JPH11132730A - Dimension measuring device - Google Patents

Dimension measuring device

Info

Publication number
JPH11132730A
JPH11132730A JP9316131A JP31613197A JPH11132730A JP H11132730 A JPH11132730 A JP H11132730A JP 9316131 A JP9316131 A JP 9316131A JP 31613197 A JP31613197 A JP 31613197A JP H11132730 A JPH11132730 A JP H11132730A
Authority
JP
Japan
Prior art keywords
light
circuit
signal
light receiving
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9316131A
Other languages
Japanese (ja)
Inventor
Shinichi Takayama
真一 高山
Fumio Kashima
史夫 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP9316131A priority Critical patent/JPH11132730A/en
Publication of JPH11132730A publication Critical patent/JPH11132730A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure the dimension of a white turbid body such as a crystallized glass without being affected by the change of a dark current of a light receiver. SOLUTION: A period, in which a light receiver 27 comes into a non-light receive state is detected by a dark level period detection circuit 29, a dark level of a light receive signal S outputted from the light receiver 27 during this dark level period is detected by a dark level detection circuit 32, and a signal S' obtained by subtracting the detected dark level from the light receive signal S is turned into a binary number to calculate an outside diameter and an inside diameter of an object to be measured 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物品の寸法を光を
用いて非接触に測定する寸法測定装置において、受光素
子の暗電流による影響を低減するための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for reducing the influence of dark current of a light receiving element in a dimension measuring device for measuring the dimension of an article using light without contact.

【0002】[0002]

【従来の技術】光を用いた従来の寸法測定装置は、図5
に示すように、投光部11から同一平面上で光軸が平行
に移動するように走査されたレーザビームを出射し、そ
のビームを受光部12のレンズ13で受光器14に集光
させ、受光器12から出力される受光信号Sを2値化回
路15で予め設定されたしきい値Vsによって2値化
し、この2値化信号のレベル反転タイミングに基づい
て、投光部11のビームの走査範囲内に配置された被測
定物1の外径寸法等を算出している。
2. Description of the Related Art A conventional dimension measuring apparatus using light is shown in FIG.
As shown in FIG. 5, a laser beam scanned so that the optical axis moves in parallel on the same plane from the light projecting unit 11 is emitted, and the beam is condensed on the light receiver 14 by the lens 13 of the light receiving unit 12, The light reception signal S output from the light receiver 12 is binarized by a threshold value Vs set in advance by a binarization circuit 15, and based on the level inversion timing of the binarization signal, the beam of the light projecting unit 11 is changed. The outer diameter and the like of the DUT 1 arranged within the scanning range are calculated.

【0003】このような従来の寸法測定装置に用いられ
る受光器14は、図6に示すように、フォトダイオード
あるいはフォトトランジスタからなる受光素子14aの
一端側に電源+Bを接続し、他端側に負荷抵抗Rを接続
し、受光素子14aに入射された光の強度に対応した電
流を負荷抵抗Rに流して、負荷抵抗Rの両端に生じる電
圧を受光信号Sとして出力している。なお、受光素子1
4aは非受光状態のとき図6の(a)のように負荷抵抗
Rに暗電流idを流し、受光状態のときには図6の
(b)のように暗電流idと入射した光による光電流i
pを負荷抵抗Rに流すが、暗電流idが小さいときに
は、受光信号は入射した光の強度にほぼ比例する。
As shown in FIG. 6, a photodetector 14 used in such a conventional dimension measuring device has a power supply + B connected to one end of a photodetector 14a composed of a photodiode or a phototransistor, and a photodetector 14B connected to the other end. A load resistor R is connected, a current corresponding to the intensity of light incident on the light receiving element 14a flows through the load resistor R, and a voltage generated at both ends of the load resistor R is output as a light receiving signal S. The light receiving element 1
4a, a dark current id flows through the load resistor R as shown in FIG. 6 (a) when in a non-light receiving state, and a dark current id and a photocurrent i due to incident light as shown in FIG. 6 (b) when in a light receiving state.
Although p flows through the load resistor R, when the dark current id is small, the received light signal is almost proportional to the intensity of the incident light.

【0004】また、受光素子14aは、一般的には、7
80nm、680nm等の波長のレーザビームに対して
感度が高いシリコン型のものが使用されている。
In general, the light receiving element 14a generally has
A silicon type having high sensitivity to a laser beam having a wavelength such as 80 nm or 680 nm is used.

【0005】ところで、このような寸法測定装置で例え
ば筒状の被計量物の内径を測定しようとする場合、被測
定物をビームが通過するようにしてある程度の強度で受
光器14に入射させ、ビームの位置が被測定物の内径の
エッジ位置を通過したときの受光信号のレベル変化を捕
らえる必要がある。
When it is intended to measure the inner diameter of, for example, a cylindrical object to be measured by such a dimension measuring apparatus, the object to be measured is made to enter the light receiver 14 with a certain intensity so that a beam passes therethrough. It is necessary to catch the level change of the received light signal when the position of the beam passes through the edge position of the inner diameter of the measured object.

【0006】ところが、被測定物が結晶化硝子のような
白濁体の場合には、前記した従来のレーザ波長では被測
定物による減衰量が大きくて、ビームの走査位置が被測
定物の内径のエッジ位置を通過するときの受光信号のレ
ベル変化を捕らえることが全くできない。
However, when the object to be measured is an opaque material such as crystallized glass, the attenuation by the object to be measured is large at the above-mentioned conventional laser wavelength, and the beam scanning position is smaller than the inner diameter of the object to be measured. The level change of the light receiving signal when passing through the edge position cannot be captured at all.

【0007】このために、結晶化硝子のような白濁体に
対して減衰量が少ない長波長(例えば約1300nm)
のレーザビームを用いるとともに、長波長のビームに対
して高い感度が得られるゲルマニウム型の受光素子を用
いることが考えられる。
For this reason, a long wavelength (for example, about 1300 nm) having a small attenuation with respect to a cloudy substance such as crystallized glass.
It is conceivable to use a germanium-type light receiving element that can obtain high sensitivity to a long-wavelength beam while using the above laser beam.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、ゲルマ
ニウム型の受光素子は、非受光状態に流れる暗電流がシ
リコン型のものに比べて非常に大きく、しかも、温度変
化にともなってその暗電流が大きく変化してしまう。
However, the dark current flowing in the non-light receiving state of the germanium type light receiving element is much larger than that of the silicon type light receiving element, and the dark current greatly changes with temperature change. Resulting in.

