JPH11131323A - Polylactic acid fiber and its production - Google Patents

Polylactic acid fiber and its production

Info

Publication number
JPH11131323A
JPH11131323A JP29525397A JP29525397A JPH11131323A JP H11131323 A JPH11131323 A JP H11131323A JP 29525397 A JP29525397 A JP 29525397A JP 29525397 A JP29525397 A JP 29525397A JP H11131323 A JPH11131323 A JP H11131323A
Authority
JP
Japan
Prior art keywords
fiber
elastic modulus
polylactic acid
molecular weight
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29525397A
Other languages
Japanese (ja)
Other versions
JP3462977B2 (en
Inventor
Kazunori Hashimoto
和典 橋本
Shigemitsu Murase
繁満 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP29525397A priority Critical patent/JP3462977B2/en
Publication of JPH11131323A publication Critical patent/JPH11131323A/en
Application granted granted Critical
Publication of JP3462977B2 publication Critical patent/JP3462977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly biodegradable polylactic acid fiber having such high mechanical strength and elastic modulus as to be also usable as an industrial material by subjecting poly-L-lactic acid having each specific average molecular weight and optical purity to fiber manufacturing under specified conditions. SOLUTION: Poly-L-lactic acid with an average molecular weight of 50,000-100,000 and optical purity of 95.5-99.5% is put to melt spinning and then cooled and solidified once, the resulting fiber Y is passed through a cylindrical heating device 3 with an inner wall temperature of 120-170 deg.C, gathered together, oiled, and then taken up with takeup rollers 5, 6 with a surface velocity of >=3,000 m/min and wound, thus obtaining the objective polylactic acid fiber Y with a tenacity of >=4.0 g/d, initial modulus of >=60 g/d, and the elastic modulus at 10% extension of >=7 g/d.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性を有しな
がら、実用的に十分な強度と弾性率を有する繊維に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber having biodegradability and practically sufficient strength and elastic modulus.

【0002】[0002]

【従来の技術】近年、産業廃棄物が環境を汚染するのを
防止すために、生分解性(微生物分解性又は自然分解
性)の素材を用いることが注目されており、その中でも
特に脂肪族ポリエステルからなる生分解性繊維が注目さ
れている。
2. Description of the Related Art In recent years, in order to prevent industrial waste from polluting the environment, attention has been paid to the use of biodegradable (microbial or spontaneously degradable) materials. Biodegradable fibers made of polyester have attracted attention.

【0003】生分解性繊維は、生ゴミ水切りネットやコ
ンポスト用バッグのような生活資材、紙おむつや生理用
品のような衛生材料等の分野において要望が強く、開発
が望まれているが、脂肪族ポリエステルからなる生分解
性繊維は、一般に、強度や弾性率が低いものや耐熱性に
劣るものが多く、用途が限定されるという欠点がある。
また、原料ポリマーのコストが高く、工業的に安価に製
造することが困難なものが多い。
[0003] Biodegradable fibers are strongly demanded in the fields of living materials such as garbage draining nets and composting bags, and sanitary materials such as disposable diapers and sanitary articles. In general, biodegradable fibers made of polyester often have low strength and low elastic modulus and are inferior in heat resistance, and have a drawback that their applications are limited.
Further, the cost of the raw material polymer is high, and it is often difficult to produce it industrially at low cost.

【0004】ポリ乳酸は、比較的安価にポリマーが得ら
れ、実用的な強度と耐熱性の成型物を製造することが可
能な生分解性樹脂であるが、従来の溶融紡糸法で高強度
の繊維を製造するためには、重合度の高い原料を用いる
必要があり、また、操業的に安定して製造するには生産
性の低い低速の製糸方法を採用する必要があった。
Polylactic acid is a biodegradable resin from which a polymer can be obtained at relatively low cost and a molded article having practical strength and heat resistance can be produced. In order to produce a fiber, it is necessary to use a raw material having a high degree of polymerization, and in order to produce a stable operation, it is necessary to employ a low-productivity low-speed spinning method.

