JPH11133144A - Fm-cw radar device - Google Patents

Fm-cw radar device

Info

Publication number
JPH11133144A
JPH11133144A JP29841597A JP29841597A JPH11133144A JP H11133144 A JPH11133144 A JP H11133144A JP 29841597 A JP29841597 A JP 29841597A JP 29841597 A JP29841597 A JP 29841597A JP H11133144 A JPH11133144 A JP H11133144A
Authority
JP
Japan
Prior art keywords
frequency
signal
modulation
reception
modulation voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29841597A
Other languages
Japanese (ja)
Other versions
JP3613952B2 (en
Inventor
Takuya Suzuki
拓也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29841597A priority Critical patent/JP3613952B2/en
Publication of JPH11133144A publication Critical patent/JPH11133144A/en
Application granted granted Critical
Publication of JP3613952B2 publication Critical patent/JP3613952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the no-detection area of a target object caused by the DC and low frequency contained in the reception base band signal by applying the frequency analysis and relative distance/relative speed calculation corresponding to modulation bandwidths to the reception base band signal having different modulation bandwidths. SOLUTION: Two kinds of modulation voltages controlling a voltage control oscillator 4 are stored in a modulation voltage memory section 1. The timing signal periodically switching the modulation voltages is outputted to a switch 20 by a timing controller 2 to transfer the modulation voltages in turn to a D/A converter 3. The high-frequency transmission signal having the oscillation frequency proportional to the modulation voltages is irradiated to a target object, the reflected wave is received, and the reception base band signal is outputted by a reception signal detection section 18. The reception base band signal having different modulation bandwidths is sent through an A/D converter 12, and the signal frequency is analyzed by a frequency analyzing means 13 via discrete Fourier transformation. The relative distance and speed are calculated by a distance/speed measuring means 14 based on the detected frequency spectrum to obtain the position and speed information of the target.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は例えば走行する車
両に搭載され、前方に存在する走行車両や障害物などの
位置及び速度情報を検出するのに有効に働く装置として
FM−CWレーダ装置に関するものであり、その原理は
「60GHz帯自動車用ミリ波レーダ」(FUJITS
U.vo147、4、pp.332−337 1996
年7月)などに詳述され、広く知られている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an FM-CW radar device which is mounted on, for example, a traveling vehicle and which works effectively for detecting position and speed information of a traveling vehicle or an obstacle existing in front of the vehicle. The principle is "60 GHz band millimeter wave radar for automobiles" (FUJITS
U. vo147,4, pp. 332-337 1996
, And is widely known.

【0002】[0002]

【従来の技術】図4は従来のFM−CWレーダ装置の代
表的な系統図を示したもので、図中、1は変調電圧記憶
部、2はタイミング制御部、3はD/A変換器、4は電
圧制御発振器、5は高周波増幅器、6は方向性結合器、
7は送信空中線、8は受信空中線、9は受信ミクサ、1
0はビデオ増幅器、11は低域通過型フィルタ、12は
A/D変換器、13は周波数解析手段、14は距離・速
度計測手段であり、これらの部品1〜3で変調電圧発生
部15を、部品4〜6で送信信号変換部16を、部品7
及び8でアンテナ部17を、部品9〜11で受信信号検
出部18を、部品2及び12〜14で受信ベースバンド
信号処理部19をそれぞれ構成する。
2. Description of the Related Art FIG. 4 shows a typical system diagram of a conventional FM-CW radar apparatus, in which 1 is a modulation voltage storage unit, 2 is a timing control unit, and 3 is a D / A converter. 4 is a voltage controlled oscillator, 5 is a high frequency amplifier, 6 is a directional coupler,
7 is a transmitting antenna, 8 is a receiving antenna, 9 is a receiving mixer, 1
Reference numeral 0 denotes a video amplifier, 11 denotes a low-pass filter, 12 denotes an A / D converter, 13 denotes frequency analysis means, and 14 denotes distance / speed measurement means. , The transmission signal conversion unit 16 by the components 4 to 6 and the component 7
And 8 constitute an antenna unit 17, components 9 to 11 constitute a reception signal detection unit 18, and components 2 and 12 to 14 constitute a reception baseband signal processing unit 19.

【0003】このFM−CWレーダ装置の動作、原理を
概説すると、変調電圧記憶部1には、電圧制御発振器4
において、その発振周波数が特定の下限値と上限値の間
で直線的かつ周期的に増減する送信信号を励振する変調
電圧をディジタルデータとして記憶している。タイミン
グ制御器2はこの変調電圧を所定のタイミングで取り出
すタイミング信号をD/A変換器3に出力する。この出
力タイミング信号を受信したD/A変換器4は上記のタ
イミングで変調電圧記憶部1よりディジタル変調電圧を
取り出し、変調電圧をディジタル信号からビット数に対
応したアナログ信号に変換し、送受信部の電圧制御発振
器の発振周波数を制御する変調電圧として出力する。
The operation and principle of the FM-CW radar device will be briefly described.
, A modulation voltage for exciting a transmission signal whose oscillation frequency linearly increases and decreases between a specific lower limit and an upper limit is stored as digital data. The timing controller 2 outputs a timing signal for extracting the modulation voltage at a predetermined timing to the D / A converter 3. The D / A converter 4 receiving this output timing signal extracts the digital modulation voltage from the modulation voltage storage unit 1 at the above timing, converts the modulation voltage from the digital signal to an analog signal corresponding to the number of bits, and Output as a modulation voltage for controlling the oscillation frequency of the voltage controlled oscillator.

【0004】電圧制御発振器4は、信号処理部のD/A
変換器3から入力された変調電圧に比例した発振周波数
を有する高周波送信信号を励振し、特定の下限値と上限
値の間で直線的かつ周期的に増減する直線周波数変調さ
れた高周波送信信号を出力する。高周波増幅器5は電圧
制御発振器4からの高周波送信信号を入力し、この高周
波送信信号と周波数及び位相が時間的に同期しかつ高周
波増幅された信号を出力する。方向性結合器6はこの高
周波増幅された信号を所定の電力比で2つの高周波送信
信号に分割する。この方向性結合器6の出力信号の一方
は送信空中線7により電磁波に変換され、目標物に照射
される。
The voltage controlled oscillator 4 has a D / A of a signal processing unit.
A high-frequency transmission signal having an oscillation frequency proportional to the modulation voltage input from the converter 3 is excited, and a linear-frequency-modulated high-frequency transmission signal that linearly and periodically increases and decreases between a specific lower limit and an upper limit is formed. Output. The high-frequency amplifier 5 receives the high-frequency transmission signal from the voltage-controlled oscillator 4 and outputs a signal whose frequency and phase are time-synchronized with this high-frequency transmission signal and whose high-frequency is amplified. The directional coupler 6 divides the high-frequency amplified signal into two high-frequency transmission signals at a predetermined power ratio. One of the output signals of the directional coupler 6 is converted into an electromagnetic wave by the transmitting antenna 7 and is irradiated on a target.

