramic material powder is dispersed into a mold having a predetermined shape and rotating the mold. The method is characterized in that a substrate for a magnetic disk is manufactured from a step of molding the obtained molded body and firing the obtained molded body.

【0012】即ち、セラミックス原料を遠心力を利用し
て所定形状に成形する(以下、遠心成形という)ことに
よって、原料粉末を最密充填して成形体密度を高くする
ことができる。その結果、特殊な処理を施すことなく、
ボイドの極めて小さい焼結体を得ることができるのであ
る。しかも、原料粉末を最密充填できることにより、焼
結性を向上できることから、焼成温度を下げて結晶粒径
を小さくすることができ、また結晶粒界の粒界相の存在
を極めて少なくできる。その結果、強度、剛性等の機械
的特性の高い焼結体を得ることができるのである。
That is, by forming the ceramic raw material into a predetermined shape by using centrifugal force (hereinafter, referred to as centrifugal forming), the raw material powder can be packed most closely, and the density of the formed body can be increased. As a result, without any special processing,
A sintered body with extremely small voids can be obtained. In addition, since the sinterability can be improved by being able to close-pack the raw material powder, the firing temperature can be reduced to reduce the crystal grain size, and the existence of the grain boundary phase in the crystal grain boundaries can be extremely reduced. As a result, a sintered body having high mechanical properties such as strength and rigidity can be obtained.

【0013】したがって、セラミックス製磁気ディスク
用基板の課題として上述した、ボイド、剛性、強度の問
題を全て解決することができる。
Therefore, it is possible to solve all the problems of voids, rigidity, and strength described above as problems of the ceramic magnetic disk substrate.

【0014】上記の製造方法によって、本発明は、ヤン
グ率300GPa以上、抗折強度700MPa以上で、
平均ボイド径が0.3μm以下である磁気ディスク用基
板を特徴とする。
According to the above-mentioned production method, the present invention provides a resin having a Young's modulus of 300 GPa or more and a flexural strength of 700 MPa or more.
The magnetic disk substrate has an average void diameter of 0.3 μm or less.

【0015】即ち、上述した遠心成形を行うことによっ
て、強度と剛性の両方を高く維持したセラミックスを得
ることができる。特にヤング率300GPa以上、かつ
抗折強度700MPa以上のセラミックスは、遠心成形
方法によって初めて得られるものであり、このような特
性を満たすことによって磁気ディスク用基板として好適
に使用できる。
That is, by performing the above-described centrifugal molding, it is possible to obtain a ceramic having both high strength and high rigidity. In particular, ceramics having a Young's modulus of 300 GPa or more and a bending strength of 700 MPa or more can be obtained for the first time by a centrifugal molding method, and satisfying such characteristics can be suitably used as a magnetic disk substrate.

【0016】しかも、遠心成形方法によって、特殊な処
理を施すことなくボイドを極めて小さくすることがで
き、特に平均ボイド径0.3μm以下とすることによっ
て、磁気ディスク用基板として好適に使用できる。
In addition, the centrifugal molding method makes it possible to make the void extremely small without performing special treatment. In particular, when the average void diameter is 0.3 μm or less, it can be suitably used as a substrate for a magnetic disk.

【0017】[0017]

【発明の実施の形態】以下本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0018】図1に示すように、磁気ディスク用の基板
1は、中央に貫通孔1aを有する円板状体であり、その
主面1b上に各種磁性膜を形成して磁気記録層とし、磁
気ディスク基板とする。そして、この磁気ディスク基板
の磁気記録層から微小に浮上するように磁気ヘッドを配
置し、この磁気ヘッドから情報の記録再生を行うように
して磁気記録装置を構成する。
As shown in FIG. 1, a substrate 1 for a magnetic disk is a disk-shaped body having a through hole 1a in the center, and various magnetic films are formed on a main surface 1b to form a magnetic recording layer. A magnetic disk substrate is used. Then, a magnetic head is arranged so as to float slightly from the magnetic recording layer of the magnetic disk substrate, and information is recorded / reproduced from the magnetic head to constitute a magnetic recording apparatus.