【0005】例えば、特開平7−305227号公報に
は、溶融時の重合度低下を防ぎ、高い分子量を保って製
糸することにより、高強度のポリ乳酸繊維を得る方法が
開示されている。しかし、この方法は、ポリエチレング
リコールを共重合する必要があり、また、紡糸と延伸を
別工程で行う生産性の低い方法でしか実施されていな
い。
For example, Japanese Patent Application Laid-Open No. 7-305227 discloses a method for obtaining a high-strength polylactic acid fiber by preventing a decrease in the degree of polymerization at the time of melting and maintaining a high molecular weight to form a yarn. However, this method requires copolymerization of polyethylene glycol, and has been practiced only with a low productivity method in which spinning and drawing are performed in separate steps.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の問題
を解決し、生分解性を有しながら、産業資材用にも供す
ることができる十分な強度と弾性率を有するポリ乳酸繊
維と、この繊維を工業的に生産性よく製造する方法を提
供することを技術的な課題とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and a polylactic acid fiber having sufficient strength and elastic modulus, which is biodegradable and can be used for industrial materials, An object of the present invention is to provide a method for industrially producing this fiber with high productivity.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、次の構成を有するものである。 (1) 平均分子量が5万〜10万、光学純度95.0〜9
9.5%のポリ−L−乳酸からなり、3000m/分以
上の捲取り速度で得られた繊維であって、強度が4.0
g/d以上、初期弾性率が60g/d以上、10%伸張
時の弾性率が7g/d以上であることを特徴とするポリ
乳酸繊維。 (2) 平均分子量5万〜10万、光学純度95.0〜9
9.5%のポリ−L−乳酸を溶融紡出し、一旦冷却固化
した後、内壁温度が120〜170℃の筒状加熱装置内
を通過させ、繊維を集束し、油剤を付与した後、表面速
度が3000m/分以上の引取りローラで引取り、捲取
ることを特徴とするポリ乳酸繊維の製造法。
The present invention has the following structure to solve the above-mentioned problems. (1) Average molecular weight of 50,000 to 100,000, optical purity of 95.0 to 9
The fiber is composed of 9.5% poly-L-lactic acid and obtained at a winding speed of 3000 m / min or more, and has a strength of 4.0.
g / d or more, an initial elastic modulus is 60 g / d or more, and a 10% elongation elastic modulus is 7 g / d or more. (2) 50,000 to 100,000 average molecular weight, 95.0 to 9 optical purity
9.5% of poly-L-lactic acid is melt-spun, once cooled and solidified, passed through a cylindrical heating device having an inner wall temperature of 120 to 170 ° C. to bundle fibers, apply an oil agent, and A method for producing polylactic acid fibers, wherein the fiber is taken up and taken up by a take-up roller having a speed of 3000 m / min or more.

【0008】[0008]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0009】本発明のポリ乳酸繊維は、L−乳酸とD−
乳酸の光学異性体の共重合体を主成分とし、このうち、
L−乳酸の光学純度が95.0〜99.5%であること
が必要である。このL体とD体の比率は、耐熱性や生分
解性に影響する要因であり、L体の純度がこの範囲より
低いと結晶性が低下し、融点が低下して耐熱性の劣った
繊維となると同時に生分解速度が高くなる。また、L体
の純度がこの範囲より高いと、結晶化が高いため分解速
度が低く、生分解性に劣った繊維となる。
The polylactic acid fiber of the present invention comprises L-lactic acid and D-lactic acid.
The main component is a copolymer of lactic acid optical isomers.
It is necessary that the optical purity of L-lactic acid is 95.0 to 99.5%. The ratio between the L-form and the D-form is a factor affecting heat resistance and biodegradability. If the purity of the L-form is lower than this range, the crystallinity is reduced, the melting point is reduced, and the fiber having poor heat resistance is deteriorated. And the biodegradation rate increases at the same time. On the other hand, if the purity of the L-form is higher than this range, the crystallization is high and the decomposition rate is low, resulting in fibers with poor biodegradability.

【0010】ポリ乳酸の平均分子量は5万〜10万の範
囲にあることが必要である。平均分子量がこの範囲より
低いと、十分な強度や弾性率を発現せず、平均分子量が
この範囲より高いと、生分解性が低下するので好ましく
ない。
It is necessary that the average molecular weight of polylactic acid is in the range of 50,000 to 100,000. If the average molecular weight is lower than this range, sufficient strength and elastic modulus will not be exhibited, and if the average molecular weight is higher than this range, the biodegradability will decrease, which is not preferable.

【0011】また、本発明の繊維は、3000m/分以
上の捲取り速度で得られた繊維であり、工業的に生産性
よく得られた繊維である。しかも、その物性は、強度が
4.0g/d以上、初期弾性率が60g/d以上、10
%伸張時の弾性率が7g/d以上と優れたものである。
そして、これらの物性を同時に満たすことにより、幅広
い用途に使用することができ、例えば、使用初期の力学
特性の要求性能が高い産業資材用途に使用することも可
能となる。
The fiber of the present invention is a fiber obtained at a winding speed of 3000 m / min or more, and is a fiber obtained with high industrial productivity. Moreover, its physical properties are as follows: strength is 4.0 g / d or more, and initial elastic modulus is 60 g / d or more.
The elastic modulus at% elongation is as excellent as 7 g / d or more.
By satisfying these physical properties at the same time, it can be used for a wide range of applications. For example, it can be used for industrial materials where the required performance of mechanical properties in the initial stage of use is high.