【0005】照射された電磁波は送信空中線7から相対
距離Rに存在しかつ相対速度Vで移動する目標物で反射
され、目標物とFM−CWレーダ装置との相対速度Vに
比例したドップラシフトを受けて、かつ目標物との相対
距離Rに比例した時間2* R/C(C:光速)だけ遅れ
て、受信空中線8で受信され受信高周波信号に変換され
る。このとき目標物とFM−CWレーダ装置との速度差
により生じる周波数偏移は2* fc* V/C(fc:送
信信号の中心周波数)となる。
The radiated electromagnetic wave is reflected by a target which is located at a relative distance R from the transmitting antenna 7 and moves at a relative speed V, and undergoes a Doppler shift proportional to the relative speed V between the target and the FM-CW radar device. The signal is received by the receiving antenna 8 with a delay of 2 * R / C (C: speed of light) proportional to the relative distance R to the target, and is converted into a received high-frequency signal. At this time, the frequency shift caused by the speed difference between the target and the FM-CW radar device is 2 * fc * V / C (fc: center frequency of the transmission signal).

【0006】FM−CWレーダ装置から距離R、相対速
度Vで移動する目標物からの受信高周波信号は受信ミク
サ9において、上記の方向性結合器6の出力である送信
高周波信号と混合され、受信ベースバンド信号に変換さ
れる。この受信ベースバンド信号はビデオ増幅器10で
所定の利得で増幅された後、低域通過型フィルタ11に
より、計測に不要な高周波部分を遮断して、目標情報を
含む受信ビート周波数のみを取り出される。
[0006] A high frequency signal received from a target moving at a distance R and a relative speed V from the FM-CW radar device is mixed in a reception mixer 9 with a transmission high frequency signal output from the directional coupler 6 and received. It is converted to a baseband signal. After the received baseband signal is amplified by the video amplifier 10 with a predetermined gain, the high-frequency portion unnecessary for measurement is cut off by the low-pass filter 11, and only the received beat frequency including the target information is extracted.

【0007】図5は従来のFM−CWレーダ装置の送信
空中線7から目標物へ照射される送信信号28と目標物
から反射してくる受信信号29の周波数の時間変化を示
したものであり、図中のfu は送信周波数の上限値、f
1 はその下限値である(この上限値と下限値の差を変調
帯域幅Bとする)。送信信号28は周波数が直線的に増
加する区間30、周波数が一定の値となる区間31、周
波数が直線的に減少する区間32の3つの区間からなり
(これらの区間を以後、それぞれupチャープ、CW、
downチャープとする)、1周期(時間3Tm/2)
を構成する。受信信号29は送信信号28がFM−CW
レーダ装置から目標までの距離Rを伝播し、反射して戻
ってくる電波伝播時間の遅れに相当する時間偏移33
(τとする)と、両者の速度差から生ずるドップラシフ
トにより周波数偏移34(Δfv とする)を受ける。受
信信号検出部18からの出力として得られた受信ベース
バンド信号は上記の送信信号28と受信信号29の周波
数の差分をとった信号(ビート信号)に相当する。この
ビート信号の周波数の時間的な変化を図6に示す。図中
35がビート信号を表している。図5における各チャー
プに対応した区間30、31、32では上記の相対距離
Rによる周波数成分Δfr と速度ドップラによる周波数
成分Δfv によって定まるビート周波数fup、fCW、f
downが得られる。上記の周波数成分及び各チャープのビ
ート周波数はそれぞれ次式のように与えられる。
FIG. 5 shows a time change of a frequency of a transmission signal 28 radiated from the transmission antenna 7 to the target and a reception signal 29 reflected from the target in the conventional FM-CW radar apparatus. f u is the upper limit value of the transmission frequency in the figure, f
1 is its lower limit (the difference between this upper limit and the lower limit is referred to as modulation bandwidth B). The transmission signal 28 includes three sections: a section 30 in which the frequency increases linearly, a section 31 in which the frequency has a constant value, and a section 32 in which the frequency decreases linearly (hereinafter, these sections will be referred to as up chirp, CW,
down chirp) 1 cycle (time 3Tm / 2)
Is configured. As for the reception signal 29, the transmission signal 28 is FM-CW.
A time shift 33 corresponding to the delay of the radio wave propagation time which propagates the distance R from the radar device to the target, reflects and returns.
And (tau and) subjected to frequency shift 34 by the Doppler shift resulting from the speed difference between the two (a Delta] f v). The reception baseband signal obtained as an output from the reception signal detection unit 18 corresponds to a signal (beat signal) obtained by calculating the difference between the frequencies of the transmission signal 28 and the reception signal 29 described above. FIG. 6 shows a temporal change in the frequency of the beat signal. In the figure, 35 represents a beat signal. FIG frequency component due to the relative distance R in the above in the section 30, 31 and 32 corresponding to each chirp in 5 Delta] f the frequency component by r and velocity Doppler Delta] f v beat frequency f Stay up-determined by, f CW, f
down is obtained. The frequency components and the beat frequency of each chirp are given by the following equations.

【0008】[0008]

【数1】 (Equation 1)

【0009】[0009]

【数2】 (Equation 2)

【0010】[0010]

【数3】 (Equation 3)

【0011】[0011]

【数4】 (Equation 4)

【0012】[0012]

【数5】 (Equation 5)

【0013】受信信号検出部18内の低域通過型フィル
タ11の出力ベースバンド信号は、タイミング制御部2
からD/A変換器3に出力された上記のタイミング信号
と時間的に同期したタイミング信号に基づいて、A/D
変換器12に入力され、アナログ信号からディジタル信
号に変換される。離散化・量子化された受信ベースバン
ド信号は周波数解析手段13にて離散フーリエ変換によ
り信号周波数の分析が行われ、図7(B)及び(C)の
ように目標の相対距離Rによる周波数成分37(=Δf
r )と図7(A)のように速度ドップラによる周波数成
分38(=Δfv )ドップラ周波数を含む周波数スペク
トルとして出力される。検出された周波数スペクトルは
距離・速度計測手段14により、次式の組み合わせ計算
を行うことによりFM−CWレーダ装置から目標までの
相対距離R及び相対速度Vを算出することが可能とな
る。
The output baseband signal of the low-pass filter 11 in the received signal detector 18 is transmitted to the timing controller 2
A / D based on a timing signal temporally synchronized with the timing signal output to the D / A converter 3 from the A / D converter
The signal is input to the converter 12 and converted from an analog signal to a digital signal. The discretized and quantized received baseband signal is subjected to signal frequency analysis by a discrete Fourier transform by the frequency analysis means 13, and as shown in FIG. 7B and FIG. 37 (= Δf
r ) and the frequency spectrum including the frequency component 38 (= Δf v ) Doppler frequency due to the velocity Doppler as shown in FIG. The relative frequency R and the relative velocity V from the FM-CW radar device to the target can be calculated by performing the combination calculation of the following expression on the detected frequency spectrum by the distance / speed measuring means 14.

