JPH11132405A - Method and device of multiple unit control of proportional control boiler - Google Patents

Method and device of multiple unit control of proportional control boiler

Info

Publication number
JPH11132405A
JPH11132405A JP31422997A JP31422997A JPH11132405A JP H11132405 A JPH11132405 A JP H11132405A JP 31422997 A JP31422997 A JP 31422997A JP 31422997 A JP31422997 A JP 31422997A JP H11132405 A JPH11132405 A JP H11132405A
Authority
JP
Japan
Prior art keywords
load
boiler
boilers
control
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31422997A
Other languages
Japanese (ja)
Other versions
JP3962137B2 (en
Inventor
Masahiro Okada
正宏 岡田
Masayuki Furuyama
雅之 古山
Takahide Yanagida
高秀 柳田
Fumitoshi Masai
文敏 正井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP31422997A priority Critical patent/JP3962137B2/en
Publication of JPH11132405A publication Critical patent/JPH11132405A/en
Application granted granted Critical
Publication of JP3962137B2 publication Critical patent/JP3962137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate a boiler in an efficient operating load zone, and to decrease the frequency of the start-up and shutdown of the boiler, so as to improve the following property of the load of the boiler, and also to enhance the effect of reducing the noise of the boiler, in the case of the boiler which controls a fan by an inverter. SOLUTION: In a device in which two or more proportional control boilers are set, an optimum operating load zone, an units increasing zone, an units decreasing zone, and the time for increasing or decreasing units are set in a multiple units control board 16. By the command from the multiple units control board 16, the number of boilers are adjusted with respect to the entire loads, so that each operated boiler is in charge of the load equally within the range of the optimum operating load zone. By the load signal from a load distributing board 18, the determined number of boilers are operated under the equal load. When the load becomes the units increasing zone, the units are increased every set time by the command from the multiple units control board 16. When the load becomes the units decreasing zone, the units are decreased every set time by the command from the multiple units control board 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼制御を比例制
御(連続制御)で行うボイラを複数台設置した装置にお
いて、全体の運転負荷に対して、運転している各ボイラ
が均等に負荷を受け持つようにボイラ台数を制御する方
法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus in which a plurality of boilers for performing combustion control by proportional control (continuous control) are installed. The present invention relates to a method and apparatus for controlling the number of boilers so as to take charge.

【0002】[0002]

【従来の技術】ボイラの負荷変動に1台のボイラで対応
しようとすると、高負荷運転時に対応した大容量ボイラ
となり、低負荷運転時にはボイラ効率が低くなる。この
ため、小容量のボイラを複数台並列に設置して、全体の
運転負荷に応じてボイラの運転台数を制御するように
し、効率の良い運転を行う方式が採用されている。従
来、複数台設置したボイラの制御としては、例えば、3
台のボイラが、それぞれ、比例+オンオフ動作の制御器
を備えており、全負荷から1/3負荷までは各ボイラが
比例制御で運転され、1/3負荷以下では各ボイラがオ
ンオフ運転されるといった方式が知られている。
2. Description of the Related Art If a single boiler is used to cope with fluctuations in the load of a boiler, the boiler becomes a large-capacity boiler corresponding to a high load operation, and the boiler efficiency decreases during a low load operation. For this reason, a method is employed in which a plurality of small-capacity boilers are installed in parallel to control the number of boilers operated according to the overall operation load, thereby performing efficient operation. Conventionally, control of a plurality of boilers has been carried out, for example, by 3
Each of the boilers is provided with a controller for proportional + on / off operation, and each boiler is operated by proportional control from full load to 1/3 load, and each boiler is turned on / off at 1/3 load or less. Such a system is known.

【0003】また、従来の比例制御ボイラの台数制御と
して一般的に採用されている方式では、例えば、図5に
示すように、各ボイラ10から発生する蒸気が蒸気溜め
12に集められ、蒸気溜め12に接続された圧力検出・
調整器14により、蒸気圧力変化が信号に変換されて台
数制御盤16に送られ、台数制御盤16からの指令でボ
イラ1缶分の負荷変動毎にボイラ10が1台ずつ発停さ
れている。この場合、ボイラ1缶の負荷を100%単位
で数えるとすると、例えば、全体負荷が300〜400
%のときは、最大蒸発量固定ボイラとして3缶が負荷1
00%で運転され、4缶目が負荷追随ボイラとして比例
制御で運転されることになる。同様に、ボイラ8缶で全
負荷となる装置の場合、全体負荷が700〜800%の
ときは、最大蒸発量固定ボイラとして7缶が負荷100
%で運転され、8缶目が負荷追随ボイラとして比例制御
で運転されることになる。
In a conventional system generally used for controlling the number of proportional control boilers, for example, as shown in FIG. 5, steam generated from each boiler 10 is collected in a steam reservoir 12, and the steam Pressure detection connected to 12
The change in steam pressure is converted into a signal by the regulator 14 and sent to the number control panel 16, and the boilers 10 are started and stopped one by one for each load change of one boiler according to a command from the number control panel 16. . In this case, if the load of one boiler can be counted in units of 100%, for example, the total load is 300 to 400.
%, 3 cans were loaded as boilers with a fixed maximum evaporation of 1
It operates at 00%, and the fourth can is operated as a load following boiler by proportional control. Similarly, in the case of an apparatus in which eight boilers have a full load, when the total load is 700 to 800%, seven boilers are used as fixed maximum evaporation boilers with a load of 100.
%, And the eighth can is operated as a load following boiler by proportional control.

【0004】また、特開昭63−131904号公報に
は、燃焼制御がオンオフ制御又は三位置制御であるボイ
ラを多缶設置した装置において、全体負荷の増減に対
し、起動すべきボイラの前置ボイラのバーナのオン時間
がある値以上のとき、そのボイラを起動させ、停止すべ
きボイラのバーナのオフ時間がある値以上で、かつ、後
置ボイラの停止信号があるとき、そのボイラを停止させ
るようにしたボイラ台数制御方法が記載されている。
Japanese Unexamined Patent Publication (Kokai) No. 63-131904 discloses a system in which a boiler in which the combustion control is on / off control or three-position control is installed in a multi-can system. When the boiler burner on time is longer than a certain value, the boiler is started, and when the off time of the boiler burner to be stopped is longer than a certain value and there is a post-boiler stop signal, the boiler is stopped. A method of controlling the number of boilers is described.