【0009】このため、受光器から出力される受光信号
が入射した光の強度に比例せず、この受光信号を2値化
した2値化信号のレベル反転タイミングは、実際にビー
ムの光軸が被測定物のエッジ位置を通過するタイミング
とずれてしまい、被測定物の寸法を正確に測定すること
ができないという問題があった。本発明は、この問題を
解決した寸法測定装置を提供することを目的としてい
る。
For this reason, the light receiving signal output from the light receiver is not proportional to the intensity of the incident light, and the level inversion timing of the binary signal obtained by binarizing the light receiving signal is determined by the fact that the optical axis of the beam is actually There is a problem that the timing is shifted from the timing of passing through the edge position of the measured object, and the dimensions of the measured object cannot be accurately measured. An object of the present invention is to provide a dimension measuring device that solves this problem.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1の寸法測定装置は、同一平面上で
所定幅の範囲を平行に光軸が移動するビームを出射する
投光部と、該投光部から出射されるビームを集光させる
集光レンズと、前記集光レンズによって集光された光を
受光素子の受光面で受け、該受けた光の強度に応じてレ
ベルが変化する受光信号を出力する受光器と、前記受光
器が非受光状態となる暗期間を検出する暗期間検出回路
と、前記受光器から出力される受光信号の前記暗期間中
のレベルを検出する暗レベル検出回路と、前記暗レベル
検出回路によって検出されたレベルを前記受光信号から
減じる減算回路と、前記減算回路の出力信号をしきい値
と比較して2値化する2値化回路と、前記2値化回路か
ら出力される2値化信号のレベル反転タイミングに基づ
いて、前記投光部のビームの走査範囲内に配置された被
測定物の寸法を算出する演算回路とを備えている。
According to a first aspect of the present invention, there is provided a dimension measuring apparatus for projecting a beam whose optical axis moves parallel to a predetermined width range on the same plane. A light part, a condenser lens for condensing a beam emitted from the light projecting part, and a light condensed by the condenser lens received by a light receiving surface of a light receiving element, and according to an intensity of the received light. A light receiver that outputs a light receiving signal whose level changes, a dark period detection circuit that detects a dark period in which the light receiver is in a non-light receiving state, and a level of the light receiving signal output from the light receiver during the dark period. A dark level detection circuit for detecting, a subtraction circuit for subtracting a level detected by the dark level detection circuit from the light receiving signal, and a binarization circuit for comparing an output signal of the subtraction circuit with a threshold to binarize the signal And a binary output from the binarization circuit Based on the level inversion timing signal, and an arithmetic circuit for calculating the dimensions of the object located within the scanning range of the beam of the light projecting unit.

【0011】また、本発明の請求項2の寸法測定装置
は、同一平面上で所定幅の範囲を平行に光軸が移動する
ビームを出射する投光部と、該投光部から出射されるビ
ームを集光させる集光レンズと、前記集光レンズによっ
て集光された光を受光素子の受光面で受け、該受けた光
の強度に応じてレベルが変化する受光信号を出力する受
光器と、温度変化に対する特性が非受光状態の前記受光
器ほぼ同一な素子を有し、前記受光器が非受光時に出力
する信号とほぼ等しい暗レベル信号を出力する暗レベル
信号出力回路と、前記暗レベル信号出力回路から出力さ
れる暗レベル信号を前記受光器から出力された受光信号
から減算する減算回路と、前記減算回路の出力信号をし
きい値と比較して2値化する2値化回路と、前記2値化
回路から出力される2値化信号のレベル反転タイミング
に基づいて、前記投光器のビームの走査範囲内に配置さ
れた被測定物の寸法を算出する演算回路とを備えてい
る。
According to a second aspect of the present invention, there is provided a dimension measuring device which emits a beam whose optical axis moves in parallel over a range of a predetermined width on the same plane, and which emits a beam. A condenser lens for condensing the beam, a light receiver for receiving the light condensed by the condenser lens on a light receiving surface of a light receiving element, and outputting a light receiving signal whose level changes according to the intensity of the received light; A dark level signal output circuit for outputting a dark level signal substantially equal to a signal output by the light receiver when light is not received, the dark level signal output circuit comprising: A subtraction circuit for subtracting a dark level signal output from the signal output circuit from a light reception signal output from the photodetector; a binarization circuit for comparing an output signal of the subtraction circuit with a threshold to binarize the signal; , Output from the binarization circuit Based on the level inversion timing of the binary signal, and an arithmetic circuit for calculating the dimensions of the object located within the scanning range of the beam of the projector.

【0012】また、本発明の請求項3の寸法測定装置
は、同一平面上で所定幅の範囲を平行に光軸が移動する
ビームを出射する投光部と、該投光部から出射されるビ
ームを集光させる集光レンズと、前記集光レンズによっ
て集光された光を受光素子の受光面で受け、該受けた光
の強度に応じてレベルが変化する受光信号を出力する受
光器と、前記受光器の温度変化に応じた信号を出力する
温度センサと、前記受光器を冷却する冷却装置と、前記
温度センサから出力される信号に応じて前記冷却装置を
制御し、前記受光器の温度を一定にする制御回路と、前
記受光器から出力される受光信号をしきい値と比較して
2値化する2値化回路と、前記2値化回路から出力され
る2値化信号のレベル反転タイミングに基づいて、前記
投光部のビームの走査範囲内に配置された被測定物の寸
法を算出する演算回路とを備えている。
According to a third aspect of the present invention, there is provided a dimension measuring device which emits a beam whose optical axis moves in parallel within a range of a predetermined width on the same plane, and which emits the beam. A condenser lens for condensing the beam, a light receiver for receiving the light condensed by the condenser lens on a light receiving surface of a light receiving element, and outputting a light receiving signal whose level changes according to the intensity of the received light; A temperature sensor that outputs a signal corresponding to a temperature change of the light receiver, a cooling device that cools the light receiver, and controls the cooling device in accordance with a signal output from the temperature sensor; A control circuit for keeping the temperature constant, a binarization circuit for binarizing a light reception signal output from the photodetector with a threshold value, and a binarization signal output from the binarization circuit Based on the level inversion timing, the beam And a calculation circuit for calculating the dimensions of the object located within the range.