【0019】また、この基板1は、アルミナ等のセラミ
ックスから形成されている。一般にセラミックス製の基
板1は、非磁性、硬度、耐熱性、耐食性、剛性等の点で
は優れているものの、ボイドが多く強度が低いという課
題がある。そこで、本発明では、この基板1を遠心成形
法を利用して作製した。
The substrate 1 is formed of a ceramic such as alumina. In general, the ceramic substrate 1 is excellent in nonmagnetic properties, hardness, heat resistance, corrosion resistance, rigidity, and the like, but has a problem that it has many voids and low strength. Therefore, in the present invention, the substrate 1 is manufactured using a centrifugal molding method.

【0020】この遠心成形法は、図2(a)に示すよう
に、セラミックス原料粉末を水等の溶媒に分散し、得ら
れたスラリー21を成形型20に注入した後、図の矢印
方向に遠心力が加わるようにこの成形型20を回転させ
る。すると、図2(b)に示すように、スラリー21中
のセラミックス原料粉末と溶媒が遠心分離されて、セラ
ミックス原料粉末は成形型20の下部に沈降し堆積して
成形体22となり、溶媒は成形型20の上部に上澄み液
23となる。そこで、回転を止めた後、図2(c)に示
すように上澄み液23を除去して、残った成形体22を
取り出すことによって、成形型20の形状に沿った形状
に成形することができる。
In this centrifugal molding method, as shown in FIG. 2 (a), a ceramic raw material powder is dispersed in a solvent such as water, and the obtained slurry 21 is poured into a molding die 20, and then, in a direction indicated by an arrow in FIG. The mold 20 is rotated so that a centrifugal force is applied. Then, as shown in FIG. 2B, the ceramic raw material powder and the solvent in the slurry 21 are centrifuged, and the ceramic raw material powder is settled and deposited at the lower part of the molding die 20 to form a molded body 22, and the solvent is molded. The supernatant liquid 23 is formed on the upper part of the mold 20. Then, after the rotation is stopped, the supernatant liquid 23 is removed as shown in FIG. 2C, and the remaining molded body 22 is taken out, whereby the molded body 20 can be molded into a shape conforming to the shape of the molding die 20. .

【0021】このような遠心成形法によれば、セラミッ
クス原料を最密充填することができ、極めて緻密な成形
体22を得ることができる。そのため、その後、所定の
条件で焼成するだけで、特殊な処理を施すことなく、極
めてボイド径の小さな焼結体を得ることができる。
According to such a centrifugal molding method, the ceramic raw material can be packed most closely, and an extremely dense molded body 22 can be obtained. Therefore, a sintered body having a very small void diameter can be obtained without performing any special treatment only by firing under predetermined conditions.

【0022】また、セラミックス原料を最密充填できる
ことにより、焼結性を向上することができる。その結
果、焼成温度を低下して結晶粒径を小さくできるととも
に、焼結助剤成分を少なくして、結晶粒界の粒界相を極
めて少なくすることができる。このように、結晶粒径を
小さくし、粒界相を少なくすることによって、強度、剛
性等の機械的特性を高めることができ、従来の方法では
得られなかった剛性と強度が共に高いセラミックスを得
ることができる。
In addition, sinterability can be improved by being able to close-pack the ceramic raw material. As a result, the firing temperature can be lowered to reduce the crystal grain size, and the sintering aid component can be reduced, so that the grain boundary phase of the crystal grain boundaries can be extremely reduced. As described above, by reducing the crystal grain size and the grain boundary phase, mechanical properties such as strength and rigidity can be improved, and ceramics having high rigidity and strength that cannot be obtained by the conventional method can be obtained. Obtainable.