【0005】[0005]

【発明が解決しようとする課題】上述の3台のボイラが
全缶同じ運転モードで比例制御又はオンオフ制御される
方式は、最大負荷付近では全缶が比例制御で運転される
ので問題ないが、1/3負荷以下では全缶がオンオフ運
転モードになり、極めて負荷追随性が悪くなる。また、
全体負荷で1/3以下でもボイラ単位で見れば1/3以
上の負荷があり、2台又は1台の比例運転で十分に対応
でき、追随性の劣るオンオフ運転を3台で行う必要はな
いにもかかわらず、制御上、3台のオンオフ運転が強い
られることになる。上記の欠点を改善して、各ボイラを
1台ずつ発停させるようにしたのが、上述したような、
負荷に追随させるボイラを最小限度の数とし、他のボイ
ラは効率の良い最大蒸発量で固定するという台数制御方
式である。
The above-mentioned system in which the three boilers are proportionally controlled or on / off controlled in the same operation mode for all the cans has no problem since all the cans are operated by the proportional control near the maximum load. When the load is 1/3 or less, all the cans are in the on / off operation mode, and the load following ability is extremely poor. Also,
Even if the total load is less than 1/3, there is a load of 1/3 or more when viewed in boiler units, and two or one proportional operation can sufficiently cope with it, and there is no need to perform on-off operation with poor tracking performance with three units. Nevertheless, for control, three on-off operations are forced. The above-mentioned drawbacks have been improved to start and stop each boiler one by one.
The number of boilers that follow the load is set to a minimum number, and the other boilers are fixed at an efficient maximum evaporation amount.

【0006】しかしながら、このような比例制御ボイラ
の台数制御方式では、ボイラ1缶分の負荷変動毎にボイ
ラの発停が起こり、例えば、ボイラ8缶で全負荷とする
と、図4に示すように、1/8負荷分の変動毎にボイラ
が発停し、発停頻度が多くなってしまうおそれがある。
また、ボイラの発停頻度が多くなる分、起動指令から燃
焼までのプレパージ時間、すなわち、停止状態から実際
に起動するまでのムダ時間が多くなり、応答遅れのため
に負荷追随性が悪くなる。さらに、最大蒸発量で固定す
るボイラを設けているので、送風機の回転数をインバー
タ(回転数制御装置)で制御して騒音の低減を図る場合
でも、高騒音レベルの最大蒸発量固定ボイラが含まれて
おり、全体負荷の減少に対して負荷追随ボイラの騒音低
減効果しかないので、負荷相当分の騒音低減の割合が少
なくなる。また、特開昭63−131904号公報記載
の方法は、燃焼制御がオンオフ制御又は三位置制御であ
るボイラを多缶設置した装置に適用されるものであり、
比例制御ボイラの台数制御には適用できない。
However, in such a system for controlling the number of proportional control boilers, the boiler starts and stops every time the load of one boiler changes, and, for example, when the full load is applied to eight boilers, as shown in FIG. There is a possibility that the boiler will start and stop every time the load changes by 1/8 and the start and stop frequency will increase.
In addition, as the frequency of starting and stopping the boiler increases, the pre-purge time from the start command to the combustion, that is, the waste time from the stop state to the actual start increases, and the load following ability deteriorates due to a response delay. In addition, since a boiler that fixes the maximum evaporation is provided, even if the fan speed is controlled by an inverter (rotation speed control device) to reduce noise, a high noise level maximum evaporation fixed boiler is included. Since there is only a noise reduction effect of the load following boiler with respect to a reduction in the overall load, the ratio of noise reduction corresponding to the load is reduced. Further, the method described in JP-A-63-131904 is applied to an apparatus in which a boiler whose combustion control is on-off control or three-position control is installed in a multi-can,
It cannot be applied to the control of the number of proportional control boilers.

【0007】本発明は上記の諸点に鑑みなされたもの
で、その目的は、燃焼制御を比例制御(連続制御)で行
うボイラを複数台設置した装置において、全体の運転負
荷変動に対して、最後の1缶のボイラで負荷変動に追従
させ、他のボイラは最大蒸発量で固定させるのではな
く、運転している各ボイラが均等に負荷を受け持つよう
に、各ボイラの最適運転負荷域でボイラ台数を制御する
ことにより、各ボイラを効率の良い運転負荷域で運転さ
せることができ、かつ、ボイラの発停頻度を減少させる
ことができ、しかも、負荷追従の無駄や遅れが生じず負
荷追随性が良くなり、送風機をインバータで制御してい
る場合は、ボイラ騒音の低減効果が大きくなるボイラ台
数制御方法及び装置を提供することにある。
[0007] The present invention has been made in view of the above points, and an object thereof is to provide a system in which a plurality of boilers for performing combustion control by proportional control (continuous control) are installed. The boiler is operated in the optimal operation load range of each boiler so that each boiler operated can follow the load fluctuation and the other boilers are not fixed at the maximum amount of evaporation, but load evenly. By controlling the number of units, each boiler can be operated in an efficient operation load range, and the frequency of starting and stopping the boiler can be reduced. It is an object of the present invention to provide a method and an apparatus for controlling the number of boilers in which, when the blower is controlled by an inverter, the effect of reducing the boiler noise is enhanced.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の比例制御ボイラの台数制御方法は、燃焼
制御を比例制御(連続制御)で行うボイラを複数台並列
に設置した装置において、各ボイラが、設定した最適運
転負荷ゾーンの範囲内の均等負荷で運転されるように、
全体の運転負荷に対してボイラ台数を適合させ、各ボイ
ラの運転負荷が最適運転負荷ゾーンを超えたとき(高負
荷運転状態)にはボイラ台数を増加させ、各ボイラの運
転負荷が最適運転負荷ゾーン以下になったとき(低負荷
運転状態)にはボイラ台数を減少させ、ボイラ台数増減
後は、再び最適運転負荷ゾーンの範囲内の均等負荷で各
ボイラを運転するようにしたことを特徴としている(図
1参照)。
In order to achieve the above object, a method for controlling the number of proportional control boilers according to the present invention is an apparatus in which a plurality of boilers for performing combustion control by proportional control (continuous control) are installed in parallel. In, so that each boiler is operated with an equal load within the set optimal operation load zone,
The number of boilers is adapted to the overall operation load. When the operation load of each boiler exceeds the optimum operation load zone (high load operation state), the number of boilers is increased, and the operation load of each boiler is adjusted to the optimum operation load. When the number of boilers is reduced below the zone (low load operation state), the number of boilers is reduced, and after the number of boilers is increased or decreased, each boiler is operated again with an equal load within the range of the optimal operation load zone. (See FIG. 1).