【0013】[0013]

【発明の実施の形態】以下、図面に基づいて本発明の第
1の実施形態を説明する。図1は第1の実施形態の寸法
測定装置の構成を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of the dimension measuring apparatus according to the first embodiment.

【0014】図1において、投光部21は、光源22か
ら出射される長波長(例えば1300nm)のレーザビ
ームを振動ミラー型や回転ミラー型等の偏向器23によ
って光軸が一定角度内で偏向されるビームにし、このビ
ームをレンズ24によって同一平面上を平行に移動する
ように走査されたビームにして出射する。
In FIG. 1, a light projecting section 21 deflects a laser beam of a long wavelength (for example, 1300 nm) emitted from a light source 22 by a deflector 23 of a vibrating mirror type or a rotating mirror type within a predetermined angle. The beam is scanned by the lens 24 so as to move in parallel on the same plane, and is emitted.

【0015】投光部21から出射されるビームは、受光
部25の集光レンズ26によって集光され受光器27で
受光される。ここで、受光器27は、長波長(例えば1
300nm)のビームに対する感度が高いゲルマニウム
型のフォトダイオードまたはフォトトランジスタからな
る受光素子を有し、前記図6に示した受光器と同様に、
暗電流idと入射した光の強度に応じた電流ipとを負
荷抵抗Rに流して、負荷抵抗Rの両端に生じる電圧信号
を受光信号Sとして出力する。
The beam emitted from the light projecting section 21 is condensed by a condenser lens 26 of a light receiving section 25 and received by a light receiver 27. Here, the light receiver 27 has a long wavelength (for example, 1
(300 nm) having a light receiving element composed of a germanium type photodiode or a phototransistor having a high sensitivity to the beam, and similar to the light receiving device shown in FIG.
The dark current id and the current ip corresponding to the intensity of the incident light flow through the load resistor R, and a voltage signal generated at both ends of the load resistor R is output as a light receiving signal S.

【0016】この受光信号Sは暗期間検出回路29に入
力される。暗期間検出回路29は、2値化回路30と暗
期間しきい値出力回路31によって構成されている。2
値化回路30は、受光信号を暗期間しきい値出力回路3
1から出力されるしきい値Vdと比較して2値化し、例
えば受光信号がしきい値Vdより小さいときに暗期間で
あることを示すローレベルの信号を出力する。なお、暗
期間しきい値出力回路31は、受光器27の受光素子の
暗電流によって負荷抵抗Rに生じる電圧の最大値より僅
かに大きなしきい値Vdを出力するように予め設定され
ている。
The light receiving signal S is input to a dark period detecting circuit 29. The dark period detection circuit 29 includes a binarization circuit 30 and a dark period threshold value output circuit 31. 2
The value conversion circuit 30 outputs the light receiving signal to the dark period threshold value output circuit 3.
The signal is binarized by comparing with a threshold value Vd output from 1 and, for example, a low-level signal indicating a dark period is output when the light receiving signal is smaller than the threshold value Vd. The dark period threshold value output circuit 31 is preset so as to output a threshold value Vd slightly larger than the maximum value of the voltage generated at the load resistor R due to the dark current of the light receiving element of the light receiving device 27.

【0017】暗レベル検出回路32は、2値化回路30
からローレベルの信号が出力されている間の受光信号の
ボトムレベルを暗レベルLdとして検出して、減算回路
33に出力する。
The dark level detection circuit 32 includes a binarization circuit 30
, The bottom level of the light receiving signal while the low level signal is being output as the dark level Ld, and outputs it to the subtraction circuit 33.

【0018】減算回路33は、受光部25から出力され
る受光信号Sから暗レベル検出回路32によって検出さ
れた暗レベルLdを減じて出力する。
The subtraction circuit 33 subtracts the dark level Ld detected by the dark level detection circuit 32 from the light receiving signal S output from the light receiving section 25 and outputs the result.

【0019】外径用ピーク検出回路35は、減算回路3
3の出力信号S′のピークレベルLp1を検出し、外径
用しきい値出力回路36は、外径用ピーク検出回路35
によって検出されたピークレベルLp1の1/2にほぼ
等しいしきい値Vs1を出力する。
The outer diameter peak detection circuit 35 includes a subtraction circuit 3
3 and detects the peak level Lp1 of the output signal S '.
And outputs a threshold value Vs1 substantially equal to one half of the peak level Lp1 detected.

【0020】外径用2値化回路37は、減算回路33の
出力信号S′をしきい値Vs1によって2値化し、例え
ば減算出力がしきい値Vs1より小さいときローレベル
となる2値化信号を出力する。
The outer diameter binarizing circuit 37 binarizes the output signal S 'of the subtracting circuit 33 with a threshold value Vs1. For example, when the subtraction output is smaller than the threshold value Vs1, the binarizing signal becomes a low level. Is output.

【0021】なお、信号S′のピークレベルLp1は、
ビームが被測定物1に交わらずに受光器27に入射する
光の強度を示す値であり、受光器27に入射する光の強
度が半減するのは、ビームの光軸が被測定物1の外周面
に接する位置にあるときであるから、減算回路33の出
力信号S′をピークレベルLp1のほぼ1/2のしきい
値Vs1で2値化した信号は、ビームの光軸が被測定物
1の外周面に接する位置を通過するときにそのレベルが
反転することになる。
The peak level Lp1 of the signal S 'is
This is a value indicating the intensity of light that enters the light receiver 27 without the beam intersecting the DUT 1. The reason why the intensity of light that is incident on the receiver 27 is reduced by half is that the optical axis of the beam is Since the signal is at a position in contact with the outer peripheral surface, the signal obtained by binarizing the output signal S ′ of the subtraction circuit 33 with the threshold value Vs1 that is almost の of the peak level Lp1 is obtained when the optical axis of the beam is measured. 1, the level is inverted when passing through a position in contact with the outer peripheral surface of the light emitting element 1.