【0023】しかも、本発明では、このような優れた特
性を有するセラミックスを遠心成形後、常圧焼成するだ
けで得ることができ、HIP等の特殊な処理を行う必要
がないため、製造工程を簡略化することができる。な
お、上記焼成後に、HIP処理を施せば、さらにボイド
を小さくできることは言うまでもない。
Further, in the present invention, ceramics having such excellent characteristics can be obtained by simply baking them under normal pressure after centrifugal molding, and there is no need to perform special treatment such as HIP. It can be simplified. It goes without saying that voids can be further reduced by performing an HIP treatment after the above-mentioned firing.

【0024】例えば、一般的なアルミナセラミックス
は、焼成温度が1500〜1750℃で、平均結晶粒径
は2〜15μmと大きく、ボイド径0.5〜10μm程
度で、抗折強度も200〜400MPaと低いものであ
る。
For example, general alumina ceramics have a firing temperature of 1500 to 1750 ° C., a large average crystal grain size of 2 to 15 μm, a void size of about 0.5 to 10 μm, and a transverse rupture strength of 200 to 400 MPa. It is low.

【0025】これに対し、本発明では、原料粉末とし
て、Al2 3 含有量99.9重量%以上で、粉末の平
均粒径(マイクロトラック法による測定)が0.1〜
0.5μmの高純度微粉原料を用い、上述した遠心成形
法で成形した。得られた成形体は、1200〜1300
℃の極めて低い温度で焼結することができ、得られた焼
結体は、平均結晶粒径が0.5〜1.0μmと微小な結
晶を有し、平均ボイド径は0.3μm以下と極めて小さ
く、剛性を表すヤング率は300GPa以上、抗折強度
は700MPa以上と、機械的特性も優れていた。な
お、このようにヤング率300GPa以上でかつ抗折強
度700MPa以上のセラミックスは従来得られておら
ず、遠心成形法によって初めて得られるものである。
On the other hand, in the present invention, when the raw material powder has an Al 2 O 3 content of 99.9% by weight or more, the powder has an average particle size (measured by a microtrack method) of 0.1 to 0.1%
Using the 0.5 μm high-purity fine powder raw material, molding was performed by the centrifugal molding method described above. The obtained molded body is 1200 to 1300
The sintered body obtained has an extremely small temperature of 0.5 to 1.0 μm and has an average void diameter of 0.3 μm or less. It was extremely small, had a Young's modulus representing rigidity of 300 GPa or more, and a transverse rupture strength of 700 MPa or more, exhibiting excellent mechanical properties. It should be noted that ceramics having a Young's modulus of 300 GPa or more and a flexural strength of 700 MPa or more have not heretofore been obtained, but are first obtained by centrifugal molding.

【0026】そのため、このようにして得られたセラミ
ックスで磁気ディスク用の基板1を形成すると、ボイド
が極めて小さいことから高密度記録が可能であり、また
剛性と強度が共に高いことから、基板1を薄く形成して
も変形や破損の恐れを防止できる。
Therefore, when the substrate 1 for a magnetic disk is formed from the ceramics obtained in this way, high density recording is possible due to extremely small voids, and the substrate 1 has high rigidity and strength. Can be prevented from being deformed or damaged.

【0027】しかも、本発明では、このような優れた特
性を有するセラミックス製磁気ディスク用基板1を遠心
成形後、常圧焼成するだけで得ることができ、HIP等
の特殊な処理を行う必要がないため、製造工程を簡略化
することができる。
Moreover, in the present invention, the ceramic magnetic disk substrate 1 having such excellent characteristics can be obtained only by baking at normal pressure after centrifugal molding, and it is necessary to perform a special treatment such as HIP. Therefore, the manufacturing process can be simplified.

【0028】また、以上はアルミナセラミックスを例に
とって説明したが、この他にジルコニア、炭化珪素、窒
化珪素等の各種セラミックスを用いても同様である。
Although the above description has been made using alumina ceramics as an example, the same applies to other ceramics such as zirconia, silicon carbide and silicon nitride.

【0029】[0029]

【実施例】次に本発明の実施例を説明する。Next, embodiments of the present invention will be described.