【0009】また、本発明の方法は、燃焼制御を比例制
御で行うボイラを複数台並列に設置し、各ボイラを均等
負荷で運転させるための負荷分配盤を台数制御盤に接続
し、負荷分配盤及び台数制御盤に各ボイラを接続した装
置でボイラの台数を制御する方法であって、ボイラの最
適運転負荷ゾーン、台数増大負荷ゾーン、台数減少負荷
ゾーン及び台数増減時間を台数制御盤に設定し、台数制
御盤からの指令により、全体の運転負荷に対して、運転
させる各ボイラが最適運転負荷ゾーンの範囲内で均等に
負荷を受け持つようにボイラ台数を適合させ、負荷分配
盤からの負荷信号により、定められた台数のボイラを均
等負荷で運転させ、各ボイラの運転負荷が台数増大負荷
ゾーンになったとき(高負荷運転状態)は、台数制御盤
からの指令により、設定した時間毎にボイラ台数を増加
させ、各ボイラの運転負荷が台数減少負荷ゾーンになっ
たとき(低負荷運転状態)は、台数制御盤からの指令に
より、設定した時間毎にボイラ台数を減少させ、ボイラ
台数増減後は、負荷分配盤からの負荷信号により、台数
増減後の各ボイラを均等負荷で運転させることを特徴と
している(図1参照)。
Further, in the method of the present invention, a plurality of boilers for performing combustion control by proportional control are installed in parallel, a load distribution panel for operating each boiler with an equal load is connected to the number control panel, This is a method of controlling the number of boilers using a device in which each boiler is connected to a panel and a number control panel. The optimum operation load zone, number increase load zone, number decrease load zone, and number increase / decrease time of the boiler are set in the number control panel. Then, the number of boilers is adjusted according to the command from the unit control panel so that each boiler to be operated receives the load evenly within the range of the optimum operation load zone for the entire operating load, and the load from the load distribution panel is adjusted. The specified number of boilers are operated with a uniform load by the signal, and when the operation load of each boiler is in the load increase zone (high load operation state), a command from the unit control panel The number of boilers is increased at set time intervals, and when the operating load of each boiler is in the reduced load zone (low load operation state), the number of boilers is reduced at set time intervals by a command from the unit control panel. After the number of boilers is increased or decreased, each of the boilers after the increase or decrease is operated with an equal load according to a load signal from the load distribution panel (see FIG. 1).

【0010】上記の本発明の方法において、負荷分配盤
からの負荷信号を各ボイラに直接送信するようにして、
各ボイラの負荷追随性を高めるようにすることが望まし
い(図1参照)。なお、負荷分配盤からの負荷信号を通
信回路等を介してシリーズに各ボイラに送信するように
構成することも可能であるが、直接送信する場合に比べ
ると、負荷追従が遅れることになる。また、上記の本発
明の方法において、ボイラへ燃焼用空気を供給する送風
機の回転数をインバータ(回転数制御装置)で制御する
ようにして(図2参照)、負荷減少時にボイラ騒音の低
減効果が大きくなるようにすることができる。
In the above method of the present invention, the load signal from the load distribution panel is transmitted directly to each boiler,
It is desirable to improve the load following capability of each boiler (see FIG. 1). Although it is possible to transmit the load signal from the load distribution panel to each boiler in series via a communication circuit or the like, the load following is delayed as compared with the case of direct transmission. Further, in the above-described method of the present invention, the rotation speed of the blower for supplying the combustion air to the boiler is controlled by an inverter (rotation speed control device) (see FIG. 2), so that the boiler noise reduction effect when the load decreases. Can be increased.

【0011】また、本発明の比例制御ボイラの台数制御
装置は、燃焼制御を比例制御で行うボイラが複数台並列
に設置され、各ボイラを均等負荷で運転させるための負
荷分配盤及び信号ラインを介して各ボイラから発生する
蒸気の蒸気溜めと台数制御盤とが接続され、負荷分配盤
及び台数制御盤に各ボイラが信号ラインを介して接続さ
れた装置であって、ボイラの最適運転負荷ゾーン、台数
増大負荷ゾーン、台数減少負荷ゾーン及び台数増減時間
が設定された台数制御盤からの指令により、全体の運転
負荷変動に対して、運転させる各ボイラが最適運転負荷
ゾーンの範囲内で均等に負荷を受け持つようにボイラ台
数が適合又は増減され、負荷分配盤からの負荷信号によ
り、定められた台数のボイラが均等負荷で運転されるよ
うにしたことを特徴としている(図1参照)。
Further, in the number control apparatus for proportional control boilers of the present invention, a plurality of boilers for performing combustion control by proportional control are installed in parallel, and a load distribution board and a signal line for operating each boiler with an equal load are provided. A device in which a steam reservoir of steam generated from each boiler is connected to a unit control panel, and each boiler is connected to a load distribution panel and a unit control panel via a signal line. According to commands from the unit control panel in which the unit increase load zone, the unit decrease load zone and the unit increase / decrease time are set, each boiler to be operated is evenly within the range of the optimal operation load zone with respect to the entire operation load fluctuation. The number of boilers was adjusted or increased or decreased to cover the load, and the specified number of boilers were operated with an equal load by the load signal from the load distribution panel. Are (see Figure 1).

【0012】上記の本発明の装置において、負荷分配盤
からの負荷信号が各ボイラに直接送信されるように、信
号ラインを介して負荷分配盤と各ボイラとを接続して、
各ボイラの負荷追随性を高めるように構成することが望
ましい(図1参照)。なお、負荷分配盤からの負荷信号
を通信回路等を介してシリーズに各ボイラに送信するよ
うに構成することも可能であるが、直接送信する場合に
比べると、負荷追従が遅れることになる。また、上記の
本発明の装置において、ボイラへ燃焼用空気を供給する
送風機の回転数をインバータ(回転数制御装置)で制御
するようにし、インバータと送風機のモータとを接続す
るような構成とすれば(図2参照)、負荷減少時でのボ
イラ騒音の低減効果が大きくなるようにすることができ
る。
In the above-described apparatus of the present invention, the load distributor and each boiler are connected via a signal line so that the load signal from the load distributor is transmitted directly to each boiler.
It is desirable that each boiler be configured to increase the load following capability (see FIG. 1). Although it is possible to transmit the load signal from the load distribution panel to each boiler in series via a communication circuit or the like, the load following is delayed as compared with the case of direct transmission. In the above-described apparatus of the present invention, the rotation speed of the blower for supplying combustion air to the boiler is controlled by an inverter (rotation speed control device), and the inverter and the motor of the blower are connected. In this case (see FIG. 2), the effect of reducing boiler noise when the load is reduced can be increased.

【0013】[0013]

【発明の実施の形態】図1は、本発明の実施の形態によ
る比例制御ボイラの台数制御装置の概略を示している。
本実施の形態は、比例制御ボイラを複数台(図1では、
一例として、4台)並列に設置した装置において、運転
している各ボイラが均等に負荷を受け持つように、負荷
分配盤からの負荷信号により、各ボイラを最適運転負荷
域の均等負荷で運転させるものであり、ボイラ台数の増
減指令は、台数を増減させる負荷域等が設定された台数
制御盤により、設定された高負荷運転状態で増缶させ、
設定された低負荷運転状態で減缶させるように行うもの
である。ボイラの制御方式としては、比例制御(P制
御)の他に、比例積分制御(PI制御)や比例積分微分
制御(PID制御)を採用することも勿論可能である。
また、ボイラとしては、例えば、多管式貫流ボイラが用
いられるが、他のボイラを用いることも勿論可能であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows a unit control apparatus for a proportional control boiler according to an embodiment of the present invention.
In the present embodiment, a plurality of proportional control boilers (in FIG. 1,
As an example, in the four (4) units installed in parallel, each boiler is operated with an equal load in the optimum operation load range by a load signal from the load distribution panel so that each operating boiler receives the load equally. The command to increase or decrease the number of boilers is to increase the number of boilers in the set high-load operation state by the number control panel in which the load range for increasing or decreasing the number of boilers is set,
This is to reduce the number of cans in the set low load operation state. As a control method of the boiler, it is of course possible to adopt a proportional integral control (PI control) or a proportional integral derivative control (PID control) in addition to the proportional control (P control).
Further, as the boiler, for example, a multi-tube once-through boiler is used, but other boilers can of course be used.