【0022】外径演算回路38は、外径用2値化回路3
7から出力される2値化信号のレベル反転タイミング
と、投光部21の時間に対するビームの光軸位置との関
係から、被測定物1の外径寸法φ1を算出する。
The outer diameter calculating circuit 38 is provided with an outer diameter binarizing circuit 3.
The outer diameter dimension φ1 of the DUT 1 is calculated from the relationship between the level inversion timing of the binary signal output from 7 and the optical axis position of the beam with respect to the time of the light projecting unit 21.

【0023】内径用ピーク検出回路39は、ビームの走
査のスタート時点から外径用2値化回路37からの2値
化信号を受けて、ビームが被測定物1に完全交わってい
る期間Taの間、減算回路33の出力信号のピークレベ
ルLp2を検出する。
The inner diameter peak detection circuit 39 receives the binarized signal from the outer diameter binarization circuit 37 from the start of the beam scanning, and detects the period Ta during which the beam completely intersects the DUT 1. During this time, the peak level Lp2 of the output signal of the subtraction circuit 33 is detected.

【0024】内径用しきい値出力回路40は、内径用ピ
ーク検出回路39によって検出されたピークレベルLp
2の1/2にほぼ等しいしきい値Vs2を出力する。
The inner diameter threshold output circuit 40 outputs the peak level Lp detected by the inner diameter peak detection circuit 39.
A threshold value Vs2 substantially equal to 1/2 of 2 is output.

【0025】内径用2値化回路41は、減算回路33か
ら出力される信号をしきい値Vs2によって2値化す
る。
The inner diameter binarization circuit 41 binarizes the signal output from the subtraction circuit 33 with a threshold value Vs2.

【0026】内径演算回路42は、内径用2値化回路4
1から出力される2値化信号のレベル反転タイミング
と、投光部21の時間に対するビームの光軸位置との関
係から、被測定物1の内径寸法φ2を算出する。
The inner diameter calculating circuit 42 is provided with an inner diameter binarizing circuit 4.
From the relationship between the level inversion timing of the binary signal output from 1 and the optical axis position of the beam with respect to the time of the light projecting unit 21, the inner diameter dimension φ2 of the DUT 1 is calculated.

【0027】次にこの実施形態の寸法測定装置の動作を
説明する。図1に示しているように、投光部21のビー
ムの走査範囲内に、結晶化硝子等からなる円筒状の被測
定物1がその中心を走査中心にほぼ一致させた状態で配
置されているとき、受光部25からは、投光部21のビ
ームが繰り返し走査されている間、図2の(a)に示す
受光信号Sが繰り返し出力される。
Next, the operation of the dimension measuring apparatus according to this embodiment will be described. As shown in FIG. 1, a cylindrical DUT 1 made of crystallized glass or the like is arranged within the scanning range of the beam of the light projecting unit 21 with its center substantially coincident with the scanning center. 2A, the light receiving signal S shown in FIG. 2A is repeatedly output from the light receiving unit 25 while the beam of the light projecting unit 21 is repeatedly scanned.

【0028】即ち、ビームが被測定物1から最も遠い位
置にある走査スタート時点t0からビームが被測定物1
の外周面に接する直前までは、投光器21からのビーム
は減衰せずに受光部25の受光器27で受光されるた
め、受光信号は受光素子の暗電流idと受光したビーム
による大きな電流ipと和に対応する大きなレベルとな
る。
That is, from the scanning start time t0 at which the beam is farthest from the DUT 1, the beam is changed to the DUT 1
Since the beam from the light projector 21 is received by the light receiver 27 of the light receiving unit 25 without being attenuated until immediately before contacting the outer peripheral surface of the light receiving element 25, the light receiving signal includes a dark current id of the light receiving element and a large current ip due to the received beam. It is a big level corresponding to the sum.

【0029】そして、ビームが被測定物1の外周面に接
する位置に達すると、被測定物1の外周面でビームの一
部がが反射して受光信号のレベルが低下し、t1時にし
きい値Vdを越え、さらにビームが被測定物1に完全に
交わるとそのビームの全てが外周面に反射されて受光信
号のレベルは最低となる。
When the beam reaches a position in contact with the outer peripheral surface of the DUT 1, a part of the beam is reflected on the outer peripheral surface of the DUT 1 and the level of the received light signal decreases. When the value exceeds the value Vd and the beam completely intersects the DUT 1, all of the beam is reflected on the outer peripheral surface, and the level of the light receiving signal becomes the lowest.

【0030】ビームが被測定物1の内側方向にさらに移
動して、ビームと被測定物1の外周面との角度が一定角
度に達するとビームが被測定物1内を通過するようにな
り、受光信号のレベルが上昇しt2時に第1のしきい値
Vdを越え、ビームが被測定物1の内周面に接する位置
に達すると、その内周面にビームが反射されて受光信号
のレベルが低下してt3時に第1のしきい値Vdを越え
る。
When the beam further moves inward of the DUT 1 and the angle between the beam and the outer peripheral surface of the DUT 1 reaches a certain angle, the beam passes through the DUT 1, When the level of the received light signal rises and exceeds the first threshold value Vd at t2, when the beam reaches a position in contact with the inner peripheral surface of the DUT 1, the beam is reflected by the inner peripheral surface and the level of the received light signal is increased. Decreases to exceed the first threshold value Vd at t3.

【0031】そして、ビームと被測定物1の内周面との
角度が一定角度に達すると、ビームが被測定物1の中空
部を通過するようになり、受光信号のレベルが上昇して
t4時に第1のしきい値Vdを越え、ビームが被測定物
1の中心位置を通過するt5時まで受光信号のレベルが
上昇する。
When the angle between the beam and the inner peripheral surface of the DUT 1 reaches a certain angle, the beam passes through the hollow portion of the DUT 1, and the level of the received signal rises to t4 Sometimes the level exceeds the first threshold value Vd, and the level of the received light signal increases until t5 when the beam passes through the center position of the DUT 1.