【0030】原料粉末として、Al2 3 含有量が9
9.99重量%で、残部が不可避不純物からなり、平均
粒径0.2μmで粒度分布が0.15〜0.3μmの範
囲のセラミックス原料を用意し、この原料100%に対
して、イオン交換水を30%と分散剤を1%加えて、ポ
ットミルにて24時間混合し、スラリーを調合した。
The raw material powder has an Al 2 O 3 content of 9
A ceramic raw material of 9.99% by weight, the balance being unavoidable impurities, having an average particle size of 0.2 μm and a particle size distribution in the range of 0.15 to 0.3 μm was prepared. A slurry was prepared by adding 30% of water and 1% of a dispersing agent, and mixing them in a pot mill for 24 hours.

【0031】図2に示すように、このスラリー21を成
形型20に注入した後、成形型20を遠心機内のロータ
(不図示)にセットし、ロータを回転させて15000
Gの遠心加速度を加えた。これにより、スラリー21中
のセラミックス粒子は遠心分離作用で成形型20の底部
に沈降して固化し、成形体22となった。この時、スラ
リー21中の空気は効果的に外部に排出され、また遠心
力によってセラミックス粒子は最密充填されることによ
り、極めて高密度の成形体22が得られた。
As shown in FIG. 2, after this slurry 21 is poured into a molding die 20, the molding die 20 is set on a rotor (not shown) in a centrifuge, and the rotor is rotated to 15000.
A centrifugal acceleration of G was applied. As a result, the ceramic particles in the slurry 21 settled down at the bottom of the mold 20 by the centrifugal action and solidified to form a compact 22. At this time, the air in the slurry 21 was effectively exhausted to the outside, and the ceramic particles were closest packed by centrifugal force, so that a very high-density compact 22 was obtained.

【0032】なお、ここでは遠心加速度を15000G
としたが、5000G以上とすれば、有効に遠心成形で
きることがわかった。ただし、成形時間を速くするため
には、遠心加速度を高く設定することが好ましい。
In this case, the centrifugal acceleration is set to 15,000 G.
However, it was found that centrifugal molding can be effectively performed at 5000 G or more. However, in order to shorten the molding time, it is preferable to set the centrifugal acceleration high.

【0033】このようにして得られた成形体22を成形
型20から取り出し、カンタルスーパー炉を用いて12
30〜1280℃で焼成し、焼結体を得た。ここで得ら
れた焼結体より3×4×35mmの試験片を切り出し、
JISの規定に基づいて3点曲げ試験を行い抗折強度を
測定し、また、超音波パルス法によりヤング率を測定
し、同様に他の特性を測定した。さらに、コード法によ
り平均結晶粒径を測定した。
The molded body 22 obtained in this manner is taken out of the molding die 20, and the molded body 22 is prepared using a Kanthal super furnace.
It was fired at 30 to 1280 ° C. to obtain a sintered body. A 3 × 4 × 35 mm test piece was cut out from the sintered body obtained here,
A three-point bending test was performed according to JIS rules to measure the bending strength, and the Young's modulus was measured by an ultrasonic pulse method, and other characteristics were measured in the same manner. Further, the average crystal grain size was measured by a cord method.

【0034】これらの結果を比較例であるガラス、アル
ミニウム合金、従来のアルミナセラミックスと比較して
表1に示す。
The results are shown in Table 1 in comparison with comparative examples of glass, aluminum alloy and conventional alumina ceramics.

【0035】この結果より、本発明のアルミナセラミッ
クスは、平均結晶粒径0.6〜0.7μmと小さく、ヤ
ング率が400GPa、抗折強度700MPa以上で、
最高1200MPa以上と、比較例に比べて極めて剛
性、強度の高いものが得られた。
From these results, the alumina ceramic of the present invention has a small average crystal grain size of 0.6 to 0.7 μm, a Young's modulus of 400 GPa, a transverse rupture strength of 700 MPa or more,
A maximum of 1200 MPa or more, which was extremely high in rigidity and strength as compared with the comparative example, was obtained.