【0014】図1において、ボイラ10は複数台並列に
設置され、各ボイラ10から発生する蒸気が蒸気管24
を通って蒸気溜め12に集められ、蒸気溜め12に接続
された圧力検出・調整器14により、蒸気圧力変化が信
号に変換されて負荷分配盤18に送られる。全体負荷を
検出した負荷分配盤18からは、信号ライン26を介し
て、台数制御盤16に全体負荷が伝達される。なお、本
実施の形態では、蒸気圧力のみで負荷を検出している
が、蒸気圧力と蒸気流量により負荷を検出することも可
能である。そして、各ボイラ10が均等負荷で運転され
るように、負荷分配盤18からの負荷信号が、信号ライ
ン20を介して、各ボイラ10に直接送信されるととも
に、ボイラ台数の増減を指令する台数制御盤16から
は、信号ライン22を介して、各ボイラ10の運転・停
止指令が送信される。なお、負荷分配盤18からの負荷
信号を通信回路等を介してシリーズに各ボイラ10に送
信するように構成することも可能であるが、直接送信す
る場合に比べると、負荷追従が遅れることになる。
In FIG. 1, a plurality of boilers 10 are installed in parallel, and steam generated from each boiler 10 is supplied to a steam pipe 24.
The steam pressure change is converted into a signal by a pressure detector / regulator 14 connected to the steam reservoir 12 and sent to the load distribution board 18. From the load distribution panel 18 that has detected the overall load, the overall load is transmitted to the number control panel 16 via the signal line 26. In the present embodiment, the load is detected only by the steam pressure, but the load can be detected by the steam pressure and the steam flow rate. Then, the load signal from the load distribution panel 18 is directly transmitted to each boiler 10 via the signal line 20 so that each boiler 10 is operated with an equal load, and the number of boilers is commanded to increase or decrease. From the control panel 16, an operation / stop command for each boiler 10 is transmitted via a signal line 22. It is possible to transmit the load signal from the load distribution panel 18 to each of the boilers 10 in series via a communication circuit or the like. However, compared with the case of directly transmitting the load signal, the load following is delayed. Become.

【0015】つぎに、本実施の形態における比例制御ボ
イラの台数制御の手法について説明する。台数制御盤1
6には、ボイラの最適運転負荷ゾーン、台数増大負荷ゾ
ーン、台数減少負荷ゾーン及び台数増減時間が設定され
ており、台数制御盤16からの指令により、全体の運転
負荷に対して、運転させる各ボイラ10が最適運転負荷
ゾーンの範囲内で均等に負荷を受け持つようにボイラ台
数が定められる。そして、台数制御盤16から運転指令
の出ている各ボイラ10は、負荷分配盤18からの負荷
信号により、均等負荷で運転される。台数制御盤16で
は、各ボイラ10の運転負荷が燃料量指令値などで監視
されており、運転負荷が台数増大負荷ゾーンになったと
き(高負荷運転状態)は、台数制御盤16からの指令に
より、設定した時間毎にボイラ台数が増やされる。一
方、運転負荷が台数減少負荷ゾーンになったとき(低負
荷運転状態)は、台数制御盤16からの指令により、設
定した時間毎にボイラ台数が減らされる。ボイラ台数増
減後は、負荷分配盤18からの負荷信号により、台数増
減後の各ボイラ10が均等負荷で運転されることにな
る。
Next, a method of controlling the number of proportional control boilers according to the present embodiment will be described. Number control panel 1
6 is set with an optimum operation load zone, a number increase load zone, a number decrease load zone, and a number increase / decrease time of the boiler. The number of boilers is determined so that the boilers 10 receive the load evenly within the range of the optimum operation load zone. Each of the boilers 10 for which an operation command has been issued from the number control panel 16 is operated with an equal load according to a load signal from the load distribution panel 18. In the number control panel 16, the operation load of each boiler 10 is monitored by a fuel amount command value or the like, and when the operation load is in the load increase zone (high load operation state), a command from the number control panel 16 is issued. As a result, the number of boilers is increased every set time. On the other hand, when the operation load is in the number-reduction load zone (low-load operation state), the number of boilers is reduced every set time by a command from the number control panel 16. After the number of boilers is increased or decreased, each of the boilers 10 after the increase or decrease is operated with an equal load according to a load signal from the load distribution panel 18.

【0016】ここで、本実施の形態で用いる比例制御ボ
イラとして、送風機をインバータで制御するボイラを用
いる場合の各ボイラの構成等について説明する。図2に
示すように、ボイラ本体28の上部にはバーナ30が設
けられており、バーナ30には、燃料流量制御弁(比例
制御弁)32を有する燃料供給管34から燃料が供給さ
れる。燃料は油やガス等が用いられる。一方、燃焼用空
気が、送風機36から空気供給管38を通してボイラ本
体28内に供給され、バーナ30の燃焼に供される。台
数制御盤からの運転指令及び負荷分配盤からの負荷信号
がボイラ制御盤40に送信されると、ボイラ制御盤40
で燃料量指令値及びインバータ指令値が決定され、ボイ
ラ制御盤40に接続された燃料流量制御弁32により燃
料供給量が制御されるとともに、ボイラ制御盤40に接
続されたインバータ(回転数制御装置)42からの出力
値(周波数)が送風機36のモータ44に送られて空気
供給量が制御される。ボイラ制御盤40における燃料量
指令値等は、台数制御盤で監視されており、ボイラの運
転負荷が台数制御盤で把握できるようになっている。4
6は気水分離器である。なお、図2では、図示を省略し
ているが、ボイラ制御盤40により給水による圧力外乱
の補償制御が行われる場合もある。
Here, the configuration and the like of each boiler when a boiler that controls a blower with an inverter is used as the proportional control boiler used in the present embodiment will be described. As shown in FIG. 2, a burner 30 is provided at an upper portion of the boiler main body 28, and fuel is supplied to the burner 30 from a fuel supply pipe 34 having a fuel flow control valve (proportional control valve) 32. Oil, gas or the like is used as the fuel. On the other hand, combustion air is supplied from the blower 36 into the boiler main body 28 through the air supply pipe 38, and is supplied to the burner 30 for combustion. When an operation command from the number control panel and a load signal from the load distribution panel are transmitted to the boiler control panel 40, the boiler control panel 40
To determine the fuel amount command value and the inverter command value, the fuel supply amount is controlled by the fuel flow control valve 32 connected to the boiler control panel 40, and the inverter (rotation speed control device) connected to the boiler control panel 40 ) 42 is sent to the motor 44 of the blower 36 to control the air supply amount. The fuel amount command value and the like in the boiler control panel 40 are monitored by the number control panel, and the operating load of the boiler can be grasped by the number control panel. 4
6 is a steam separator. Although not shown in FIG. 2, the boiler control panel 40 may perform compensation control of pressure disturbance due to water supply.