【0032】以下、ビームが被測定物1の中心から離れ
て最も遠い位置(次の走査スタート位置)まで走査され
るまでの間に、t0時からt5時までの波形がt5時を
はさんでほぼ対称に表れる。
Hereinafter, the waveform from time t0 to time t5 intersects the time t5 before the beam is scanned away from the center of the DUT 1 to the farthest position (next scan start position). Appears almost symmetrically.

【0033】このような受光信号Sに対して、暗期間検
出回路29の2値化回路30からは、図2の(b)に示
すように、受光信号Sのレベルがしきい値Vdを越える
毎にレベルが反転する2値化信号が出力され、暗レベル
検出回路32は、この2値化信号がローレベルの期間の
受光信号のボトムレベルを検出し、これを暗レベルLd
として減算回路33に出力する。
With respect to such a light receiving signal S, the level of the light receiving signal S exceeds the threshold value Vd from the binarizing circuit 30 of the dark period detecting circuit 29 as shown in FIG. A binary signal whose level is inverted every time is output, and the dark level detection circuit 32 detects the bottom level of the light receiving signal during a period when the binary signal is at the low level, and detects this as the dark level Ld
To the subtraction circuit 33.

【0034】このため、減算回路33からは、図2の
(c)に示すように、図2の(a)の受光信号を暗レベ
ルLd分だけ低くシフトした信号S′が出力され、外径
用2値化回路37からは、減算回路33の出力信号S′
を、そのピークレベルLp1のほぼ1/2に等しいしき
い値Vs1で2値化した信号が図2の(d)のように出
力される。
For this reason, as shown in FIG. 2C, a signal S 'obtained by shifting the light receiving signal of FIG. 2A lower by the dark level Ld is output from the subtracting circuit 33. Output signal S 'of the subtraction circuit 33 from the
Is binarized by a threshold value Vs1 substantially equal to 1/2 of the peak level Lp1, and a signal is output as shown in FIG.

【0035】また、内径用2値化回路41からは、ビー
ムの位置が被測定物1に完全にまじわっている期間の減
算回路33の出力信号S′のピークレベルLp2のほぼ
1/2に等しいしきい値Vs2で2値化した信号が図2
の(e)のように出力される。
From the inner diameter binarizing circuit 41, the peak level Lp2 of the output signal S 'of the subtracting circuit 33 during the period when the position of the beam is completely mixed with the device under test 1 is reduced to approximately 1/2. The signal binarized by the equal threshold value Vs2 is shown in FIG.
(E).

【0036】外径演算回路38は、外径用2値化回路3
7から出力される2値化信号が走査期間の最初にハイレ
ベルからローレベルに反転するタイミングt6と最後に
ローレベルからハイレベルに反転するタイミングt7に
基づいて、被測定物1の外径φ1を算出する。即ち、投
光部21のビームの光軸位置が、走査範囲の中心を基準
にして、Acos ωtで表されるようにビームが走査され
ている場合には、次の演算によって被測定物1の外径φ
1が算出される。 φ1=A|cos ω(t6−t0)−cos ω(t7−t
0)|
The outer diameter calculating circuit 38 is provided with an outer diameter binarizing circuit 3.
7, the outer diameter φ1 of the device under test 1 is determined based on the timing t6 when the binary signal output from 7 is inverted from the high level to the low level at the beginning of the scanning period and the timing t7 when the binary signal is inverted from the low level to the high level at the end. Is calculated. In other words, when the beam is scanned so that the optical axis position of the beam of the light projecting unit 21 is represented by A cos ωt with reference to the center of the scanning range, the DUT 1 Outer diameter φ
1 is calculated. φ1 = A | cos ω (t6-t0) −cos ω (t7−t
0) |

【0037】また、ビームの光軸が一定速度vで走査さ
れる場合には、φ1=v(t7−t6)の演算によって
外径を算出する。
When the optical axis of the beam is scanned at a constant speed v, the outer diameter is calculated by calculating φ1 = v (t7−t6).

【0038】一方、内径演算回路42は、内径用2値化
回路41から出力される2値化信号が一走査期間中にハ
イレベルからローレベルに反転する2回目のタイミング
t8とローレベルからハイレベルに3回目に反転するタ
イミングt9に基づいて、被測定物1の内径φ2を、前
記同様の演算によって算出する。
On the other hand, the inner-diameter calculating circuit 42 outputs a second timing t8 at which the binarized signal output from the inner-diameter binarizing circuit 41 is inverted from a high level to a low level during one scanning period, and from a low level to a high level. Based on the timing t9 when the level is inverted to the third time, the inner diameter φ2 of the DUT 1 is calculated by the same calculation as described above.

【0039】このように、この第1の実施形態の寸法測
定装置では、受光器から出力される受光信号Sの暗レベ
ルを検出し、検出した暗レベルを受光信号Sから減算し
て得られる信号S′を2値化して被測定物の寸法を算出
するようにしている。
As described above, the dimension measuring device of the first embodiment detects the dark level of the light receiving signal S output from the light receiving device, and subtracts the detected dark level from the light receiving signal S. S ′ is binarized to calculate the dimensions of the measured object.

【0040】このため、受光素子の暗電流が大きい場合
でも、また、その暗電流が温度によって大きく変化して
も、受光信号に含まれる暗電流の成分は受光信号から減
算されてしまうので、外径や内径の寸法の検出には影響
がなく、正確な寸法測定を行なうことができる。
For this reason, even when the dark current of the light receiving element is large, or even if the dark current greatly changes with temperature, the dark current component included in the light receiving signal is subtracted from the light receiving signal. There is no effect on the detection of the diameter or the inner diameter, and accurate dimensional measurement can be performed.

【0041】[0041]

【第2の実施形態】次に本発明の第2の実施形態につい
て説明する。図3は、第2の実施形態の寸法測定装置の
構成を示す図である。
[Second Embodiment] Next, a second embodiment of the present invention will be described. FIG. 3 is a diagram illustrating the configuration of the dimension measuring device according to the second embodiment.