【0014】[0014]

【数6】 (Equation 6)

【0015】[0015]

【数7】 (Equation 7)

【0016】[0016]

【発明が解決しようとする課題】従来のFM−CWレー
ダ装置はこのように構成されかつ動作するから、このF
M−CWレーダ装置を車両に搭載した図8に示すよう
に、受信信号検出部18の出力として得られる受信ベー
スバンド信号に、送信空中線7と受信空中線8との間の
相互結合(電磁波の漏れ込み)38や通常送信空中線7
及び受信空中線8前方に配置されるレドーム39の反射
40などにより生ずる直流及び低周波成分が含まれてお
り、FM−CWレーダ装置から特定の距離に存在しかつ
相対速度で移動する目標の受信ビ−ト信号の振幅レベル
が図9の41(b)に示すように、上記の直流及び低周
波成分42の振幅レベルに比べて低い場合、当該目標物
の検出が不可能となるという問題があった。
Since the conventional FM-CW radar apparatus is constructed and operates in this manner,
As shown in FIG. 8 in which the M-CW radar device is mounted on a vehicle, a mutual coupling between the transmitting antenna 7 and the receiving antenna 8 (electromagnetic wave leakage) 38) and normal transmission antenna 7
DC and low-frequency components generated by the reflection 40 of the radome 39 disposed in front of the receiving antenna 8 and the like, and the target receiving vehicle which exists at a specific distance from the FM-CW radar apparatus and moves at a relative speed. If the amplitude level of the target signal is lower than the amplitude levels of the DC and low frequency components 42 as shown at 41 (b) in FIG. 9, the target cannot be detected. Was.

【0017】図10は上記のFM−CWレーダ装置を搭
載した自車両と道路及び先行走行車両の相対的な位置関
係を示した図である。図中の43はFM−CWレーダ装
置、44は自車両、45は先行走行車両、46は道路、
47、48は送信波及び受信波をそれぞれ表している。
送信中心周波数fc を60.5GHz、変調帯域幅Bを
150MHz、掃引時間Tmを8.4msとしたFM−
CWレーダ装置43を搭載した車両44の前方を図10
のように相対速度40km/hで先行車両45が遠ざか
る場合、前述のupチャープ、CW、downチャープ
におけるビート周波数の相対距離Rに対する変化は図1
1のようになる。この図において、直流及び低周波の漏
れ込み52により700Hz以下のビート周波数をもつ
目標信号が検出できないとすると、先行車両がFM−C
Wレーダ装置より16mから21置の距離範囲内ではd
ownチャープの受信ベースバンド信号50が検出でき
ないため、測距・測速度が不可能となる。図12におけ
る53は上記と同様の条件で受信ベースバンド信号が検
出できないために生ずる不検知領域を示している。図中
の横軸の相対速度、縦軸の相対速度を持つ移動目標から
の受信信号レベルが十分な大きさであっても検知が不可
能となる。以上のように、直流及び低周波の漏れ込みに
よって発生する不検知領域は実用上の必然的な問題とな
り、改善が望まれている。
FIG. 10 is a diagram showing a relative positional relationship between a host vehicle equipped with the above-mentioned FM-CW radar device, a road and a preceding vehicle. In the figure, 43 is an FM-CW radar device, 44 is a host vehicle, 45 is a preceding traveling vehicle, 46 is a road,
47 and 48 represent a transmission wave and a reception wave, respectively.
60.5GHz transmission center frequency f c, the modulation bandwidth B 150 MHz, and a sweep time Tm and 8.4 ms FM-
FIG. 10 shows the front of a vehicle 44 on which the CW radar device 43 is mounted.
When the preceding vehicle 45 moves away at a relative speed of 40 km / h as shown in FIG. 1, the change in the beat frequency with respect to the relative distance R in the above-described up chirp, CW, and down chirp is shown in FIG.
It looks like 1. In this figure, if it is assumed that a target signal having a beat frequency of 700 Hz or less cannot be detected due to the leakage 52 of DC and low frequency, the preceding vehicle is FM-C
D within a distance range of 16 m to 21 places from the W radar device
Since the own baseband signal 50 of the own chirp cannot be detected, distance measurement and speed measurement become impossible. Reference numeral 53 in FIG. 12 denotes a non-detection region generated because a reception baseband signal cannot be detected under the same conditions as described above. Even if the level of the received signal from the moving target having the relative speed on the horizontal axis and the relative speed on the vertical axis in the drawing is sufficiently large, detection becomes impossible. As described above, the non-detection area generated by the leakage of the direct current and the low frequency becomes a practically inevitable problem, and improvement is desired.

【0018】この発明はかかる問題に鑑みてなされたも
のであり、目標物の距離や速度の如何に関わらず、受信
ベースバンド信号に含まれる直流及び低周波により発生
する上記の目標物の不検知領域を低減することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and does not detect the above-mentioned target generated by DC and low frequency included in the received baseband signal regardless of the distance or speed of the target. The purpose is to reduce the area.

【0019】[0019]

【課題を解決するための手段】この発明によるFM−C
Wレーダ装置は、従来のFM−CWレーダ装置の信号処
理部内の変調電圧発生部及び受信ベースバンド信号処理
部の構成を以下のように変更したものである。
SUMMARY OF THE INVENTION An FM-C according to the present invention.
In the W radar device, the configurations of the modulation voltage generation unit and the reception baseband signal processing unit in the signal processing unit of the conventional FM-CW radar device are changed as follows.

【0020】即ち、電圧制御発振器において、upチャ
ープ、CW、downチャープの1周期毎に送信中心周
波数を起点とした特定の変調帯域幅を有する送信信号
と、上記の変調帯域幅とは異なる変調帯域幅を有する送
信信号を励振する2種類の変調電圧を記憶する変調電圧
記憶部と、これらの変調電圧信号を1周期毎に切り替え
るタイミングでタイミング信号を発生させるタイミング
制御部と、変調電圧記憶部から上記のタイミング信号に
基づいて出力変調電圧を切り替えるスイッチと、上記の
タイミング信号に基づいて変調電圧を入力し、アナログ
ーディジタル変換を行い、電圧制御発振器に出力するD
/A変換器とで構成する。
That is, in the voltage controlled oscillator, a transmission signal having a specific modulation bandwidth starting from the transmission center frequency for each cycle of up chirp, CW, and down chirp, and a modulation bandwidth different from the above-described modulation bandwidth. A modulation voltage storage unit that stores two types of modulation voltages that excite a transmission signal having a width, a timing control unit that generates a timing signal at a timing at which these modulation voltage signals are switched every cycle, and a modulation voltage storage unit. A switch for switching the output modulation voltage based on the timing signal, and a D for inputting the modulation voltage based on the timing signal, performing analog-to-digital conversion, and outputting to the voltage controlled oscillator
/ A converter.