【0012】特に、本発明の繊維の特徴は、10%伸張
時の弾性率にある。ポリ乳酸繊維は、通常、伸張歪みの
際、一次降伏点以降の弾性率が低いため、加工工程で応
力斑を発生しやすい問題があるが、本発明の繊維は10
%伸張時の弾性率が7g/d以上と高いのでこの欠点が
改善され、初期弾性率のみならず、一次降伏点を超えた
10%伸張時においても加工に問題のない繊維である。
In particular, a feature of the fiber of the present invention resides in the elastic modulus at 10% elongation. Polylactic acid fibers usually have a low modulus of elasticity after the primary yield point during tensile strain, and thus have a problem that stress unevenness is likely to occur in the processing step.
Since the elastic modulus at% elongation is as high as 7 g / d or more, this defect is improved, and the fiber has no problem in processing not only at the initial elastic modulus but also at 10% elongation exceeding the primary yield point.

【0013】次に、本発明のポリ乳酸繊維の製造法につ
いて説明する。
Next, a method for producing the polylactic acid fiber of the present invention will be described.

【0014】本発明に使用されるポリ乳酸は、L−乳酸
とD−乳酸の光学異性体の共重合体を主成分とし、L−
乳酸の光学純度が95.0〜99.5%であることが必
要である。L体の純度がこの範囲より低いと、耐熱性の
劣った繊維しか得られず、また、L体の純度がこの範囲
より高いと、高速製糸性に劣り、本発明で採用する製造
法に適さない。
The polylactic acid used in the present invention comprises a copolymer of optical isomers of L-lactic acid and D-lactic acid as a main component.
It is necessary that the optical purity of lactic acid is 95.0 to 99.5%. When the purity of the L-form is lower than this range, only fibers having poor heat resistance can be obtained, and when the purity of the L-form is higher than this range, high-speed spinning properties are poor and the fiber is not suitable for the production method employed in the present invention. Absent.

【0015】ポリ乳酸の平均分子量は溶融吐出時に5万
〜10万の範囲にあることが必要である。平均分子量が
この範囲より低いと、十分な強度や弾性率の繊維を得る
ことができず、平均分子量がこの範囲より高いと、高速
で紡糸を行う際、糸切れが起こりやすく、本発明で採用
する製造法に適さない。なお、本発明においては、各成
分それぞれの基本特性を損なわない範囲内で、少量の無
機物や他の熱可塑性生分解性成分等を添加することがで
きる。
The average molecular weight of the polylactic acid must be in the range of 50,000 to 100,000 at the time of melting and discharging. If the average molecular weight is lower than this range, fibers having sufficient strength and elastic modulus cannot be obtained.If the average molecular weight is higher than this range, yarn breakage is likely to occur when spinning at high speed, and is employed in the present invention. Not suitable for the production method. In the present invention, a small amount of an inorganic substance or another thermoplastic biodegradable component can be added as long as the basic characteristics of each component are not impaired.

【0016】本発明の特徴は、溶融紡出し、一旦冷却固
化したポリ乳酸を、再加熱し、空気抵抗を与えた後に引
き取ることにより、配向と結晶化を促進し、通常の高速
紡糸延伸法では得られない強度、弾性率を有するポリ乳
酸繊維を得ることにある。
The feature of the present invention is that polylactic acid, which has been melt-spun and cooled and solidified once, is reheated and taken up after giving air resistance, thereby promoting orientation and crystallization. An object of the present invention is to obtain a polylactic acid fiber having an unobtainable strength and elastic modulus.

