JPH1113419A - Gas turbine combined power plant - Google Patents

Gas turbine combined power plant

Info

Publication number
JPH1113419A
JPH1113419A JP9169324A JP16932497A JPH1113419A JP H1113419 A JPH1113419 A JP H1113419A JP 9169324 A JP9169324 A JP 9169324A JP 16932497 A JP16932497 A JP 16932497A JP H1113419 A JPH1113419 A JP H1113419A
Authority
JP
Japan
Prior art keywords
gas turbine
power generation
steam
boiler
turbine device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9169324A
Other languages
Japanese (ja)
Inventor
Takeshi Kajita
健 鍛治田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP9169324A priority Critical patent/JPH1113419A/en
Publication of JPH1113419A publication Critical patent/JPH1113419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To provide a gas turbine combined power plant in which the power generating efficiency of the whole of the power plant is enhanced by utilizing exhaust heat generated from a peripheral equipment. SOLUTION: In a combined power plant comprising a boiler 2, a steam turbine device 3 which executes power generation by steam generated from this boiler 2, and a gas turbine device 4 which executes power generation, an air heating heat exchanger 15 is arranged on the intake side of the gas turbine device 4, equipment cooling water 6a is introduced from a peripheral equipment 6 to this air heating heat exchanger 15, and exhaust gas exhausted from the gas turbine device 4 is introduced to a supercharger (exhaust heat recovering boiler) 5 which overheats steam led out from the boiler 2, thereby the power generating output of the gas turbine device 4 is lowered, however, the power generating output of the steam turbine device 3 is increased. This increased part is larger than the lowered part of the power generating output of the gas turbine device 4, therefore the power generating efficiency of the whole of the power plant can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン発電
と蒸気タービン発電とを組み合わせたガスタービン複合
発電施設に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine combined power generation facility combining gas turbine power generation and steam turbine power generation.

【0002】[0002]

【従来の技術】従来、ガスタービン発電と蒸気タービン
発電とを組み合わせたガスタービン複合発電施設におい
ては、特にガスタービンの発電効率を高めることにより
発電施設全体の発電効率を高めていた。すなわち、ガス
タービンのタービン入口空気温度を高めることに注目が
寄せられてきた。そのため、タービン翼に使用される耐
熱材料の開発や、ガスタービンの冷却技術の改良などが
行われていた。
2. Description of the Related Art Conventionally, in a gas turbine combined power generation facility combining gas turbine power generation and steam turbine power generation, the power generation efficiency of the entire power generation facility has been increased particularly by increasing the power generation efficiency of the gas turbine. That is, attention has been focused on increasing the turbine inlet air temperature of a gas turbine. For this reason, development of heat-resistant materials used for turbine blades, improvement of gas turbine cooling technology, and the like have been performed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の発
電施設によると、より高い発電効率を持つガスタービン
を使用することは、発電施設のイニシャルコストを増加
させるという問題がある。
However, according to the above-described conventional power generation facility, there is a problem that using a gas turbine having higher power generation efficiency increases the initial cost of the power generation facility.

【0004】そこで、本発明は周辺機器を利用して発電
施設全体の発電効率を高めたガスタービン複合発電施設
を提供することを目的としたものである。
[0004] Therefore, an object of the present invention is to provide a gas turbine combined cycle power generation facility in which the power generation efficiency of the entire power generation facility is enhanced by utilizing peripheral devices.

【0005】[0005]

【課題を解決するための手段】前述した目的を達成する
ために、本発明のガスタービン複合発電施設は、ボイラ
と、このボイラから発生する蒸気により発電を行う蒸気
タービン装置と、発電を行うガスタービン装置とからな
る複合発電施設であって、上記ガスタービン装置の吸気
側に空気加熱用熱交換器を設け、この空気加熱用熱交換
器に周辺機器の排熱流体を導くようになし、ガスタービ
ン装置から排出される排気ガスを、ボイラから導出され
る蒸気を過熱する過熱器に導くように構成したことを特
徴としたものである。
In order to achieve the above-mentioned object, a gas turbine combined cycle power plant of the present invention comprises a boiler, a steam turbine device for generating power by steam generated from the boiler, and a gas turbine for generating power. A combined power generation facility comprising a turbine device, wherein an air heating heat exchanger is provided on an intake side of the gas turbine device, and a waste heat fluid of peripheral devices is guided to the air heating heat exchanger. The exhaust gas discharged from the turbine device is guided to a superheater that superheats steam derived from the boiler.