【0042】この寸法測定装置では、受光部25内に受
光器27と同一特性の受光器50を遮光部材51で遮光
状態にして近接配置し、受光器50のゲルマニウム型の
受光素子が流す暗電流に対応した暗レベル信号を出力さ
せ、受光器27から出力される受光信号Sからこの暗レ
ベル信号を減算器52によって減算し、この減算出力
S′を前記第1の実施形態と同様に、内径用、外径用の
2値化回路37、41によって2値化し、被測定物1の
外径および内径を求めるようにしている。
In this dimension measuring device, a light receiver 50 having the same characteristics as the light receiver 27 is arranged in the light receiving part 25 in a light-shielding state by a light-shielding member 51, and is arranged close to the light receiver 50. Is output from the light receiver 27, and the dark level signal is subtracted from the light reception signal S output from the light receiver 27 by the subtractor 52. The subtracted output S 'is output to the inner diameter as in the first embodiment. The outer and inner diameters of the DUT 1 are obtained by binarization by the binarization circuits 37 and 41 for external and external diameters.

【0043】この実施形態の場合、受光器27の受光素
子の暗電流が大きい場合でも、また、その暗電流が温度
によって大きく変化しても、これと同一特性の受光器5
0から出力される暗レベル信号によって受光信号に含ま
れる暗電流の成分は減算されてしまうので、外径や内径
の寸法の検出には影響がなく、正確な寸法測定を行なう
ことができる。
In the case of this embodiment, even if the dark current of the light receiving element of the light receiving device 27 is large, or even if the dark current greatly changes depending on the temperature, the light receiving device 5 having the same characteristics as the dark current.
Since the dark current component included in the received light signal is subtracted by the dark level signal output from 0, detection of the outer diameter and the inner diameter is not affected, and accurate dimension measurement can be performed.

【0044】なお、この実施形態では、暗レベル出力回
路として遮光部材51で遮光された受光器50を用いて
いたが、受光器50の代わりに、ゲルマニウムダイオー
ド、ゲルマニウムトランジスタあるいはサーミスタ等の
素子を用いた暗レベル出力回路から、温度特性が受光器
27と同じで非受光状態のときに受光器27が出力する
受光信号と等しい信号を出力してもよい。
In this embodiment, the light receiver 50 shielded by the light shielding member 51 is used as the dark level output circuit. However, instead of the light receiver 50, an element such as a germanium diode, a germanium transistor or a thermistor is used. The dark level output circuit may output a signal having the same temperature characteristic as the light receiver 27 and equal to the light receiving signal output by the light receiver 27 in the non-light receiving state.

【0045】[0045]

【第3の実施の形態】次に本発明の第3の実施形態につ
いて説明する。図4は、第3の実施形態の寸法測定装置
の構成を示す図である。
[Third Embodiment] Next, a third embodiment of the present invention will be described. FIG. 4 is a diagram illustrating a configuration of the dimension measuring device according to the third embodiment.

【0046】この寸法測定装置では、例えばペルチェ素
子等で構成され受光器27を冷却する冷却器55と、受
光器27の温度に対応した信号を出力する温度センサ5
6と、温度センサ56の出力信号に基づいて冷却器55
を制御する制御回路57とを設け、受光器27の温度を
一定に維持して、周囲温度の変化による暗電流の変化を
抑えている。
In this dimension measuring device, a cooler 55 composed of, for example, a Peltier element for cooling the light receiver 27 and a temperature sensor 5 for outputting a signal corresponding to the temperature of the light receiver 27 are provided.
6 and the cooler 55 based on the output signal of the temperature sensor 56.
And a control circuit 57 for controlling the temperature of the photodetector 27 to keep the temperature of the light receiver 27 constant, thereby suppressing a change in dark current due to a change in ambient temperature.

【0047】この場合、受光器27を周囲温度の下限よ
り低い温度(例えば10度C等)に維持することによ
り、受光素子の暗電流を比較的少ない状態に維持できる
ので、受光部25から出力される受光信号Sを直接内径
用、外径用の2値化回路37、41によって2値化し、
被測定物の寸法を測定することができる。
In this case, by keeping the light receiver 27 at a temperature lower than the lower limit of the ambient temperature (for example, 10 ° C.), the dark current of the light receiving element can be kept relatively small. The received light signal S is directly binarized by binarization circuits 37 and 41 for inner diameter and outer diameter,
The dimensions of the measured object can be measured.

【0048】なお、この実施形態では、温度センサ56
を用いて受光器27の温度の変化を検出するようにして
いるが、受光器27、前記第1の実施形態の暗期間検出
回路29および暗レベル検出回路32を温度センサと
し、暗レベル検出回路32の出力に基づいて、制御回路
57が冷却器55を制御するようにしてもよい。
In this embodiment, the temperature sensor 56
Is used to detect a change in the temperature of the light receiver 27, but the light receiver 27, the dark period detection circuit 29 and the dark level detection circuit 32 of the first embodiment are temperature sensors, and the dark level detection circuit The control circuit 57 may control the cooler 55 based on the output of the cooling device 32.

【0049】[0049]

【発明の効果】以上説明したように、本発明の請求項1
の寸法測定装置は、受光器から出力される受光信号の暗
レベルを検出し、検出した暗レベルを受光信号から減算
して得られる信号を2値化して被測定物の寸法を算出す
るようにしている。
As described above, according to the first aspect of the present invention,
The dimension measuring device detects the dark level of the received light signal output from the light receiver, and binarizes a signal obtained by subtracting the detected dark level from the received light signal to calculate the size of the object to be measured. ing.

【0050】このため、暗電流が大きく、温度による暗
電流の変化が大きいゲルマニウム型の受光素子を用いた
場合でも、その暗電流の大きさや変化に影響されずに、
被測定物の外径や内径の寸法を正確に測定できる。
For this reason, even when a germanium-type light-receiving element having a large dark current and a large change in the dark current due to temperature is used, it is not affected by the magnitude or change of the dark current.
It is possible to accurately measure the outer diameter and inner diameter of the object to be measured.