【0017】図1は,本発明のポリ乳酸繊維の製造法の
一実施態様を示す概略工程図である。図1において、紡
糸口金1からポリ乳酸繊維Yを溶融紡糸し、冷却風吹付
装置2によって、繊維を冷却固化し、筒状加熱装置3の
中を通過させる。筒状加熱装置3を通過した繊維は自然
冷却された後、油剤付与装置4により油剤付与と同時に
集束され、引取りローラ(第1ローラ)5により引取ら
れ、第2ローラ6を介して捲取装置7で捲取られる。
FIG. 1 is a schematic process diagram showing one embodiment of the method for producing a polylactic acid fiber of the present invention. In FIG. 1, a polylactic acid fiber Y is melt-spun from a spinneret 1, cooled and solidified by a cooling air blowing device 2, and passed through a cylindrical heating device 3. After the fibers that have passed through the cylindrical heating device 3 are naturally cooled, they are bundled together with the application of the oil agent by the oil agent application device 4, taken up by the take-up roller (first roller) 5, and taken up via the second roller 6. It is wound by the device 7.

【0018】上記工程において、筒状加熱装置3の内壁
温度は120〜170℃の範囲にあることが必要であ
る。温度が120℃未満になると、配向と結晶化を促進
する効果が低く、十分な強度と弾性率を有する繊維を得
ることができない。また、170℃を超えると装置内壁
に繊維が接触したときに融着することがあり、好ましく
ない。加熱装置の有効加熱長は、およそ0.6〜2.5
mが適当である。加熱長がこの範囲より短いと、配向と
結晶化を促進する効果が低下しやすく、この範囲より長
いと、加熱装置内の糸揺れが大きくなり、糸斑を誘発し
やすくなる。
In the above step, the inner wall temperature of the cylindrical heating device 3 needs to be in the range of 120 to 170 ° C. If the temperature is lower than 120 ° C., the effect of promoting orientation and crystallization is low, and it is not possible to obtain a fiber having sufficient strength and elastic modulus. On the other hand, if the temperature exceeds 170 ° C., the fibers may be fused when they come into contact with the inner wall of the apparatus, which is not preferable. The effective heating length of the heating device is approximately 0.6 to 2.5
m is appropriate. If the heating length is shorter than this range, the effect of accelerating the orientation and crystallization tends to be reduced. If the heating length is longer than this range, the yarn sway in the heating device becomes large and yarn spots are easily induced.

【0019】また、引取速度(すなわち、引取りローラ
5の表面速度)は、3000m/分以上にすることが必
要である。加熱装置内の繊維に加わる応力が高いほど、
配向と結晶化を促進する効果が大きいため、引取速度は
高速であるほど望ましく、3000m/分未満では前記
効果に欠ける。また、引取速度の上限は7000m/分
程度が好ましく、7000m/分を超えると、加熱装置
内の通過時間が短くなるうえ、繊維に加わる応力が高く
なりすぎて切断することもあるので好ましくない。
Further, the take-up speed (ie, the surface speed of the take-up roller 5) needs to be 3000 m / min or more. The higher the stress applied to the fibers in the heating device,
Since the effect of accelerating the orientation and crystallization is large, it is desirable that the take-up speed is high, and if the speed is less than 3000 m / min, the above effect is lacking. Further, the upper limit of the take-up speed is preferably about 7000 m / min, and if it exceeds 7000 m / min, the passage time in the heating device becomes short, and the stress applied to the fiber becomes too high, which is not preferable because the fiber may be cut.

【0020】引取りローラ5で引取った繊維を、そのま
ま捲取っても本発明で規定した物性を有する繊維が得ら
れるが、引き続き、第2ローラに供給し、若干の延伸又
は弛緩処理を施せば、用途に応じた物性の微調整が可能
であり、良好な捲形態を形成することもできる。その
際、第2ローラと引取りローラとの表面速度比は、0.
95〜1.20が好ましく、この範囲より低いと、捲取
り時の張力が低く、捲形態が悪くなり、この範囲より高
いと伸度が低くなりすぎ、切断に至る場合があり、好ま
しくない。
Although the fiber having the physical properties specified in the present invention can be obtained by winding the fiber taken up by the take-up roller 5 as it is, it is supplied to the second roller and subjected to a slight stretching or relaxation treatment. If it is, fine adjustment of the physical properties according to the use is possible, and a good roll form can be formed. At this time, the surface speed ratio between the second roller and the take-up roller is set to be 0.1.
It is preferably from 95 to 1.20, and if it is lower than this range, the tension at the time of winding is low, and the winding form is deteriorated. If it is higher than this range, the elongation becomes too low, which may lead to cutting, which is not preferable.