【0021】一方、受信ベースバンド信号処理部は上記
のタイミング制御部により、上記の異なる変調電圧によ
り励振される異なる変調帯域幅を有する受信ベースバン
ド信号を上記のタイミングでA/D変換器へ入力させ、
かつ上記の変調帯域幅に対応した周波数解析、相対距離
・相対速度計算を行う周波数解析手段及び距離・速度計
測手段とで構成する。
On the other hand, the reception baseband signal processing section inputs the reception baseband signals having different modulation bandwidths excited by the different modulation voltages to the A / D converter at the above timing by the timing control section. Let
In addition, it comprises frequency analysis means for performing frequency analysis and relative distance / relative speed calculation corresponding to the modulation bandwidth and distance / speed measurement means.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1はこの発明の実施の形態1を示すF
M−CWレーダ装置の構成図であり、1は変調電圧記憶
部、20はスイッチ、2はタイミング制御部、3はD/
A変換器であり、これらの部品1〜3及び部品20で変
調電圧発生部15を構成する。また、図中の12はA/
D変換器、13は周波数解析手段、14は距離・速度計
測手段であり、これらの部品12〜14及び部品2で受
信ベースバンド信号処理部19を構成する。なお、この
発明は従来のFM−CWレーダ装置の一部を変更したも
のであるため、従来のものと同一機能を有する部品につ
いては、同一の符号を付してその説明を省略する。
Embodiment 1 FIG. FIG. 1 is a diagram showing an embodiment 1 of the present invention.
FIG. 1 is a configuration diagram of an M-CW radar device, wherein 1 is a modulation voltage storage unit, 20 is a switch, 2 is a timing control unit, and 3 is a D / D
This is an A-converter, and the components 1 to 3 and the component 20 constitute the modulation voltage generating unit 15. 12 in the figure is A /
A D converter, 13 is a frequency analyzing means, 14 is a distance / speed measuring means, and these parts 12 to 14 and the part 2 constitute a reception baseband signal processing unit 19. Since the present invention is a modification of the conventional FM-CW radar apparatus, parts having the same functions as those of the conventional FM-CW radar apparatus are denoted by the same reference numerals and the description thereof will be omitted.

【0023】変調電圧記憶部1には、図2の21のよう
に出力送信周波数が特定の下限値f1 と上限値fu の間
で直線的かつ周期的に増減するように電圧制御発振器4
を制御する変調電圧と、22のように出力送信周波数が
下限2fl −fc と上限値2fu −fc の間で直線的か
つ周期的に増減するように電圧制御発振器4を制御する
変調電圧が記憶されている。電圧制御発振器4は印加電
圧に比例した周波数を有する高周波送信信号を励振する
電圧制御発振器である。上記の2種類の変調帯域幅を有
する送信信号の周波数の時間変化は図2に示すように、
時間Tm/2毎に周波数が直線的に増加する区間23、
周波数が一定の値となる区間24、周波数が直線的に減
少する区間25の3つの区間からなり、1周期(時間3
Tm/2)を構成する。
The modulation voltage memory unit 1, the voltage controlled oscillator 4 as the output transmit frequency increases or decreases linearly and periodically between specific lower limit f 1 and the upper limit value f u as 21 in FIG. 2
A modulation voltage for controlling the modulation of the output transmission frequency as 22 to control the voltage controlled oscillator 4 to increase or decrease linearly and periodically between a lower limit 2f l -f c and the upper limit value 2f u -f c The voltage is stored. The voltage-controlled oscillator 4 is a voltage-controlled oscillator that excites a high-frequency transmission signal having a frequency proportional to an applied voltage. The time variation of the frequency of the transmission signal having the above two types of modulation bandwidths is as shown in FIG.
Section 23 in which the frequency increases linearly every time Tm / 2,
It consists of three sections, a section 24 in which the frequency has a constant value and a section 25 in which the frequency decreases linearly, and one period (time 3
Tm / 2).

【0024】タイミング制御部2はこれらの変調電圧を
図2に示す1周期毎(時間3Tm/2)に切り替えるタ
イミング信号を発生し、スイッチ20に出力する。タイ
ミング信号を受信したスイッチ20はそれまでに接続し
ていた端子と別のもう一方の端子に接続を切り替えて、
変調電圧記憶部1からそれまで読み込んでいた変調電圧
(これを#1とする)とは別のもう一方の変調電圧(こ
れを#2とする)の読み込みを開始し、この変調電圧#
2をD/A変換器3に転送する。スイッチを切り替えて
3Tm/2時間後に、再びタイミング制御部2からタイ
ミング信号が発生し、このタイミング信号に基づいて再
びスイッチ20を切り替えて、変調電圧#1がD/A変
換器3に転送される。以後同様に、時間3Tm/2毎に
スイッチ20が切り替わり、変調電圧#1と#2が交互
にD/A変換器3に転送される。
The timing control section 2 generates a timing signal for switching these modulation voltages for each cycle (time 3 Tm / 2) shown in FIG. The switch 20 that has received the timing signal switches the connection between the terminal that has been connected so far and another terminal,
Reading of another modulation voltage (this is # 2) different from the modulation voltage (this is # 1) that has been read from the modulation voltage storage unit 1 is started, and this modulation voltage #
2 is transferred to the D / A converter 3. 3Tm / 2 hours after the switch is switched, a timing signal is again generated from the timing control unit 2. Based on this timing signal, the switch 20 is switched again, and the modulation voltage # 1 is transferred to the D / A converter 3. . Thereafter, similarly, the switch 20 is switched every 3 Tm / 2, and the modulation voltages # 1 and # 2 are alternately transferred to the D / A converter 3.

【0025】D/A変換器4は変調電圧記憶部1から読
み込んだディジタルの変調電圧信号を所定のビット数に
相当するアナログ変調電圧信号に変換する。変換された
変調電圧信号は従来のFM−CWレーダ装置と同様に電
圧制御発振器4に出力される。
The D / A converter 4 converts the digital modulation voltage signal read from the modulation voltage storage section 1 into an analog modulation voltage signal corresponding to a predetermined number of bits. The converted modulated voltage signal is output to the voltage controlled oscillator 4 as in the case of the conventional FM-CW radar device.

【0026】送信信号変換部16では従来のFM−CW
レーダ装置と同様に、変調電圧に比例した発振周波数を
有する高周波送信信号を出力し、高周波増幅を行った
後、送信空中線7より目標物に送信波として照射され
る。目標物から相対速度に比例したドップラシフトを受
けて反射し、相対距離に比例した電波伝播時間の遅れを
もった反射波は再び受信空中線8で受信され、受信信号
検出部18にて周波数変換、中間周波数増幅、濾波され
た後、受信ベースバンド信号が出力される。この際得ら
れる受信ベースバンド信号は上記の変調電圧の1周期即
ち3Tm/2時間毎に異なる変調帯域幅を有している。
In the transmission signal converter 16, the conventional FM-CW
As in the case of the radar device, a high-frequency transmission signal having an oscillation frequency proportional to the modulation voltage is output, and after high-frequency amplification is performed, the target antenna is irradiated from the transmission antenna 7 as a transmission wave. A reflected wave having a Doppler shift proportional to the relative speed and reflected from the target, and having a delay in radio wave propagation time proportional to the relative distance is received by the receiving antenna 8 again, and is subjected to frequency conversion by the received signal detecting unit 18. After the intermediate frequency amplification and filtering, the received baseband signal is output. The reception baseband signal obtained at this time has a different modulation bandwidth every one cycle of the modulation voltage, that is, every 3 Tm / 2 hours.