【0051】また、本発明の請求項2の寸法測定装置
は、受光器と同じ温度特性を有し、非受光状態の受光器
が出力する信号と等しい信号を出力する暗レベル出力回
路を設け、この暗レベル出力回路の信号を受光器の受光
信号から減算して得られる信号を2値化して被測定物の
寸法を算出するようにしている。
The dimension measuring apparatus according to claim 2 of the present invention has a dark level output circuit having the same temperature characteristic as the light receiver and outputting a signal equal to the signal output from the light receiver in the non-light receiving state. A signal obtained by subtracting the signal of the dark level output circuit from the light receiving signal of the light receiving device is binarized to calculate the dimension of the device under test.

【0052】このため、暗電流が大きく、温度による暗
電流の変化が大きいゲルマニウム型の受光素子を用いた
場合でも、その暗電流の大きさや変化に影響されずに、
被測定物の外径や内径の寸法を正確に測定できる。
For this reason, even when a germanium-type light receiving element having a large dark current and a large change in dark current due to temperature is used, it is not affected by the magnitude or change of the dark current.
It is possible to accurately measure the outer diameter and inner diameter of the object to be measured.

【0053】また、本発明の請求項2の寸法測定装置
は、受光器の温度の変化を検出する温度センサから信号
によって冷却器を制御して受光器の温度を一定にしてい
るので、周囲温度の変化に対して、受光器の受光素子の
暗電流を一定にすることができ、被測定物の寸法を正確
に測定することができる。
Further, in the dimension measuring apparatus according to the second aspect of the present invention, since the cooler is controlled by a signal from a temperature sensor for detecting a change in the temperature of the light receiver to keep the temperature of the light receiver constant, the ambient temperature is kept constant. , The dark current of the light receiving element of the light receiving device can be kept constant, and the dimensions of the object to be measured can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の構成を示す図FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.

【図2】第1の実施形態の動作を説明するための信号図FIG. 2 is a signal diagram for explaining the operation of the first embodiment.

【図3】本発明の第2の実施形態の構成を示す図FIG. 3 is a diagram showing a configuration of a second embodiment of the present invention.

【図4】本発明の第3の実施形態の構成を示す図FIG. 4 is a diagram showing a configuration of a third embodiment of the present invention.

【図5】従来装置の構成を示す図FIG. 5 is a diagram showing a configuration of a conventional apparatus.

【図6】受光器の構成を示す図FIG. 6 is a diagram showing a configuration of a light receiver.

【符号の説明】[Explanation of symbols]

21 投光部 26 集光レンズ 27 受光器 29 暗期間検出回路 32 暗レベル検出回路 33 減算回路 37 外径用2値化回路 38 外径演算回路 41 内径用2値化回路 42 内径演算回路 DESCRIPTION OF SYMBOLS 21 Projection part 26 Condensing lens 27 Receiver 29 Dark period detection circuit 32 Dark level detection circuit 33 Subtraction circuit 37 Outer diameter binarization circuit 38 Outer diameter computation circuit 41 Inner diameter binarization circuit 42 Inner diameter computation circuit

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年11月28日[Submission date] November 28, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【図6】 FIG. 6

【図1】 FIG.

【図3】 FIG. 3

【図4】 FIG. 4

【図5】 FIG. 5

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】同一平面上で所定幅の範囲を平行に光軸が
移動するビームを出射する投光部と、 該投光部から出射されるビームを集光させる集光レンズ
と、 前記集光レンズによって集光された光を受光素子の受光
面で受け、該受けた光の強度に応じてレベルが変化する
受光信号を出力する受光器と、 前記受光器が非受光状態となる暗期間を検出する暗期間
検出回路と、 前記受光器から出力される受光信号の前記暗期間中のレ
ベルを検出する暗レベル検出回路と、 前記暗レベル検出回路によって検出されたレベルを前記
受光信号から減じる減算回路と、 前記減算回路の出力信号をしきい値と比較して2値化す
る2値化回路と、 前記2値化回路から出力される2値化信号のレベル反転
タイミングに基づいて、前記投光部のビームの走査範囲
内に配置された被測定物の寸法を算出する演算回路とを
備えた寸法測定装置。
1. A light projecting unit for emitting a beam whose optical axis moves in parallel over a range of a predetermined width on the same plane, a condensing lens for condensing a beam emitted from the light projecting unit, A light receiver that receives light condensed by an optical lens on a light receiving surface of a light receiving element and outputs a light receiving signal whose level changes according to the intensity of the received light; and a dark period in which the light receiving device is in a non-light receiving state. , A dark level detection circuit for detecting a level of the light receiving signal output from the light receiver during the dark period, and subtracting the level detected by the dark level detecting circuit from the light receiving signal. A subtraction circuit, a binarization circuit that binarizes an output signal of the subtraction circuit with a threshold value, and a level inversion timing of the binarization signal output from the binarization circuit. Within the beam scanning range of the light emitting section A dimension measuring apparatus comprising: an arithmetic circuit for calculating a dimension of the placed object to be measured.
【請求項2】同一平面上で所定幅の範囲を平行に光軸が
移動するビームを出射する投光部と、 該投光部から出射されるビームを集光させる集光レンズ
と、 前記集光レンズによって集光された光を受光素子の受光
面で受け、該受けた光の強度に応じてレベルが変化する
受光信号を出力する受光器と、 温度変化に対する特性が非受光状態の前記受光器ほぼ同
一な素子を有し、前記受光器が非受光時に出力する信号
とほぼ等しい暗レベル信号を出力する暗レベル信号出力
回路と、 前記暗レベル信号出力回路から出力される暗レベル信号
を前記受光器から出力された受光信号から減算する減算
回路と、 前記減算回路の出力信号をしきい値と比較して2値化す
る2値化回路と、 前記2値化回路から出力される2値化信号のレベル反転
タイミングに基づいて、前記投光器のビームの走査範囲
内に配置された被測定物の寸法を算出する演算回路とを
備えた寸法測定装置。
2. A light projecting section for emitting a beam whose optical axis moves in parallel over a range of a predetermined width on the same plane; a condensing lens for condensing the beam emitted from the light projecting section; A light receiving device that receives light condensed by an optical lens on a light receiving surface of a light receiving element and outputs a light receiving signal whose level changes according to the intensity of the received light; A dark level signal output circuit that outputs a dark level signal substantially equal to a signal output when the light receiver does not receive light, and a dark level signal output from the dark level signal output circuit. A subtraction circuit for subtracting from a light reception signal output from a light receiver, a binarization circuit for comparing an output signal of the subtraction circuit with a threshold value to binarize, and a binary output from the binarization circuit Signal level inversion timing There, the dimension measuring apparatus and an arithmetic circuit for calculating the dimensions of the object located within the scanning range of the beam of the projector.
【請求項3】同一平面上で所定幅の範囲を平行に光軸が
移動するビームを出射する投光部と、 該投光部から出射されるビームを集光させる集光レンズ
と、 前記集光レンズによって集光された光を受光素子の受光
面で受け、該受けた光の強度に応じてレベルが変化する
受光信号を出力する受光器と、 前記受光器の温度変化に応じた信号を出力する温度セン
サと、 前記受光器を冷却する冷却装置と、 前記温度センサから出力される信号に応じて前記冷却装
置を制御し、前記受光器の温度を一定にする制御回路
と、 前記受光器から出力される受光信号をしきい値と比較し
て2値化する2値化回路と、 前記2値化回路から出力される2値化信号のレベル反転
タイミングに基づいて、前記投光部のビームの走査範囲
内に配置された被測定物の寸法を算出する演算回路とを
備えた寸法測定装置。
3. A light projecting unit for emitting a beam whose optical axis moves in a predetermined width range in parallel on the same plane, a condensing lens for condensing a beam emitted from the light projecting unit, A light receiver that receives light condensed by an optical lens on a light receiving surface of a light receiving element and outputs a light reception signal whose level changes according to the intensity of the received light, and a signal corresponding to a temperature change of the light receiver. A temperature sensor for outputting, a cooling device for cooling the light receiver, a control circuit for controlling the cooling device in accordance with a signal output from the temperature sensor to make the temperature of the light receiver constant, and the light receiver A binarization circuit that binarizes a light reception signal output from the binarization circuit by comparing the light reception signal with a threshold value, and a level inversion timing of the binarization signal output from the binarization circuit. The dimensions of the DUT placed within the beam scanning range A dimension measuring device comprising a calculation circuit for calculating.
JP9316131A 1997-10-30 1997-10-30 Dimension measuring device Pending JPH11132730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9316131A JPH11132730A (en) 1997-10-30 1997-10-30 Dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9316131A JPH11132730A (en) 1997-10-30 1997-10-30 Dimension measuring device