【0006】上記構成により、ボイラ、蒸気タービン装
置およびガスタービン装置を運転すると、周辺機器の排
熱流体が、空気加熱用熱交換器に導かれてガスタービン
装置の発電効率を低下させるが、過熱器に導入された排
気ガスの熱エネルギーが増加して蒸気量が増すことか
ら、蒸気タービン装置の発電効率は高くなる。これは、
ガスタービン装置における発電出力の減少分よりもより
大きな発電出力であり、ガスタービン複合発電施設全体
の発電効率は改善される。
According to the above configuration, when the boiler, the steam turbine device and the gas turbine device are operated, the exhaust heat fluid of the peripheral equipment is guided to the air-heating heat exchanger to reduce the power generation efficiency of the gas turbine device. Since the heat energy of the exhaust gas introduced into the vessel increases and the amount of steam increases, the power generation efficiency of the steam turbine device increases. this is,
The power generation output is greater than the reduction in the power generation output of the gas turbine device, and the power generation efficiency of the entire gas turbine combined power generation facility is improved.

【0007】[0007]

【発明の実施の形態】以下に、本発明の実施の形態を、
ごみ焼却による発電施設に採用した状態として図1に基
づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
The state adopted in a power generation facility by refuse incineration will be described with reference to FIG.

【0008】図1に示すように、ごみ焼却による発電施
設1は、大きくわけて蒸発部伝熱管2aを有するごみ焼
却ボイラ(ボイラの一例)2と、このごみ焼却ボイラ2
から発生する蒸気により発電を行う蒸気タービン装置3
と、天然ガスまたは石油により発電を行うガスタービン
装置4と、上記ごみ焼却ボイラ2から導出される蒸気を
過熱する過熱器(排熱回収ボイラ)5と、周辺機器6と
を有している。
As shown in FIG. 1, a power generation facility 1 for incineration of refuse includes a refuse incineration boiler (an example of a boiler) 2 having an evaporator heat transfer tube 2a and a refuse incineration boiler 2
Turbine device 3 that generates power using steam generated from steam
And a gas turbine device 4 that generates power using natural gas or oil, a superheater (exhaust heat recovery boiler) 5 that superheats steam derived from the refuse incineration boiler 2, and peripheral devices 6.

【0009】蒸気タービン装置3は、蒸気タービン7
と、この蒸気タービン7に連結されて発電し得る第1発
電機8とから構成されている。ガスタービン装置4は、
その吸気側に設けられた吸気ダクト9と、この吸気ダク
ト9を通って導かれる空気により燃料(天然ガスまたは
石油)を燃焼させる燃焼器10と、この燃焼器10で燃
焼された燃焼ガスにより駆動されるガスタービン11
と、ガスタービン11に連結されて発電し得る第2発電
機12と、ガスタービン11に設けられた排気ダクト1
3とから構成されている。
The steam turbine device 3 includes a steam turbine 7
And a first generator 8 connected to the steam turbine 7 and capable of generating power. The gas turbine device 4
An intake duct 9 provided on the intake side, a combustor 10 for burning fuel (natural gas or petroleum) by air guided through the intake duct 9, and a combustion gas driven by the combustor 10 Gas turbine 11
A second generator 12 connected to the gas turbine 11 and capable of generating power, and an exhaust duct 1 provided in the gas turbine 11.
And 3.