【0027】上記の異なる変調帯域幅を有する受信ベー
スバンド信号は、受信ベースバンド信号処理部19内の
タイミング制御部2により、時間3Tm/2毎の単位で
A/D変換器12へ入力され、ディジタル信号に変換す
る。離散化・量子化された受信ベースバンド信号は周波
数解析手段13にて離散フーリエ変換により信号周波数
の分析が行われ、目標のドップラ周波数を含む周波数ス
ペクトルとして出力される。検出された周波数スペクト
ルは距離・速度計測手段14により、上記の変調帯域幅
に対応した相対距離・相対速度計算が行われ(具体的に
は、数6及び数7の計算が行われ)、目標の位置・速度
情報を得る。
The reception baseband signals having the different modulation bandwidths are input to the A / D converter 12 by the timing control unit 2 in the reception baseband signal processing unit 19 in units of 3 Tm / 2. Convert to digital signal. The discretized and quantized reception baseband signal is subjected to signal frequency analysis by a discrete Fourier transform by the frequency analysis means 13 and is output as a frequency spectrum including a target Doppler frequency. For the detected frequency spectrum, the relative distance / velocity calculation corresponding to the above-mentioned modulation bandwidth is performed by the distance / velocity measuring means 14 (specifically, the calculations of Equations 6 and 7 are performed), and the target is calculated. Obtain position / velocity information.

【0028】上記の2種類の異なる変調帯域幅を有する
受信ベースバンド信号には、前述のように直流及び低周
波成分の漏れ込みが含まれており、この周波数帯域に目
標の受信ビート信号が得られた場合、受信ビート信号ス
ペクトルが直流及び低周波成分のフロアノイズに隠れて
しまい、当該目標物の検出が不可能となる。例えば送信
中心周波数fcを60.5GHz、掃引時間Tmを8.
4msとし、2つの変調帯域幅Bを150MHz及び3
00MHzに設定した場合、直流及び低周波の漏れ込み
によりフロアノイズの拡がりが700Hzとすると、ビ
ート信号が検出できないために生ずる不検知領域は図3
の26ようになる。図中の変調帯域幅300MHzの送
信信号に対する不検知領域を、変調帯域幅150MHz
の場合の不検知領域53に比べた場合、同一相対速度に
対して目標を検知できない相対距離は半分となる。以上
のように変調帯域幅を大きくすることにより、不検知領
域を低減することが可能となる。
The reception baseband signals having the two different modulation bandwidths include the leakage of the DC and low frequency components as described above, and the target reception beat signal is obtained in this frequency band. In this case, the received beat signal spectrum is hidden by DC and low-frequency component floor noise, making it impossible to detect the target. For example, the transmission center frequency fc is 60.5 GHz, and the sweep time Tm is 8.
4 ms, the two modulation bandwidths B are 150 MHz and 3
When the frequency is set to 00 MHz and the floor noise spreads to 700 Hz due to the leakage of the direct current and the low frequency, the undetected area generated due to the inability to detect the beat signal is shown in FIG.
It becomes like 26 of. The undetected area for a transmission signal having a modulation bandwidth of 300 MHz in the figure is a modulation bandwidth of 150 MHz.
In comparison with the non-detection area 53 in the case of (1), the relative distance over which the target cannot be detected at the same relative speed is halved. By increasing the modulation bandwidth as described above, it is possible to reduce the non-detection area.

【0029】一方、変調電圧発生部15と受信ベースバ
ンド信号処理部19において、送信信号の変調帯域幅を
時間3Tm/2毎に切り替えて、相対距離・相対速度計
測を行うことにより、異なる変調帯域幅に対する目標の
不検知領域は図3のように、時間3Tm/2毎に領域2
6と領域53に変化するため、図中の領域27以外の不
検知領域に存在する目標は、相対距離・相対速度を2回
計測する内の1回は検出されることになる。即ち、図中
の領域27以外の不検知領域は時間的に半分に低減され
たことになる。
On the other hand, the modulation voltage generator 15 and the reception baseband signal processor 19 switch the modulation bandwidth of the transmission signal at intervals of 3 Tm / 2 and measure the relative distance and relative velocity, so that different modulation bandwidths are obtained. As shown in FIG. 3, the target non-detection area with respect to the width is the area 2 every 3 Tm / 2.
6 and the area 53, the target existing in the non-detection area other than the area 27 in the figure is detected once in the measurement of the relative distance / relative speed twice. That is, the non-detection area other than the area 27 in the figure is reduced in time by half.

【0030】[0030]

【発明の効果】この発明によれば、FM−CWレーダ装
置において受信ベースバンド信号に直流及び低周波成分
が混入し、目標のドップラ周波数スペクトルが検出でき
ない不検出領域を時間的に低減することができる。
According to the present invention, it is possible to temporally reduce an undetected area where a target Doppler frequency spectrum cannot be detected by mixing direct current and low frequency components in a received baseband signal in an FM-CW radar apparatus. it can.

【0031】また、この発明では変調電圧発生部の出力
変調電圧のみを変化させることにより送信信号の変調帯
域幅を制御し、送信信号変換部、受信信号検出部及びア
ンテナ部のハードウエア部品を変更する必要がないた
め、従来のFM−CWレーダ装置からの構成部品変更や
改修の規模が小さく、かつ受信ベースバンド信号の検波
方式を変更していないために、信号の送受信におけるS
/Nの劣化を少なくすることができる。
Further, in the present invention, the modulation bandwidth of the transmission signal is controlled by changing only the output modulation voltage of the modulation voltage generation unit, and the hardware components of the transmission signal conversion unit, the reception signal detection unit, and the antenna unit are changed. Since there is no need to perform this operation, the scale of component changes or modification from the conventional FM-CW radar device is small, and the detection method of the received baseband signal is not changed.
/ N can be reduced.

【0032】更に変調電圧発生部では、記憶部への変調
電圧の追加と、記憶部からの読み出しの切り替えだけで
送信信号の変調帯域幅を制御できるため、タイミング制
御器のタイミング信号発生周期やタイミング信号品質に
対する性能・条件は変更されないため、容易にこの発明
の構成が実現できる。同時に受信ベースバンド信号処理
部では、相対距離・相対速度の算出係数の変更のみで目
標の位置・速度情報が得られるため、従来のFM−CW
レーダ装置と比べて信号処理負荷が大きく増大しない。
Further, in the modulation voltage generation section, the modulation bandwidth of the transmission signal can be controlled only by adding the modulation voltage to the storage section and switching the reading from the storage section. Since the performance / condition for the signal quality is not changed, the configuration of the present invention can be easily realized. At the same time, the reception baseband signal processing unit can obtain the target position / speed information only by changing the calculation coefficients of the relative distance / relative speed.
The signal processing load does not increase significantly compared to the radar device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明によるFM−CWレーダ装置の実施
の形態1の構成を示すシステムブロック図である。
FIG. 1 is a system block diagram illustrating a configuration of a first embodiment of an FM-CW radar device according to the present invention.

【図2】 この発明によるFM−CWレーダ装置の実施
の形態1の送信信号の変調周波数の時間変化を示す図で
ある。
FIG. 2 is a diagram illustrating a temporal change of a modulation frequency of a transmission signal in the FM-CW radar apparatus according to the first embodiment of the present invention.