【0036】なお、上記のように、本発明の抗折強度と
は、JISの規定に基づく試験片での3点曲げ強度のこ
とであり、基板1から測定する場合は、上記寸法の試験
片を切り出して曲げ試験を行えば良い。また、基板1か
ら上記寸法の試験片を切り出せない場合は、所定の形状
に切り出した試験片で曲げ試験を行い、公知の方法によ
って換算することができる。
As described above, the flexural strength of the present invention refers to a three-point bending strength of a test piece based on JIS rules. May be cut out and subjected to a bending test. When a test piece having the above dimensions cannot be cut out from the substrate 1, a bending test can be performed using a test piece cut into a predetermined shape, and the value can be converted by a known method.

【0037】[0037]

【表1】 [Table 1]

【0038】次に、上記で得られた焼結体を研削加工
し、直径25.4mm、厚さ0.3mmの基板1の形状
に加工した後、ポリシング仕上げを行い最終製品とし
た。この基板1について、走査型電子顕微鏡(SEM:
1500倍、10000倍)を用いて、任意の数カ所で
測定面積540μm2 にわたってボイドの径と個数を測
定した。
Next, the sintered body obtained above was ground and processed into the shape of a substrate 1 having a diameter of 25.4 mm and a thickness of 0.3 mm, followed by polishing to obtain a final product. For this substrate 1, a scanning electron microscope (SEM:
(1500 times, 10000 times), the diameter and the number of voids were measured over a measurement area of 540 μm 2 at arbitrary several places.

【0039】また、比較例として、従来の易焼結性アル
ミナからなる基板1についても同様の測定を行った。な
お、比較例はボイドが大きいため倍率を1500倍に設
定したことから、0.3μm未満のボイドを測定できな
かった。
As a comparative example, the same measurement was performed on the substrate 1 made of the conventional easily sinterable alumina. In addition, in the comparative example, since the void was large, the magnification was set to 1500 times, so that a void of less than 0.3 μm could not be measured.

【0040】結果を表2に示すように、比較例では致命
的欠陥とされる0.3μmを超えるボイドが多数存在し
ていたのに対し、本発明の基板1では、0.3μmを超
えるボイドは存在しなかった。
As shown in Table 2, the comparative example had many voids exceeding 0.3 μm which were regarded as fatal defects, whereas the substrate 1 of the present invention had voids exceeding 0.3 μm. Did not exist.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】以上のように本発明によれば、セラミッ
クス原料を遠心成形法で成形することによって、ヤング
率300GPa以上、抗折強度700MPa以上、平均
ボイド径0.3μm以下のセラミックスからなる磁気デ
ィスク用基板を簡単な工程で得ることができ、基板を薄
くしても破損や変形の恐れがなく、磁気記録密度をより
高くすることのできる磁気ディスク用基板を得ることが
できる。
As described above, according to the present invention, a ceramic material having a Young's modulus of 300 GPa or more, a flexural strength of 700 MPa or more, and an average void diameter of 0.3 μm or less is formed by forming a ceramic material by centrifugal molding. A disk substrate can be obtained by a simple process, and a magnetic disk substrate capable of further increasing the magnetic recording density without a risk of breakage or deformation even when the substrate is thinned can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気ディスク用基板を示す斜視図であ
る。
FIG. 1 is a perspective view showing a magnetic disk substrate of the present invention.

【図2】(a)〜(c)は本発明の磁気ディスク用基板
の製造方法を説明するための図である。
FIGS. 2A to 2C are views for explaining a method of manufacturing a magnetic disk substrate according to the present invention.

【符号の説明】[Explanation of symbols]