【0010】上記吸気ダクト9の空気取入口には、吸気
フィルター14を介してアンチアイスコイル(空気加熱
用熱交換器の一例)15が設けられ、このアンチアイス
コイル15に、バイパス管(後述する)を介して、周辺
機器6を冷却した後の機器冷却水(排熱流体の一例)6
aを導くようになしている。なおアンチアイスコイル1
5は、ガスタービン11の寿命を縮めることを防ぐため
に設けられているものである。すなわち冬場の低気温、
高湿度時にガスタービン空気吸い込み口(ベルマウス)
に形成される氷の薄膜が成長するにしたがって剥離し、
これがタービン翼に衝突してガスタービン11の寿命を
縮めることを防ぐために、上記アンチアイスコイル15
によってガスタービン吸込空気温度を上げている。
An anti-ice coil (an example of a heat exchanger for air heating) 15 is provided at the air intake of the intake duct 9 via an intake filter 14. The anti-ice coil 15 has a bypass pipe (described later). ), The device cooling water (an example of exhaust heat fluid) 6 after cooling the peripheral device 6
a. In addition, anti-ice coil 1
Reference numeral 5 is provided to prevent the life of the gas turbine 11 from being shortened. That is, low temperatures in winter,
Gas turbine air inlet at high humidity (Bellmouth)
Peels off as the ice thin film grows,
In order to prevent this from colliding with the turbine blades and shortening the life of the gas turbine 11, the anti-ice coil 15
This raises the gas turbine intake air temperature.

【0011】上記周辺機器6は、冷却塔16と各機器1
7とからなり、冷却塔16からポンプ18により各機器
17へ供給された冷却水は、各機器17を通過後、冷却
塔16に戻されるが、その一部はバイパス管19を介し
てアンチアイスコイル15に移送されるよう構成されて
いる。
The peripheral device 6 includes a cooling tower 16 and each device 1.
The cooling water supplied to each device 17 from the cooling tower 16 by the pump 18 is returned to the cooling tower 16 after passing through each device 17, and a part of the cooling water is supplied to the cooling tower 16 via the bypass pipe 19. It is configured to be transferred to the coil 15.

【0012】上記過熱器5は、ガスタービン装置4の排
気ダクト13に接続されて排気ガスが導かれるよう構成
されているとともに、ごみ焼却ボイラ2の蒸発部伝熱管
2aで加熱された蒸気を蒸気移送管20を介して導き、
さらに過熱して蒸気タービン7に供給する過熱管5a
と、蒸気タービン7から排出された排気蒸気を復水器2
1で凝縮した後、脱気器給水ポンプ22により再び過熱
器5内へ移送した後加熱する低圧給水加熱管23と、こ
の低圧給水加熱管23から排出された復水を、復水移送
管24を介して脱気器25へ導き脱気した後、ボイラ給
水ポンプ26により再び過熱器5内へ移送した後再加熱
する節炭管27と、この節炭管27にボイラドラム28
を介して接続され、このボイラドラム28に貯留された
復水を過熱器5内に導いて蒸発させる蒸発管29とから
構成されている。ところで、蒸発管29によりボイラド
ラム28へ戻された蒸気は、蒸気供給管30を介して蒸
気移送管20へ接続されて上記過熱管5aへ導かれる。
また、上記低圧給水加熱管23により加熱された復水の
一部は、上記復水移送管24から復水移送管31を介し
て上記ごみ焼却ボイラ2の蒸発部伝熱管2aへ導かれ
る。
The superheater 5 is connected to an exhaust duct 13 of the gas turbine device 4 and configured to guide exhaust gas. The superheater 5 converts the steam heated by the evaporator heat transfer tube 2a of the refuse incineration boiler 2 into steam. Lead through the transfer pipe 20,
Superheated pipe 5a for further heating and supplying to steam turbine 7
And the exhaust steam discharged from the steam turbine 7
After being condensed in step 1, the deaerator water supply pump 22 transfers the condensate water again into the superheater 5 and heats it. The condensate discharged from the low pressure water supply heat pipe 23 is condensed into a condensate transfer pipe 24. After being guided to a deaerator 25 through the deaerator and deaerated, the boiler feed pump 26 transfers it again into the superheater 5 and then reheats it, and the boiler drum 28
And an evaporator pipe 29 for guiding the condensed water stored in the boiler drum 28 into the superheater 5 and evaporating the condensed water. By the way, the steam returned to the boiler drum 28 by the evaporation pipe 29 is connected to the steam transfer pipe 20 via the steam supply pipe 30 and is guided to the superheating pipe 5a.
A part of the condensate heated by the low-pressure feed water heating pipe 23 is guided from the condensate transfer pipe 24 to the evaporator heat transfer pipe 2 a of the refuse incineration boiler 2 via the condensate transfer pipe 31.