【図3】 この発明によるFM−CWレーダ装置の実施
の形態1の不検知領域を示す図である。
FIG. 3 is a diagram illustrating a non-detection area according to the first embodiment of the FM-CW radar device according to the present invention;

【図4】 従来のFM−CWレーダ装置の構成を示すシ
ステムブロック図である。
FIG. 4 is a system block diagram showing a configuration of a conventional FM-CW radar device.

【図5】 従来のFM−CWレーダ装置の送信信号と受
信信号の周波数の時間変化を示す図である。
FIG. 5 is a diagram illustrating a change over time of the frequency of a transmission signal and a frequency of a reception signal of a conventional FM-CW radar device.

【図6】 従来のFM−CWレーダ装置のビート信号の
周波数の時間変化を示す図である。
FIG. 6 is a diagram showing a time change of the frequency of a beat signal of the conventional FM-CW radar device.

【図7】 従来のFM−CWレーダ装置のビート信号の
周波数スペクトルを示す図である。
FIG. 7 is a diagram showing a frequency spectrum of a beat signal of the conventional FM-CW radar device.

【図8】 従来のFM−CWレーダ装置の受信ベースバ
ンド信号へ直流及び低周波の漏れ込みが混入する原理を
示す図である。
FIG. 8 is a diagram showing the principle that DC and low-frequency leakage mix into a received baseband signal of a conventional FM-CW radar device.

【図9】 従来のFM−CWレーダ装置の直流及び低周
波の漏れ込みとビート信号の周波数スペクトルの関係を
説明するための図である。
FIG. 9 is a diagram for explaining the relationship between DC and low-frequency leakage and the frequency spectrum of a beat signal in a conventional FM-CW radar device.

【図10】 従来のFM−CWレーダ装置を搭載した自
車両と先行車両との位置関係を示す図である。
FIG. 10 is a diagram showing a positional relationship between a host vehicle equipped with a conventional FM-CW radar device and a preceding vehicle.

【図11】 従来のFM−CWレーダ装置のビート信号
と相対距離の関係を示す図である。
FIG. 11 is a diagram illustrating a relationship between a beat signal and a relative distance of a conventional FM-CW radar device.

【図12】 従来のFM−CWレーダ装置の不検知領域
を示す図である。
FIG. 12 is a diagram showing a non-detection area of a conventional FM-CW radar device.

【符号の説明】[Explanation of symbols]