【0017】つぎに、本実施の形態において、図1に示
す構成と同様の構成で8台のボイラを並列に設置した場
合を実例として、ボイラ台数制御の具体例を説明する。
なお、ボイラ1缶の負荷を100%単位で数えるものと
する。一例として、ボイラの最適運転負荷ゾーンを50
〜80%とし、各ボイラの運転負荷が50%以下になっ
たときにボイラ台数を減少させ、各ボイラの運転負荷が
80%を超えたときにボイラ台数を増加させるものとす
れば、図3に示すように、例えば、運転しているボイラ
が7台の場合は、全体負荷が350〜560%の運転負
荷域において、各ボイラが最適運転負荷ゾーンの範囲内
となるので、全体負荷が650%から350%に変動す
るような場合でも、運転されるボイラの台数は8台から
7台に減少するだけである。また、全体負荷が350%
から650%に変動する場合は、運転初期の段階のみボ
イラ台数が5台から8台に増加するが、一旦、ボイラ8
台で運転されるようになると、以後は、ボイラ台数が7
台から8台に増加するだけである。すなわち、全体負荷
350%〜650%の負荷変動は、ボイラ1台の発停で
制御できることになり、ボイラの発停頻度を減少させる
ことができる。なお、上述した図4に示すようなボイラ
1台分の負荷変動毎にボイラを発停させる従来の台数制
御の場合は、全体負荷350%〜650%の負荷変動に
対して、ボイラ台数を4台〜7台で増減させなければな
らず、ボイラ3台の発停が必要となり、発停頻度が多く
なる。また、本実施の形態における実例では、各ボイラ
の運転負荷が80%を超えて1缶増缶する場合でも、そ
のボイラが起動するまでは、残缶が80〜100%域で
負荷をカバーするように制御されるので、全く負荷追従
の遅れの問題は生じない。つまり、負荷ゾーンを設定し
てボイラ台数を増減させるので、1缶が発停の際にも残
りの運転ボイラがバックアップし、負荷追従の無駄が生
じないように制御することができる。
Next, a specific example of controlling the number of boilers in the present embodiment will be described, taking as an example a case where eight boilers are installed in parallel with the same configuration as that shown in FIG.
The load on one boiler can is counted in units of 100%. As an example, the optimal operating load zone of the boiler is 50
If the operation load of each boiler is reduced to 50% or less, the number of boilers is reduced, and if the operation load of each boiler exceeds 80%, the number of boilers is increased. For example, when seven boilers are operating, each boiler is within the range of the optimum operation load zone in the operation load region where the total load is 350 to 560%. In this case, the number of boilers operated only decreases from eight to seven. Also, the overall load is 350%
From 650% to 650%, the number of boilers increases from 5 to 8 only at the initial stage of operation.
Once the boiler is operated, the number of boilers will be 7
It only increases from one to eight. In other words, the load fluctuation of 350% to 650% of the total load can be controlled by starting and stopping one boiler, and the frequency of starting and stopping the boiler can be reduced. In the case of the conventional unit control in which the boiler is started and stopped for each load change of one boiler as shown in FIG. 4 described above, the number of boilers is set to 4 for a load change of 350% to 650% of the total load. The number of boilers must be increased or decreased, and three boilers need to be started and stopped, and the start and stop frequency increases. Further, in the example of the present embodiment, even when the operation load of each boiler exceeds 80% and one can is increased, the remaining cans cover the load in the 80 to 100% range until the boiler is started. Thus, there is no problem of delay in load following. That is, since the number of boilers is increased or decreased by setting the load zone, the remaining operation boilers can be backed up even when one can is started and stopped, and control can be performed so that there is no waste of load following.

【0018】ここで、本実施の形態において、図1に示
す構成と同様の構成で、4台の各ボイラを、図2に示す
ような送風機をインバータで制御する比例制御ボイラと
した場合を実例として、ボイラ騒音の低減効果の具体例
を説明する。なお、上記と同様にボイラの最適運転負荷
ゾーンは50〜80%とする。一例として、100%負
荷時のボイラ騒音が83dB、50%負荷時のボイラ騒音
が73dBとすると、例えば、全体負荷が350%のと
き、上述した図5に示すようなボイラ1台分の負荷変動
毎にボイラを発停させる従来の台数制御の場合は、負荷
100%で運転しているボイラ(最大蒸発量固定ボイ
ラ)が3台、負荷50%で運転しているボイラ(負荷追
随ボイラ)が1台となるので、83dBが3台、73dBが
1台で、ボイラ騒音Lを計算すると以下のようになる。 L=10・log(3×108.3+107.3) =10・log(108.3×3.1) =83+10×0.49 =87.9[dB] これに対して、本実施の形態におけるボイラ台数制御の
場合は、7台のボイラが50%の均等負荷で運転される
ことになるので、73dBが7台で、ボイラ騒音Lを計算
すると以下のようになり、ボイラ騒音の低減効果が大き
いことがわかる。 L=10・log(7×107.3) =73+10×0.85 =81.5[dB]
Here, in the present embodiment, an example is shown in which a configuration similar to that shown in FIG. 1 is used, and each of the four boilers is a proportional control boiler in which a blower is controlled by an inverter as shown in FIG. A specific example of the boiler noise reduction effect will be described. In addition, the optimal operation load zone of the boiler is set to 50 to 80% in the same manner as described above. As an example, if the boiler noise at a 100% load is 83 dB and the boiler noise at a 50% load is 73 dB, for example, when the overall load is 350%, the load fluctuation of one boiler as shown in FIG. In the case of the conventional unit control in which the boilers are started and stopped every time, three boilers operating at a load of 100% (fixed maximum evaporation amount boilers) and boilers operating at a load of 50% (load following boilers) are used. Since one unit is used, three units are used for 83 dB and one unit is used for 73 dB, and the boiler noise L is calculated as follows. L = 10 · log (3 × 10 8.3 +10 7.3 ) = 10 · log (10 8.3 × 3.1) = 83 + 10 × 0.49 = 87.9 [dB] On the other hand, the number of boilers in the present embodiment In the case of control, seven boilers are operated with a 50% equal load. Therefore, 73 dB is used for seven boilers, and the boiler noise L is calculated as follows, and the boiler noise reduction effect is large. I understand. L = 10 · log (7 × 10 7.3 ) = 73 + 10 × 0.85 = 81.5 [dB]