【0013】以下に、上記した実施の形態における作用
を説明する。上記構成において、ごみ焼却ボイラ2、蒸
気タービン装置3およびガスタービン装置4を運転した
作動状態において、ごみ焼却ボイラ2で発生した蒸気
は、過熱器5に導かれて過熱管5aにより過熱された
後、蒸気タービン7に供給されて第1発電機8により発
電が行われる。
The operation of the above embodiment will be described below. In the above configuration, in an operating state in which the refuse incineration boiler 2, the steam turbine device 3, and the gas turbine device 4 are operated, the steam generated in the refuse incineration boiler 2 is guided to the superheater 5 and is superheated by the superheat pipe 5a. Is supplied to the steam turbine 7 and power is generated by the first generator 8.

【0014】またガスタービン11は、吸気フィルター
14およびアンチアイスコイル15を介して吸気ダクト
9から空気を取り込んで駆動され、このガスタービン1
1に連結された第2発電機12により発電が行われる。
The gas turbine 11 is driven by taking in air from an intake duct 9 via an intake filter 14 and an anti-ice coil 15.
Electric power is generated by the second generator 12 connected to the power generator 1.

【0015】このとき各機器17を冷却して排熱を持っ
た機器冷却水6aが、バイパス管19を介してアンチア
イスコイル15に導かれていることより、ガスタービン
11の吸込空気温度は高くなる。これにより空気の比容
積は大きくなり、第2発電機12単独の発電出力は低下
する。しかし、温かい空気がガスタービン11に取り込
まれるため、その排気ガスがより高温となり、この高温
の排気ガスが過熱器5に導かれてごみ焼却ボイラ2から
の蒸気温度を上昇させて蒸気量を増加させる。これによ
り、蒸気タービン装置3での発電出力が大きくなる。こ
の増加分は、前述のガスタービン装置4における発電出
力の低下分よりもより大きくなり、発電施設1全体の発
電効率は改善される。
At this time, since the equipment cooling water 6a, which cools the equipment 17 and has exhaust heat, is led to the anti-ice coil 15 via the bypass pipe 19, the suction air temperature of the gas turbine 11 becomes high. Become. As a result, the specific volume of air increases, and the power generation output of the second generator 12 alone decreases. However, since the warm air is taken into the gas turbine 11, the exhaust gas becomes higher in temperature, and the high-temperature exhaust gas is led to the superheater 5 to increase the temperature of the steam from the refuse incineration boiler 2 and increase the amount of steam. Let it. Thereby, the power generation output of the steam turbine device 3 increases. This increase is greater than the decrease in power generation output in the gas turbine device 4 described above, and the power generation efficiency of the entire power generation facility 1 is improved.

【0016】なお蒸気タービン7から排出された排気蒸
気は、復水器21で凝縮された後、脱気器給水ポンプ2
2により過熱器5内の低圧給水加熱管23へ移送されて
加熱される。さらに低圧給水加熱管23から排出された
復水は、その一部が復水移送管24から復水移送管31
を介して上記ごみ焼却ボイラ2の蒸発部伝熱管2aへ導
かれるとともに、その他方が復水移送管24から脱気器
25に導かれて脱気された後、ボイラ給水ポンプ26に
より過熱器5内の節炭管27に移送されて加熱される。
そして節炭管27から排出された復水は、ボイラドラム
28を介して過熱器5内の蒸発管29に導かれて蒸発
し、蒸発管29により発生した蒸気は、蒸気供給管30
を介して蒸気移送管20へ導かれ、再び過熱管5aで過
熱される。
The exhaust steam discharged from the steam turbine 7 is condensed in a condenser 21 and then deaerator feed pump 2
By 2, it is transferred to the low-pressure feed water heating pipe 23 in the superheater 5 and heated. Further, the condensate discharged from the low-pressure feed water heating pipe 23 is partially condensed from the condensate transfer pipe 24 to the condensate transfer pipe 31.
After being guided to the evaporator heat transfer pipe 2a of the refuse incineration boiler 2 and the other side is guided to the deaerator 25 from the condensate transfer pipe 24 and deaerated, the boiler feed pump 26 It is transferred to the economizing pipe 27 and heated.
The condensed water discharged from the coal-saving pipe 27 is guided to the evaporator pipe 29 in the superheater 5 via the boiler drum 28 and evaporates. The steam generated by the evaporator pipe 29 is supplied to the steam supply pipe 30.
To the steam transfer pipe 20 and again heated by the superheating pipe 5a.