1 変調電圧記憶部、2 タイミング制御器、3 D/
A変換器、4 電圧制御発振器、5 高周波増幅器、6
方向性結合器、7 送信空中線、8 受信空中線、9
受信ミクサ、10 ビデオ増幅器、11 低域通過型
フィルタ、12A/D変換器、13 周波数解析手段、
14 距離・速度計測手段、15 変調電圧発生部、1
6 送信信号変換部、17 アンテナ部、18 受信信
号検出部、19 受信ベースバンド信号検出部、20
スイッチ、21 150MHz変調波形、22 300
MHz変調波形、23 upチャープ、24 CW、2
5 downチャープ、26 変調帯域幅300MHz
のときの不検知領域、27 変調帯域幅150MHz、
300MHzの両方が検知できない領域、28送信信
号、29 受信信号、30 upチャープ、31 C
W、32 downチャープ、33 遅延時間、34
周波数偏移、35 ビート信号、 36 ドップラシフ
ト、37 距離による周波数偏移、38 送信アンテナ
から受信アンテナヘの漏れ込み、39 レドーム、40
レドームによる反射、41 ビート周波数、42 直
流及び低周波の漏れ込みによるフロアノイズ、43 従
来のFM−CWレーダ装置、44 自車両、45 先行
走行車両、46 2車線の道路、47 送信波、48
受信波、49 upチャープのビート周波数、50 d
ownチャープのビート周波数、51 CWのビート周
波数、52 直流及び低周波の漏れ込みによる不検知領
域、53 変調帯域幅150MHzのときの不検知領
域。
1 Modulation voltage storage unit, 2 timing controller, 3 D /
A converter, 4 voltage controlled oscillator, 5 high frequency amplifier, 6
Directional coupler, 7 transmitting antenna, 8 receiving antenna, 9
Reception mixer, 10 video amplifier, 11 low-pass filter, 12 A / D converter, 13 frequency analysis means,
14 distance / speed measuring means, 15 modulation voltage generator, 1
6 transmission signal conversion unit, 17 antenna unit, 18 reception signal detection unit, 19 reception baseband signal detection unit, 20
Switch, 21 150 MHz modulation waveform, 22 300
MHz modulation waveform, 23 up chirp, 24 CW, 2
5 down chirp, 26 modulation bandwidth 300 MHz
Non-detection area at the time of 27 modulation bandwidth 150MHz,
Region where both 300 MHz cannot be detected, 28 transmit signal, 29 receive signal, 30 up chirp, 31 C
W, 32 down chirp, 33 delay time, 34
Frequency deviation, 35 beat signal, 36 Doppler shift, 37 frequency deviation due to distance, 38 leakage from transmitting antenna to receiving antenna, 39 radome, 40
Reflection by radome, 41 beat frequency, 42 floor noise due to leakage of direct current and low frequency, 43 conventional FM-CW radar device, 44 own vehicle, 45 preceding vehicle, 46 two-lane road, 47 transmission wave, 48
Received wave, beat frequency of 49 up chirp, 50 d
Own beat beat frequency, 51 CW beat frequency, 52 Non-detection area due to leakage of DC and low frequency, 53 Non-detection area when modulation bandwidth is 150 MHz.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電圧制御発振器において、励振される出
力送信信号の発振周波数が特定の下限値と上限値の間で
直線的かつ周期的に増減するように上記電圧制御発振器
の制御を行う変調電圧を記憶する変調電圧記憶部、上記
の変調電圧を変調電圧記憶部から所定の掃引時間毎に読
み出すタイミング信号を出力するタイミング制御器、お
よび上記の変調電圧記憶部に記憶されている変調電圧を
上記のタイミングで読み込みディジタル−アナログ変換
を行い変調電圧を出力するD/A変換器からなる変調電
圧発生部と、この変調電圧発生部から変調電圧を入力し
この電圧に比例した発振周波数を有する出力送信信号を
励振し出力する電圧制御発振器、上記の出力送信信号と
周波数及び位相が時間的に同期しかつ電力増幅した高周
波送信信号を出力する高周波増幅器、および上記の高周
波送信信号を所定の電力比に分配し出力する方向性結合
器からなる送信信号変換部と、この送信信号変換部から
出力される高周波送信信号を電磁波に変換して目標物に
照射する送信空中線、及び目標物からの反射電磁波を受
信して高周波の受信信号に変換する受信空中線からなる
アンテナ部と、上記受信空中線から取り出された高周波
受信信号と上記の方向性結合器からの高周波送信信号の
一方とを周波数混合して受信ベースバンド信号を出力す
る受信ミクサ、この受信ベースバンド信号と周波数及び
位相が時間的に同期しかつ所定の利得で増幅された受信
ベースバンド信号を出力するビデオ増幅器、および受信
ベースバンド信号において計測に不要な高周波部分を遮
断して目標情報を含む受信ビート周波数のみを取り出す
低域通過型フィルタからなる受信信号検出部と、この受
信信号検出部の出力信号を上記の変調電圧の掃引時間毎
に取り込むタイミング信号を出力するタイミング制御
器、上記のタイミングで受信ベースバンド信号を入力し
アナログ−ディジタル変換を行うA/D変換器、上記の
A/D変換器により離散化・量子化された受信ベースバ
ンド信号の周波数解析を行いこの信号に含まれる複数の
周波数成分を分離する周波数解析手段、およびこの周波
数解析手段によって検出された周波数成分から目標の位
置及び速度情報を検出する距離・速度計測手段からなる
受信ベースバンド信号処理部とで構成されるFM−CW
レーダ装置において、上記の変調電圧発生部は、その下
限値と上限値の周波数幅が上記の下限値と上限値の周波
数幅とは異なる2種類の変調帯域幅を有する送信信号を
励振する異なる2種類の変調電圧を記憶する変調電圧記
憶部、上記の2種類の変調電圧を所定のタイミングで切
り替えて出力するスイッチ及びタイミング制御器、およ
び変調電圧をディジタル信号からアナログ信号に変換す
るD/A変換器とにより構成され、上記の受信ベースバ
ンド信号処理部は上記の変調電圧発生部の変調電圧出力
タイミングと時間的に同期したタイミングで変調帯域幅
の異なる受信信号毎に受信信号検出部の出力ベースバン
ド信号を入力しベースバンド信号をアナログからディジ
タルに変換するA/D変換器、離散化・量子化された受
信ベースバンド信号を離散フーリエ変換により信号周波
数の分析を行い目標のドップラ周波数を含む周波数スペ
クトルとして出力する周波数解祈手段、および検出され
た周波数スペクトルを変調帯域幅の異なる受信信号毎に
算出係数を変えて距離・速度計算を行う距離・速度計測
手段とで構成したことを特徴としたFM−CWレーダ装
置。
1. A modulation voltage for controlling a voltage-controlled oscillator such that an oscillation frequency of an output transmission signal to be excited linearly and periodically increases and decreases between a specified lower limit and an upper limit. A timing controller that outputs a timing signal for reading the modulation voltage from the modulation voltage storage unit at predetermined sweep times, and a modulation voltage stored in the modulation voltage storage unit. , A modulation voltage generator comprising a D / A converter for performing a digital-to-analog conversion and outputting a modulation voltage at the timing, and a modulation voltage input from the modulation voltage generator and output transmission having an oscillation frequency proportional to the voltage. A voltage-controlled oscillator that excites and outputs a signal, and outputs a high-frequency transmission signal whose frequency and phase are time-synchronized and power-amplified with the output transmission signal. A high-frequency amplifier, and a transmission signal conversion unit including a directional coupler that distributes and outputs the high-frequency transmission signal at a predetermined power ratio, and converts the high-frequency transmission signal output from the transmission signal conversion unit into an electromagnetic wave. A transmitting antenna for irradiating a target, and an antenna unit including a receiving antenna for receiving a reflected electromagnetic wave from the target and converting it to a high-frequency receiving signal; and a high-frequency receiving signal extracted from the receiving antenna and the directional coupling described above. Mixer for outputting a reception baseband signal by frequency-mixing one of the high-frequency transmission signals from the receiver and a reception baseband whose frequency and phase are time-synchronized with this reception baseband signal and amplified with a predetermined gain A video amplifier that outputs a signal, and a reception beat frequency that includes target information by cutting off high-frequency portions unnecessary for measurement in the reception baseband signal. A reception signal detection unit comprising a low-pass filter for extracting only a reception signal; a timing controller for outputting a timing signal for capturing an output signal of the reception signal detection unit every sweep time of the modulation voltage; A / D converter that receives a band signal and performs analog-to-digital conversion, analyzes the frequency of a received baseband signal that has been discretized and quantized by the A / D converter, and performs a plurality of frequency components included in the signal. FM-CW comprising a frequency analyzing means for separating the target signal and a receiving baseband signal processing unit comprising a distance / speed measuring means for detecting target position and speed information from the frequency components detected by the frequency analyzing means.
In the radar apparatus, the modulation voltage generating unit may be configured to generate two different modulation bandwidths that excite a transmission signal having two types of modulation bandwidths whose lower limit and upper limit are different from the lower limit and the upper limit. A modulation voltage storage unit for storing different types of modulation voltages, a switch and a timing controller for switching and outputting the above two types of modulation voltages at a predetermined timing, and a D / A converter for converting the modulation voltages from digital signals to analog signals The reception baseband signal processing unit is configured to control the output base of the reception signal detection unit for each reception signal having a different modulation bandwidth at a timing synchronized with the modulation voltage output timing of the modulation voltage generation unit. A / D converter for inputting a band signal and converting a baseband signal from analog to digital, a discretized and quantized received baseband signal Frequency analysis means for analyzing a signal frequency by a discrete Fourier transform and outputting as a frequency spectrum including a target Doppler frequency, and changing a calculation coefficient for a detected frequency spectrum for each received signal having a different modulation bandwidth by changing a distance and a frequency. An FM-CW radar device comprising: a distance / speed measuring means for calculating a speed.
JP29841597A 1997-10-30 1997-10-30 FM-CW radar equipment Expired - Lifetime JP3613952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29841597A JP3613952B2 (en) 1997-10-30 1997-10-30 FM-CW radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29841597A JP3613952B2 (en) 1997-10-30 1997-10-30 FM-CW radar equipment

Publications (2)

Publication Number Publication Date
JPH11133144A true JPH11133144A (en) 1999-05-21
JP3613952B2 JP3613952B2 (en) 2005-01-26

Family

ID=17859418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29841597A Expired - Lifetime JP3613952B2 (en) 1997-10-30 1997-10-30 FM-CW radar equipment

Country Status (1)