1:基板 11:貫通孔 12:主面 20:成形型 21:スラリー 22:成形体 23:上澄み液 1: substrate 11: through hole 12: main surface 20: molding die 21: slurry 22: molded body 23: supernatant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ヤング率300GPa以上、抗折強度70
0MPa以上で、平均ボイド径が0.3μm以下のセラ
ミックスからなることを特徴とする磁気ディスク用基
板。
(1) a Young's modulus of 300 GPa or more and a bending strength of 70
A magnetic disk substrate comprising a ceramic having a pressure of 0 MPa or more and an average void diameter of 0.3 μm or less.
【請求項2】セラミックス原料粉末を分散させたスラリ
ーを所定形状の成形型に注入し、この成形型を回転させ
ることによって発生する遠心力で上記セラミックス原料
粉末を成形し、得られた成形体を焼成する工程からなる
磁気ディスク用基板の製造方法。
2. A slurry in which the ceramic raw material powder is dispersed is poured into a molding die having a predetermined shape, and the ceramic raw material powder is molded by centrifugal force generated by rotating the molding die. A method for manufacturing a magnetic disk substrate, comprising a step of firing.
JP29854297A 1997-10-30 1997-10-30 Substrate for magnetic disk and its production Pending JPH11134630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29854297A JPH11134630A (en) 1997-10-30 1997-10-30 Substrate for magnetic disk and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29854297A JPH11134630A (en) 1997-10-30 1997-10-30 Substrate for magnetic disk and its production

Publications (1)

Publication Number Publication Date
JPH11134630A true JPH11134630A (en) 1999-05-21

Family

ID=17861085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29854297A Pending JPH11134630A (en) 1997-10-30 1997-10-30 Substrate for magnetic disk and its production

Country Status (1)

Country Link
JP (1) JPH11134630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091809A (en) * 2001-09-18 2003-03-28 Kyocera Corp Substrate for information carrier
WO2011111746A1 (en) * 2010-03-09 2011-09-15 京セラ株式会社 Ceramic sintered compact, circuit board using the same, electronic device and thermoelectric conversion module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091809A (en) * 2001-09-18 2003-03-28 Kyocera Corp Substrate for information carrier
WO2011111746A1 (en) * 2010-03-09 2011-09-15 京セラ株式会社 Ceramic sintered compact, circuit board using the same, electronic device and thermoelectric conversion module
CN102781878A (en) * 2010-03-09 2012-11-14 京瓷株式会社 Ceramic sintered compact, circuit board using the same, electronic device and thermoelectric conversion module

Similar Documents

Publication Publication Date Title
US4738885A (en) Magnetic disk, substrate therefor and process for preparation thereof
US5480695A (en) Ceramic substrates and magnetic data storage components prepared therefrom
US5820965A (en) Computer disk substrate, the process for making same, and the material made thereof
JPH0364933B2 (en)
US5626943A (en) Ultra-smooth ceramic substrates and magnetic data storage media prepared therefrom
JPH1088333A (en) Sputtering target and its production
US6028750A (en) Thin film magnetic head substrate with improved heat radiation
JPH11134630A (en) Substrate for magnetic disk and its production
US7595274B2 (en) Sintered body, magnetic head slider, and method of manufacturing sintered body
JPH1095671A (en) Dense sintered compact, its production and substrate composed of the sintered compact for producing hard disk memory
JP4453627B2 (en) Sintered body for magnetic head slider, magnetic head slider, and method for manufacturing sintered body for magnetic head slider
JP4567853B2 (en) Sintered silicon nitride
JP3611535B2 (en) Wear-resistant member for electronic equipment and bearing and spindle motor using the same
US5916655A (en) Disk substrate
JP3756567B2 (en) Mold for optical element molding
JP2009120428A (en) Sintered compact and manufacturing method thereof
JP2007153653A (en) Sintered compact for magnetic head slider, its producing method and magnetic head slider
JP2000195212A (en) Support member for magnetic disk substrate and magnetic disk device using the same
JP2523908B2 (en) Magnetic disk device, thin film magnetic head, and wafer for manufacturing thin film magnetic head
JPH0622055B2 (en) Magnetic disk manufacturing method
JP3825215B2 (en) Conductive ceramics and antistatic member using the same
JP2002154877A (en) Silicon nitride sintered compact, and sliding member and bearing ball using the same
JP2002293634A (en) Silicon carbide sintered compact and substrate for magnetic head slider using the same
JPS6228917A (en) Slider for thin film magnetic head and its production
JPH0543311A (en) Ceramics material and ceramics substrate for thin film magnetic head