【0017】ここで、吸込空気温度が0°Cのとき25
000KWの総発電出力を持つ発電施設において、吸込
空気温度を機器冷却水6aにより35°Cに高めた場合
における発電出力を、0°Cの場合と比較した結果につ
いて説明する。
Here, when the suction air temperature is 0 ° C., 25
A description will be given of a result obtained by comparing the power generation output when the intake air temperature is increased to 35 ° C. by the device cooling water 6a with the power generation facility having a total power generation output of 000 KW to that at 0 ° C.

【0018】まず、ガスタービン11、蒸気タービン
7、ごみ焼却ボイラ2における熱的データを下記の表1
に示す。
First, thermal data in the gas turbine 11, the steam turbine 7, and the waste incineration boiler 2 are shown in Table 1 below.
Shown in

【0019】[0019]

【表1】 [Table 1]

【0020】ところで本発電施設におけるプラント全体
の発電効率Pは、下記式により表すことができる。
Incidentally, the power generation efficiency P of the whole plant in the power generation facility can be expressed by the following equation.

【0021】[0021]

【数1】 (Equation 1)

【0022】上記式に基づき、吸込空気温度が0°C
のときのプラント全体の発電効率P0(T=0)および吸込空
気温度が35°Cのときのプラント全体の発電効率P
1(T=35) を求めると、下記のようになる。
Based on the above equation, the suction air temperature is 0 ° C.
The power generation efficiency P 0 (T = 0) of the whole plant at the time of and the power generation efficiency P of the whole plant at the time of the suction air temperature of 35 ° C.
Solving for 1 (T = 35) gives:

【0023】[0023]

【数2】 (Equation 2)

【0024】したがって発電施設全体の発電効率の差Δ
Pは下記式のようになる。
Therefore, the difference Δ in the power generation efficiency of the entire power generation facility
P is represented by the following equation.

【0025】[0025]

【数3】 (Equation 3)

【0026】すなわち、発電施設全体の発電効率を0.
8%高くすることができた。
That is, the power generation efficiency of the entire power generation facility is set to 0.
8% higher.

【0027】[0027]

【発明の効果】上記した本発明によると、周辺機器の排
熱流体を利用することにより、ガスタービンの吸込空気
温度は高くなり、ガスタービンの発電出力を低下させる
が、過熱器に導入された排気ガスの熱エネルギーが増加
して蒸気量が増すことから、蒸気タービンの発電出力は
高くなる。これは、ガスタービンの発電出力の減少分よ
りもより大きな発電出力であることから、排熱の有効利
用を行いつつ、発電施設全体の発電効率を高めることが
できる。
According to the present invention described above, by utilizing the exhaust heat fluid of the peripheral equipment, the temperature of the suction air of the gas turbine is increased and the power generation output of the gas turbine is reduced. Since the heat energy of the exhaust gas increases and the amount of steam increases, the power generation output of the steam turbine increases. Since this is a power generation output larger than the decrease in the power generation output of the gas turbine, it is possible to increase the power generation efficiency of the entire power generation facility while effectively using waste heat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示し、発電施設の
全体構成を示す図である。
FIG. 1 is a diagram illustrating an example of an embodiment of the present invention and illustrating an entire configuration of a power generation facility.