【0019】[0019]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 各ボイラが、設定した最適運転負荷ゾーンの範
囲内の均等負荷で運転されるように、全体の運転負荷に
対してボイラ台数を適合させるので、ボイラを最も効率
の良い運転負荷域で運転させることができる。 (2) 全体の運転負荷変動に対して、最後の1缶のボ
イラで負荷変動に追従させ、他のボイラは最大蒸発量で
固定させるのではなく、運転している各ボイラが均等に
負荷を受け持つように、各ボイラの最適運転負荷域でボ
イラ台数を制御するので、ボイラの発停頻度を減少させ
ることができる。また、ボイラの発停頻度が少なくなる
分、起動指令から燃焼までのプレパージ時間、すなわ
ち、停止状態から実際に起動するまでのムダ時間が減る
ので、負荷追随性が良くなる。 (3) 負荷ゾーンを設定してボイラ台数を増減させる
ので、ボイラ1缶が発停の際にも残りの運転ボイラがバ
ックアップし、負荷追従の無駄が生じないように制御す
ることができる。すなわち、各ボイラの運転負荷が最適
運転負荷ゾーンを超えて1缶増缶する場合でも、そのボ
イラが起動するまでは、残缶のボイラが高負荷域で全体
負荷をカバーするように制御されるので、全く負荷追従
の遅れの問題は生じない。 (4) 負荷分配盤からの負荷信号を各ボイラに直接送
信する場合は、各ボイラの負荷追随性を高めることがで
きる。 (5) 運転しているボイラを最大蒸発量で固定するこ
となく、各ボイラを最適運転負荷ゾーンの範囲内の均等
負荷で運転させるので、ボイラへ燃焼用空気を供給する
送風機の回転数をインバータ(回転数制御装置)で制御
する構成の場合は、高騒音レベルの最大蒸発量固定ボイ
ラが含まれることなく、負荷減少時のボイラ騒音の低減
効果が大きくなる。
As described above, the present invention has the following effects. (1) Since the number of boilers is adapted to the entire operation load so that each boiler is operated with an equal load within the set optimum operation load zone, the boilers are operated in the most efficient operation load range. Can be driven. (2) For the entire operation load fluctuation, the last one can boiler follows the load fluctuation, and the other boilers do not fix at the maximum evaporation amount, but each operating boiler applies the load evenly. Since the number of boilers is controlled in the optimum operation load range of each boiler so as to take charge, the frequency of starting and stopping the boilers can be reduced. In addition, as the frequency of starting and stopping the boiler is reduced, the pre-purge time from the start command to the combustion, that is, the waste time from the stop state to the actual start is reduced, so that the load followability is improved. (3) Since the number of boilers is increased or decreased by setting the load zone, the remaining operation boiler can be backed up even when one boiler can start and stop, and control can be performed so that wasteful load following does not occur. That is, even when the operation load of each boiler increases by one can beyond the optimum operation load zone, until the boiler is started, the remaining boilers are controlled so as to cover the entire load in a high load region. Therefore, the problem of delay in load following does not occur at all. (4) When the load signal from the load distribution panel is directly transmitted to each boiler, the load following capability of each boiler can be improved. (5) Since each boiler is operated at an equal load within the optimum operation load zone without fixing the operating boiler at the maximum evaporation amount, the number of rotations of the blower that supplies combustion air to the boiler is controlled by an inverter. In the case of the configuration controlled by the (rotational speed control device), the boiler noise reduction effect when the load is reduced is increased without including the maximum evaporation fixed boiler with a high noise level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による比例制御ボイラの台
数制御装置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a number control device of a proportional control boiler according to an embodiment of the present invention.

【図2】本発明の実施の形態における比例制御ボイラが
送風機をインバータで制御するボイラである場合の各ボ
イラの構成を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a configuration of each boiler when the proportional control boiler according to the embodiment of the present invention is a boiler that controls a blower with an inverter.

【図3】本発明の実施の形態における全体負荷と運転さ
れるボイラ台数との関係の一例を示すグラフである。
FIG. 3 is a graph showing an example of the relationship between the overall load and the number of boilers operated according to the embodiment of the present invention.

【図4】従来のボイラ台数制御における全体負荷と運転
されるボイラ台数との関係の一例を示すグラフである。
FIG. 4 is a graph showing an example of the relationship between the overall load and the number of boilers operated in conventional boiler number control.

【図5】従来の比例制御ボイラの台数制御装置を示す概
略構成図である。
FIG. 5 is a schematic configuration diagram showing a conventional proportional control boiler number control device.

【符号の説明】[Explanation of symbols]