Country Link
JP (1) JP3613952B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014159A (en) * 2000-06-29 2002-01-18 Mitsubishi Electric Corp Fm-cw radar apparatus
JP2004085452A (en) * 2002-08-28 2004-03-18 Toyota Central Res & Dev Lab Inc Fm-cw radar system
JP2007155425A (en) * 2005-12-02 2007-06-21 Mitsubishi Electric Corp Radar device and radar signal processing method
JP2008082973A (en) * 2006-09-28 2008-04-10 Toyota Motor Corp Target detector, target detecting method, and program executed by computer
DE102010037163A1 (en) 2009-08-27 2011-04-07 Fujitsu Ten Ltd., Kobe-shi Signal processing apparatus, radar apparatus, vehicle control system, signal processing method and computer readable medium
CN103076611A (en) * 2013-01-09 2013-05-01 中国电子科技集团公司第十一研究所 Method and device for measuring speed and distance by coherent detecting laser
WO2014097981A1 (en) * 2012-12-17 2014-06-26 株式会社デンソー Fmcw radar device
JP2014153216A (en) * 2013-02-08 2014-08-25 Denso Corp Radar device
JP5602275B1 (en) * 2013-04-22 2014-10-08 三菱電機株式会社 On-vehicle radar device and target target detection method applied to on-vehicle radar device
CN110352362A (en) * 2017-02-24 2019-10-18 三菱电机株式会社 Radar signal processing device and radar system
WO2019202803A1 (en) 2018-04-19 2019-10-24 京セラ株式会社 Electronic device, method for controlling electronic device, and program for controlling electronic device
WO2019202801A1 (en) 2018-04-19 2019-10-24 京セラ株式会社 Electronic device, method for controlling electronic device, and program for controlling electronic device
WO2020066838A1 (en) 2018-09-27 2020-04-02 京セラ株式会社 Electronic device, control method for electronic device, and control program for electronic device
WO2020071242A1 (en) 2018-10-05 2020-04-09 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
WO2020075689A1 (en) 2018-10-12 2020-04-16 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
CN111025278A (en) * 2019-12-31 2020-04-17 北京中科飞鸿科技股份有限公司 Radio altimeter
WO2020189262A1 (en) 2019-03-20 2020-09-24 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
WO2020241234A1 (en) 2019-05-29 2020-12-03 京セラ株式会社 Electronic apparatus, method for controlling electronic apparatus, and program
WO2020241235A1 (en) 2019-05-29 2020-12-03 京セラ株式会社 Electronic device, electronic device control method, and program
WO2020241233A1 (en) 2019-05-29 2020-12-03 京セラ株式会社 Electronic device, method for controlling electronic device, and program
WO2021019934A1 (en) 2019-07-29 2021-02-04 京セラ株式会社 Electronic device, electronic device control method, and program

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014159A (en) * 2000-06-29 2002-01-18 Mitsubishi Electric Corp Fm-cw radar apparatus
JP2004085452A (en) * 2002-08-28 2004-03-18 Toyota Central Res & Dev Lab Inc Fm-cw radar system
JP2007155425A (en) * 2005-12-02 2007-06-21 Mitsubishi Electric Corp Radar device and radar signal processing method
JP2008082973A (en) * 2006-09-28 2008-04-10 Toyota Motor Corp Target detector, target detecting method, and program executed by computer
US8638254B2 (en) 2009-08-27 2014-01-28 Fujitsu Ten Limited Signal processing device, radar device, vehicle control system, signal processing method, and computer-readable medium
DE102010037163A1 (en) 2009-08-27 2011-04-07 Fujitsu Ten Ltd., Kobe-shi Signal processing apparatus, radar apparatus, vehicle control system, signal processing method and computer readable medium
DE102010037163B4 (en) * 2009-08-27 2017-12-21 Fujitsu Ten Ltd. Signal processing apparatus, radar apparatus, vehicle control system, signal processing method and computer readable medium
WO2014097981A1 (en) * 2012-12-17 2014-06-26 株式会社デンソー Fmcw radar device
JP2014119353A (en) * 2012-12-17 2014-06-30 Denso Corp Fmcw radar device
US10001556B2 (en) 2012-12-17 2018-06-19 Denso Corporation FMCW radar apparatus
CN103076611A (en) * 2013-01-09 2013-05-01 中国电子科技集团公司第十一研究所 Method and device for measuring speed and distance by coherent detecting laser
JP2014153216A (en) * 2013-02-08 2014-08-25 Denso Corp Radar device
JP5602275B1 (en) * 2013-04-22 2014-10-08 三菱電機株式会社 On-vehicle radar device and target target detection method applied to on-vehicle radar device
JP2014215044A (en) * 2013-04-22 2014-11-17 三菱電機株式会社 On-vehicle radar device and method for detecting target of interest adapted for on-vehicle radar device
CN110352362A (en) * 2017-02-24 2019-10-18 三菱电机株式会社 Radar signal processing device and radar system
CN110352362B (en) * 2017-02-24 2023-01-13 三菱电机株式会社 Radar signal processing device and radar system
WO2019202801A1 (en) 2018-04-19 2019-10-24 京セラ株式会社 Electronic device, method for controlling electronic device, and program for controlling electronic device
WO2019202803A1 (en) 2018-04-19 2019-10-24 京セラ株式会社 Electronic device, method for controlling electronic device, and program for controlling electronic device
US11635512B2 (en) 2018-04-19 2023-04-25 Kyocera Corporation Electronic device, control method of electronic device, and control program of electronic device
WO2020066838A1 (en) 2018-09-27 2020-04-02 京セラ株式会社 Electronic device, control method for electronic device, and control program for electronic device
US11874364B2 (en) 2018-09-27 2024-01-16 Kyocera Corporation Electronic apparatus, control method for electronic apparatus, and control program for electronic apparatus
WO2020071242A1 (en) 2018-10-05 2020-04-09 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
US11977142B2 (en) 2018-10-05 2024-05-07 Kyocera Corporation Electronic device, control method of electronic device, and control program of electronic device
WO2020075689A1 (en) 2018-10-12 2020-04-16 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
WO2020189262A1 (en) 2019-03-20 2020-09-24 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
WO2020241233A1 (en) 2019-05-29 2020-12-03 京セラ株式会社 Electronic device, method for controlling electronic device, and program
WO2020241235A1 (en) 2019-05-29 2020-12-03 京セラ株式会社 Electronic device, electronic device control method, and program
WO2020241234A1 (en) 2019-05-29 2020-12-03 京セラ株式会社 Electronic apparatus, method for controlling electronic apparatus, and program
WO2021019934A1 (en) 2019-07-29 2021-02-04 京セラ株式会社 Electronic device, electronic device control method, and program
CN111025278B (en) * 2019-12-31 2023-09-01 北京中科飞鸿科技股份有限公司 Radio altimeter
CN111025278A (en) * 2019-12-31 2020-04-17 北京中科飞鸿科技股份有限公司 Radio altimeter

Also Published As

Publication number Publication date
JP3613952B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JPH11133144A (en) Fm-cw radar device
KR100722750B1 (en) Radar apparatus, radar apparatus controlling method
JP3428009B2 (en) Radar equipment for vehicles
JP3988571B2 (en) Radar equipment
JP3534164B2 (en) FM-CW radar device
US5517197A (en) Modular radar architecture film (FM/CW or pulse) for automobile collision avoidance applications
JP2657020B2 (en) FM-CW radar device
US7187321B2 (en) Interference determination method and FMCW radar using the same
US6563454B2 (en) FM-CW radar apparatus
US6147638A (en) Method for operating a radar system
JP2003028951A (en) Radar apparatus
US6362777B1 (en) Pulse-doppler radar apparatus
JPH11148972A (en) Padar device
JPH1138121A (en) On-vehicle radar equipment
JP2612429B2 (en) Radar equipment
JP3720662B2 (en) Automotive radar equipment
JP3639020B2 (en) FM-CW radar equipment
JP2004286555A (en) Fm-cw radar apparatus shared for transmission and receiving
JP3473577B2 (en) Radar equipment
JP3500629B2 (en) DBF radar device
JPH10115677A (en) Fm-cw radar
JP2004245647A (en) Short-distance radar apparatus and vehicle carrying short-distance radar apparatus
JP3485382B2 (en) FM-CW radar device
JP2002257925A (en) Radar apparatus
JPH11231044A (en) Radar equipment, voltage control oscillator and control method for voltage control oscillator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term