Publications (1)

Publication Number Publication Date
JPH11132730A true JPH11132730A (en) 1999-05-21

Family

ID=18073604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9316131A Pending JPH11132730A (en) 1997-10-30 1997-10-30 Dimension measuring device

Country Status (1)

Country Link
JP (1) JPH11132730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075832A1 (en) * 2005-01-13 2006-07-20 Ls Cable Ltd. Outer and inner diameter measuring apparatus and method for transparent tube
WO2013021137A1 (en) 2011-08-08 2013-02-14 Msc & Sgcc Optoelectronic method and device for measuring the inner diameter of a hollow body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189547A (en) * 1988-01-23 1989-07-28 Matsushita Electric Works Ltd Absorptiometric sensor
JPH06129850A (en) * 1992-10-16 1994-05-13 Omron Corp Optical sensor
JPH06160027A (en) * 1992-06-15 1994-06-07 Tokyo Seimitsu Co Ltd Non-contact measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189547A (en) * 1988-01-23 1989-07-28 Matsushita Electric Works Ltd Absorptiometric sensor
JPH06160027A (en) * 1992-06-15 1994-06-07 Tokyo Seimitsu Co Ltd Non-contact measuring device
JPH06129850A (en) * 1992-10-16 1994-05-13 Omron Corp Optical sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075832A1 (en) * 2005-01-13 2006-07-20 Ls Cable Ltd. Outer and inner diameter measuring apparatus and method for transparent tube
WO2013021137A1 (en) 2011-08-08 2013-02-14 Msc & Sgcc Optoelectronic method and device for measuring the inner diameter of a hollow body
FR2979011A1 (en) * 2011-08-08 2013-02-15 Msc & Sgcc OPTOELECTRONIC METHOD AND APPARATUS FOR MEASURING THE INTERNAL DIAMETER OF A HOLLOW BODY
US9243893B2 (en) 2011-08-08 2016-01-26 Msc & Sgcc Optoelectronic method and appliance for measuring the inside diameter of a hollow body

Similar Documents

Publication Publication Date Title
GB1291066A (en) Rangefinder
JPH06167456A (en) Calibration method of scanner and generation apparatus of prescribed scattered-light amplitude
EP1816467A3 (en) Lens inspection device
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
GB2083313A (en) Distance detecting device
JPH11132730A (en) Dimension measuring device
JPS6025413A (en) Method and device for leveling rod scale detection in leveling
JPH1151861A (en) Apparatus for measuring concentration of liquid
JP3924363B2 (en) Dimensional measuring device
JP3347542B2 (en) Concentration sensor
KR100551581B1 (en) OCToptical coherence tomography system using a CCDcharge coupled device camera
JP2003083902A (en) Method and device for inspecting specimen
JP2743038B2 (en) Underwater distance measuring device using laser light
JPH01284742A (en) Surface defect detecting device
JP2816257B2 (en) Non-contact displacement measuring device
KR200144344Y1 (en) Laser diode output control circuit of internal pipe inspection device
JPH03237303A (en) Measuring head structure for speckle length measuring instrument
JPH11194663A (en) Image forming device
JPS63193004A (en) Visual inspection apparatus
KR200217139Y1 (en) Infrared light emitting device secondary light shielding device
JPH08114546A (en) Liquid concentration measuring device
JPH0385477A (en) Object detection apparatus
JPH01156694A (en) Photoelectric switch
JPH0440315A (en) Optical measuring instrument
JPH08166345A (en) Apparatus for measuring concentration of liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926