【符号の説明】[Explanation of symbols]

1 発電施設 2 ごみ焼却ボイラ 3 蒸気タービン装置 4 ガスタービン装置 5 過熱器(排熱回収ボイラ) 6 周辺機器 6a 機器冷却水 15 アンチアイスコイル 19 バイパス管 Reference Signs List 1 power generation facility 2 refuse incineration boiler 3 steam turbine device 4 gas turbine device 5 superheater (exhaust heat recovery boiler) 6 peripheral device 6a device cooling water 15 anti-ice coil 19 bypass pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ボイラと、このボイラから発生する蒸気
により発電を行う蒸気タービン装置と、発電を行うガス
タービン装置とからなる複合発電施設であって、上記ガ
スタービン装置の吸気側に空気加熱用熱交換器を設け、
この空気加熱用熱交換器に周辺機器の排熱流体を導くよ
うになし、ガスタービン装置から排出される排気ガス
を、ボイラから導出される蒸気を過熱する過熱器に導く
ように構成したことを特徴とするガスタービン複合発電
施設。
1. A combined power generation facility comprising a boiler, a steam turbine device for generating power using steam generated from the boiler, and a gas turbine device for generating power, wherein an air heating system is provided on an intake side of the gas turbine device. Install a heat exchanger,
The heat exchanger for air heating is configured to guide the exhaust heat fluid of the peripheral device, and the exhaust gas discharged from the gas turbine device is configured to be guided to a superheater that superheats the steam derived from the boiler. Characteristic gas turbine combined cycle facility.
JP9169324A 1997-06-26 1997-06-26 Gas turbine combined power plant Pending JPH1113419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9169324A JPH1113419A (en) 1997-06-26 1997-06-26 Gas turbine combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9169324A JPH1113419A (en) 1997-06-26 1997-06-26 Gas turbine combined power plant

Publications (1)

Publication Number Publication Date
JPH1113419A true JPH1113419A (en) 1999-01-19

Family

ID=15884445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9169324A Pending JPH1113419A (en) 1997-06-26 1997-06-26 Gas turbine combined power plant

Country Status (1)

Country Link
JP (1) JPH1113419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519500A (en) * 2012-04-09 2015-07-09 イーアイエフ・エヌティーイー・ハイブリッド・インテレクチュアル・プロパティ・ホールディング・カンパニー・エルエルシー Feed water heating hybrid power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519500A (en) * 2012-04-09 2015-07-09 イーアイエフ・エヌティーイー・ハイブリッド・インテレクチュアル・プロパティ・ホールディング・カンパニー・エルエルシー Feed water heating hybrid power generation

Similar Documents

Publication Publication Date Title
RU2532635C2 (en) Electric energy accumulation by thermal accumulator and reverse electric energy production by thermodynamic cyclic process
RU2015353C1 (en) Method of operation of steam-gas-turbine power plant
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
JPH07208116A (en) Combined-cycle power plant
JP2001214759A (en) Gas turbine combined cycle
JP2009185813A (en) Device and method for starting of power generation plant
SU1521284A3 (en) Power plant
JP3925985B2 (en) Combined cycle power plant
JP2000054855A (en) External heating type gas turbine
US11313252B2 (en) Enhanced HRSG for repowering a coal-fired electrical generating plant
RU2409746C2 (en) Steam-gas plant with steam turbine drive of compressor and regenerative gas turbine
CA2429938C (en) A turbine arrangement and a method of operating a turbine arrangement
JPH09209714A (en) Composite power generating device with reactor coolant heating steam generator
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JPH1113419A (en) Gas turbine combined power plant
RU2611138C1 (en) Method of operating combined-cycle power plant
JP3017937B2 (en) Hydrogen combustion turbine plant
JPH06212909A (en) Compound electric power plant
JPS60138213A (en) Composite cycle waste heat recovery power generating plant
RU58613U1 (en) COMBINED STEAM-GAS UNIT WITH PARALLEL OPERATION DIAGRAM
KR102526789B1 (en) Combined cycle power generation system
RU2272914C1 (en) Gas-steam thermoelectric plant
JPH02259301A (en) Waste heat recovery boiler