10 ボイラ 12 蒸気溜め 14 圧力検出・調整器 16 台数制御盤 18 負荷分配盤 20、22、26 信号ライン 24 蒸気管 28 ボイラ本体 30 バーナ 32 燃料流量制御弁(比例制御弁) 34 燃料供給管 36 送風機 38 空気供給管 40 ボイラ制御盤 42 インバータ(回転数制御装置) 44 モータ 46 気水分離器 Reference Signs List 10 boiler 12 steam reservoir 14 pressure detector / regulator 16 number control panel 18 load distribution panel 20, 22, 26 signal line 24 steam pipe 28 boiler body 30 burner 32 fuel flow control valve (proportional control valve) 34 fuel supply pipe 36 blower 38 air supply pipe 40 boiler control panel 42 inverter (rotation speed control device) 44 motor 46 steam-water separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 正井 文敏 滋賀県草津市青地町1000番地 川重冷熱工 業株式会社本社工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Fumitoshi Masai 1000 Aochi-cho, Kusatsu-shi, Shiga Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 燃焼制御を比例制御で行うボイラを複数
台設置した装置において、各ボイラが、設定した最適運
転負荷ゾーンの範囲内の均等負荷で運転されるように、
全体の運転負荷に対してボイラ台数を適合させ、各ボイ
ラの運転負荷が最適運転負荷ゾーンを超えたときにはボ
イラ台数を増加させ、各ボイラの運転負荷が最適運転負
荷ゾーン以下になったときにはボイラ台数を減少させ、
ボイラ台数増減後は、再び最適運転負荷ゾーンの範囲内
の均等負荷で各ボイラを運転するようにしたことを特徴
とする比例制御ボイラの台数制御方法。
In an apparatus having a plurality of boilers for performing combustion control by proportional control, each boiler is operated with an equal load within a range of a set optimum operation load zone.
The number of boilers is adapted to the overall operating load, and the number of boilers is increased when the operating load of each boiler exceeds the optimal operating load zone, and the number of boilers is increased when the operating load of each boiler falls below the optimal operating load zone. Decrease
A method for controlling the number of proportional control boilers, wherein each boiler is operated again with an equal load within the range of the optimum operation load zone after the number of boilers is increased or decreased.
【請求項2】 燃焼制御を比例制御で行うボイラを複数
台設置し、各ボイラを均等負荷で運転させるための負荷
分配盤を台数制御盤に接続し、負荷分配盤及び台数制御
盤に各ボイラを接続した装置でボイラの台数を制御する
方法であって、ボイラの最適運転負荷ゾーン、台数増大
負荷ゾーン、台数減少負荷ゾーン及び台数増減時間を台
数制御盤に設定し、台数制御盤からの指令により、全体
の運転負荷に対して、運転させる各ボイラが最適運転負
荷ゾーンの範囲内で均等に負荷を受け持つようにボイラ
台数を適合させ、負荷分配盤からの負荷信号により、定
められた台数のボイラを均等負荷で運転させ、各ボイラ
の運転負荷が台数増大負荷ゾーンになったときは、台数
制御盤からの指令により、設定した時間毎にボイラ台数
を増加させ、各ボイラの運転負荷が台数減少負荷ゾーン
になったときは、台数制御盤からの指令により、設定し
た時間毎にボイラ台数を減少させ、ボイラ台数増減後
は、負荷分配盤からの負荷信号により、台数増減後の各
ボイラを均等負荷で運転させることを特徴とする比例制
御ボイラの台数制御方法。
2. A plurality of boilers for performing combustion control by proportional control are installed, a load distribution panel for operating each boiler with an equal load is connected to the number control panel, and each boiler is connected to the load distribution panel and the number control panel. Is a method of controlling the number of boilers with a device connected to the number of boilers, wherein the optimal operation load zone, the number of increased load zones, the number of reduced load zones and the number of increase / decrease times of the boilers are set in the number control panel, and commands from the number control panel are issued. Therefore, the number of boilers is adapted so that each boiler to be operated can equally receive the load within the range of the optimum operation load zone for the entire operation load, and the number of boilers determined by the load signal from the load distribution panel is determined. When the boilers are operated at an equal load and the operation load of each boiler is in the load increase zone, the number of boilers is increased at set time intervals by a command from the unit control panel, and each boiler is increased. When the operating load of the boiler has fallen into the load reduction zone, the number of boilers is reduced at a set time according to a command from the number control panel, and after the number of boilers increases or decreases, the number of boilers is determined by the load signal from the load distribution panel. A method of controlling the number of proportional control boilers, wherein each of the increased and decreased boilers is operated with an equal load.
【請求項3】 負荷分配盤からの負荷信号を各ボイラに
直接送信するようにして、各ボイラの負荷追随性を高め
る請求項2記載の比例制御ボイラの台数制御方法。
3. The method of controlling the number of proportional control boilers according to claim 2, wherein a load signal from the load distribution panel is directly transmitted to each of the boilers to improve the load following capability of each of the boilers.
【請求項4】 ボイラへ燃焼用空気を供給する送風機の
回転数をインバータで制御する請求項1、2又は3記載
の比例制御ボイラの台数制御方法。
4. The method for controlling the number of proportional control boilers according to claim 1, wherein the number of rotations of a blower for supplying combustion air to the boiler is controlled by an inverter.
【請求項5】 燃焼制御を比例制御で行うボイラが複数
台設置され、各ボイラを均等負荷で運転させるための負
荷分配盤及び信号ラインを介して各ボイラから発生する
蒸気の蒸気溜めと台数制御盤とが接続され、負荷分配盤
及び台数制御盤に各ボイラが信号ラインを介して接続さ
れた装置であって、ボイラの最適運転負荷ゾーン、台数
増大負荷ゾーン、台数減少負荷ゾーン及び台数増減時間
が設定された台数制御盤からの指令により、全体の運転
負荷変動に対して、運転させる各ボイラが最適運転負荷
ゾーンの範囲内で均等に負荷を受け持つようにボイラ台
数が適合又は増減され、負荷分配盤からの負荷信号によ
り、定められた台数のボイラが均等負荷で運転されるよ
うにしたことを特徴とする比例制御ボイラの台数制御装
置。
5. A plurality of boilers for performing combustion control by proportional control are installed, and a steam distribution and a number control of steam generated from each boiler through a load distribution panel and a signal line for operating each boiler with an equal load. The boiler is connected to the control panel, and each boiler is connected to the load distribution panel and the number control panel via a signal line. The boiler has an optimum operation load zone, a number increase load zone, a number decrease load zone, and a number increase / decrease time. The number of boilers is adapted or increased / decreased so that each boiler to be operated can receive the load evenly within the range of the optimal operation load zone, according to the command from the number control panel in which is set. A proportional control boiler number control device, wherein a predetermined number of boilers are operated with an equal load in response to a load signal from a distribution board.
【請求項6】 負荷分配盤からの負荷信号が各ボイラに
直接送信されるように、信号ラインを介して負荷分配盤
と各ボイラとを接続して、各ボイラの負荷追随性を高め
るようにした請求項5記載の比例制御ボイラの台数制御
装置。
6. The load distribution panel and each boiler are connected via a signal line so that a load signal from the load distribution panel is directly transmitted to each boiler, so that the load followability of each boiler is improved. A number control device for a proportional control boiler according to claim 5.
【請求項7】 ボイラへ燃焼用空気を供給する送風機の
回転数をインバータで制御するように、インバータと送
風機のモータとが接続された請求項5又は6記載の比例
制御ボイラの台数制御装置。
7. The proportional number control unit for boilers according to claim 5, wherein the inverter and the motor of the blower are connected so that the rotation speed of the blower for supplying combustion air to the boiler is controlled by the inverter.
JP31422997A 1997-10-29 1997-10-29 Method and apparatus for controlling the number of proportional control boilers Expired - Lifetime JP3962137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31422997A JP3962137B2 (en) 1997-10-29 1997-10-29 Method and apparatus for controlling the number of proportional control boilers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31422997A JP3962137B2 (en) 1997-10-29 1997-10-29 Method and apparatus for controlling the number of proportional control boilers

Publications (2)

Publication Number Publication Date
JPH11132405A true JPH11132405A (en) 1999-05-21
JP3962137B2 JP3962137B2 (en) 2007-08-22

Family

ID=18050848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31422997A Expired - Lifetime JP3962137B2 (en) 1997-10-29 1997-10-29 Method and apparatus for controlling the number of proportional control boilers

Country Status (1)

Country Link
JP (1) JP3962137B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130604A (en) * 2000-10-19 2002-05-09 Kawasaki Thermal Engineering Co Ltd Method for controlling number of boilers in continuous control of burning rate
JP2002130602A (en) * 2000-10-19 2002-05-09 Kawasaki Thermal Engineering Co Ltd Method for controlling number of boilers
JP2002130603A (en) * 2000-10-19 2002-05-09 Kawasaki Thermal Engineering Co Ltd Method for controlling number of boilers in continuous control of burning rate
JP2006220413A (en) * 2006-03-27 2006-08-24 Kawasaki Thermal Engineering Co Ltd Number control method of boilers for continuously controlling combustion amount
WO2010023994A1 (en) * 2008-08-25 2010-03-04 三浦工業株式会社 Control program, control device, and boiler system
JP2013137191A (en) * 2013-03-06 2013-07-11 Miura Co Ltd Control program, controller, and boiler system
JP2013142476A (en) * 2012-01-06 2013-07-22 Orion Machinery Co Ltd Coupled operation method and system for chiller
JP2013234847A (en) * 2013-07-26 2013-11-21 Miura Co Ltd Boiler system
JP5534055B1 (en) * 2013-02-15 2014-06-25 三浦工業株式会社 Boiler system
JP2014115049A (en) * 2012-12-12 2014-06-26 Miura Co Ltd Boiler system
WO2014109070A1 (en) * 2013-01-08 2014-07-17 三浦工業株式会社 Boiler system
WO2014178410A1 (en) * 2013-05-01 2014-11-06 三浦工業株式会社 Boiler system
WO2014192165A1 (en) * 2013-05-27 2014-12-04 三浦工業株式会社 Boiler system
JP2014228159A (en) * 2013-05-20 2014-12-08 三浦工業株式会社 Boiler system
JP2015140976A (en) * 2014-01-29 2015-08-03 三浦工業株式会社 boiler system
JP2015161426A (en) * 2014-02-26 2015-09-07 三浦工業株式会社 boiler system
JP2016061498A (en) * 2014-09-18 2016-04-25 三浦工業株式会社 Boiler system
US9388977B2 (en) 2013-02-28 2016-07-12 Miura Co., Ltd Boiler system
US9618197B2 (en) 2013-02-22 2017-04-11 Miura Co., Ltd. Boiler system
JP2018004155A (en) * 2016-06-30 2018-01-11 三浦工業株式会社 Boiler system
JP2018105518A (en) * 2016-12-22 2018-07-05 三浦工業株式会社 Boiler system
JP2018105596A (en) * 2016-12-28 2018-07-05 富士電機株式会社 Steam generation system
CN112364480A (en) * 2020-10-09 2021-02-12 新奥数能科技有限公司 Method and device for inhibiting boiler group from frequently starting and stopping under optimization algorithm

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130604A (en) * 2000-10-19 2002-05-09 Kawasaki Thermal Engineering Co Ltd Method for controlling number of boilers in continuous control of burning rate
JP2002130602A (en) * 2000-10-19 2002-05-09 Kawasaki Thermal Engineering Co Ltd Method for controlling number of boilers
JP2002130603A (en) * 2000-10-19 2002-05-09 Kawasaki Thermal Engineering Co Ltd Method for controlling number of boilers in continuous control of burning rate
JP2006220413A (en) * 2006-03-27 2006-08-24 Kawasaki Thermal Engineering Co Ltd Number control method of boilers for continuously controlling combustion amount
WO2010023994A1 (en) * 2008-08-25 2010-03-04 三浦工業株式会社 Control program, control device, and boiler system
US9568187B2 (en) 2008-08-25 2017-02-14 Miura Co., Ltd. Control program, controller, and boiler system
TWI452235B (en) * 2008-08-25 2014-09-11 Miura Kogyo Kk Control program, control device and boiler system
JP2010048533A (en) * 2008-08-25 2010-03-04 Miura Co Ltd Control program, control device, and boiler system
JP2013142476A (en) * 2012-01-06 2013-07-22 Orion Machinery Co Ltd Coupled operation method and system for chiller
JP2014115049A (en) * 2012-12-12 2014-06-26 Miura Co Ltd Boiler system
WO2014109070A1 (en) * 2013-01-08 2014-07-17 三浦工業株式会社 Boiler system
JP2014134319A (en) * 2013-01-08 2014-07-24 Miura Co Ltd Boiler system
JP5534055B1 (en) * 2013-02-15 2014-06-25 三浦工業株式会社 Boiler system
WO2014125652A1 (en) * 2013-02-15 2014-08-21 三浦工業株式会社 Boiler system
CN104508370A (en) * 2013-02-15 2015-04-08 三浦工业株式会社 Boiler system
US9163529B2 (en) 2013-02-15 2015-10-20 Miura Co., Ltd. Boiler system
US9618197B2 (en) 2013-02-22 2017-04-11 Miura Co., Ltd. Boiler system
US9388977B2 (en) 2013-02-28 2016-07-12 Miura Co., Ltd Boiler system
JP2013137191A (en) * 2013-03-06 2013-07-11 Miura Co Ltd Control program, controller, and boiler system
JP2014219119A (en) * 2013-05-01 2014-11-20 三浦工業株式会社 Boiler system
WO2014178410A1 (en) * 2013-05-01 2014-11-06 三浦工業株式会社 Boiler system
JP2014228159A (en) * 2013-05-20 2014-12-08 三浦工業株式会社 Boiler system
JP2014228263A (en) * 2013-05-27 2014-12-08 三浦工業株式会社 Boiler system
WO2014192165A1 (en) * 2013-05-27 2014-12-04 三浦工業株式会社 Boiler system
JP2013234847A (en) * 2013-07-26 2013-11-21 Miura Co Ltd Boiler system
JP2015140976A (en) * 2014-01-29 2015-08-03 三浦工業株式会社 boiler system
JP2015161426A (en) * 2014-02-26 2015-09-07 三浦工業株式会社 boiler system
JP2016061498A (en) * 2014-09-18 2016-04-25 三浦工業株式会社 Boiler system
JP2018004155A (en) * 2016-06-30 2018-01-11 三浦工業株式会社 Boiler system
JP2018105518A (en) * 2016-12-22 2018-07-05 三浦工業株式会社 Boiler system
JP2018105596A (en) * 2016-12-28 2018-07-05 富士電機株式会社 Steam generation system
CN112364480A (en) * 2020-10-09 2021-02-12 新奥数能科技有限公司 Method and device for inhibiting boiler group from frequently starting and stopping under optimization algorithm
CN112364480B (en) * 2020-10-09 2024-04-16 新奥数能科技有限公司 Method and device for restraining frequent start and stop of boiler group under optimizing algorithm

Also Published As

Publication number Publication date
JP3962137B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
JPH11132405A (en) Method and device of multiple unit control of proportional control boiler
US4672530A (en) Distributed control with universal program
JP2002130602A (en) Method for controlling number of boilers
JP2799746B2 (en) Automatic boiler unit control method
JPH0942606A (en) Once-through boiler steam temperature control device
JP2696267B2 (en) Boiler parallel operation controller
JPH0791765A (en) Heat source controller
JP2729401B2 (en) Boiler automatic unit control method
JP3357573B2 (en) Boiler unit control device
JP2000146103A (en) Multiple boilers controller and control method
JPH0344961Y2 (en)
JPS6239653B2 (en)
JP2839195B2 (en) Waste heat recovery boiler water supply control device
JPH0722563Y2 (en) Boiler equipment
JP3602167B2 (en) Operation control device for power plant
JP3733693B2 (en) Exhaust reburning plant
JPH07217802A (en) Waste heat recovery boiler
JP2583886B2 (en) Coal supply control method for boiler unit
JPH0830561B2 (en) Combustion control method corresponding to boiler load
JP3776697B2 (en) Method and apparatus for supplying steam for load in a cogeneration system
JPH0539901A (en) Method and device for automatically controlling boiler
JPH06180102A (en) Controller for amount of boiler feedwater
JPH0335562B2 (en)
JPS60126515A (en) Control of fuel gas supply pressure
JPS6260603B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

EXPY Cancellation because of completion of term