【0021】また、任意のローラ上、あるいは、ローラ
間、ローラと捲取装置の間等で熱処理を行うことも可能
であるが、第2ローラを加熱して熱処理を施し、弛緩し
ながら捲取ることが捲形態を安定させるうえでより好ま
しい。その際、第2ローラの表面温度を70〜140℃
の範囲にすることが望ましく、表面温度がこの範囲より
低いと、加熱の効果が乏しく、この範囲より高いとロー
ラ上での繊維の揺れが大きくて糸斑や切断の原因とな
り、好ましくない。
It is also possible to carry out heat treatment on any roller, between rollers, between a roller and a winding device, etc. Is more preferable for stabilizing the winding form. At this time, the surface temperature of the second roller is set to 70 to 140 ° C.
If the surface temperature is lower than this range, the effect of heating is poor, and if the surface temperature is higher than this range, the fiber sway on the roller is large, causing thread spots and cutting, which is not preferable.

【0022】本発明の製造法は、幅広い範囲の銘柄に適
応できるが、単糸繊度が0.5〜8.0d、フィラメン
ト数が10〜250本の範囲が好ましい。上記の製造法
によって得られる繊維は、3000m/分以上の高速製
糸法であるにもかかわらず、強度が4.0g/d以上、
初期弾性率が60g/d以上、10%伸張時弾性率が7g
/d以上の高強度高弾性率を有するポリ乳酸繊維とな
る。
The production method of the present invention can be applied to a wide range of brands, but preferably has a single yarn fineness of 0.5 to 8.0 d and a number of filaments of 10 to 250 filaments. The fiber obtained by the above-described production method has a strength of 4.0 g / d or more despite the high-speed spinning method of 3000 m / min or more.
Initial elastic modulus is 60 g / d or more, elastic modulus at 10% elongation is 7 g
/ D or higher polylactic acid fibers having high strength and high elastic modulus.

【0023】[0023]

【実施例】次に、本発明を実施例により具体的に説明す
る。なお、測定、評価法は次のとおりである。 (1) 引張強伸度特性 JIS L 1013に準じて測定した。 (2) 沸水収縮率 沸騰水中に15分間浸漬した後、自然乾燥し、1/30
(g/d)の荷重を掛けてその前後の長さ変化の割合を求め
た。 (3) 平均分子量 試料のクロロホルム0.4重量%溶液のGPC分析によ
る分散の数平均値とした。 (4) 生分解性 試料を土壌中に6カ月間埋設した後取り出し、引張強度
を測定して初期引張強度に対する強度保持率で評価し
た。
Next, the present invention will be described in detail with reference to examples. In addition, the measurement and evaluation methods are as follows. (1) Tensile strength and elongation properties Measured according to JIS L 1013. (2) Shrinkage of boiling water After immersion in boiling water for 15 minutes, air-dry and 1/30
(g / d) was applied to determine the ratio of change in length before and after the load. (3) Average molecular weight The number average value of the dispersion by GPC analysis of a 0.4% by weight solution of chloroform of the sample was determined. (4) Biodegradability The sample was buried in the soil for 6 months and then taken out. The tensile strength was measured and evaluated by the strength retention rate with respect to the initial tensile strength.

【0024】実施例1〜6、比較例1〜6 光学純度99.0%のポリ−L−乳酸をエクストルーダ
ー型溶融紡糸機に供給し、紡糸温度 210℃で溶融し、直
径 0.3mmの紡糸孔を36個有する口金から紡出し、15℃の
冷却風を吹き付けて繊維を冷却固化した後、内壁温度を
種々に設定した有効加熱長さ 130cmの筒状加熱装置内を
通過させ、自然冷却した後、油剤付与装置で集束と同時
に油剤を付与し、表面速度を種々に設定した引取りロー
ラにより引取り、引き続き、表面温度が110℃で表面
速度を種々に設定した第2ローラを経由して、速度を種
々に設定した捲取装置で捲取り、75d/36fのマル
チフィラメント糸を得た。製造条件と得られたマルチフ
ィラメント糸の特性値を表1、2に示す。
Examples 1 to 6 and Comparative Examples 1 to 6 Poly-L-lactic acid having an optical purity of 99.0% was supplied to an extruder type melt spinning machine, melted at a spinning temperature of 210 ° C., and spun at a diameter of 0.3 mm. After spinning out from a die having 36 holes and blowing cooling air at 15 ° C to solidify the fiber, it was passed through a cylindrical heating device with an effective heating length of 130 cm with various inner wall temperatures set and naturally cooled. Thereafter, the oil is applied simultaneously with the convergence by the oil applying device, and the oil is applied by a take-off roller having various surface velocities. Subsequently, the oil is applied via a second roller having a surface temperature of 110 ° C. and various surface velocities. Winding was performed by a winding device having variously set speeds to obtain a 75d / 36f multifilament yarn. The production conditions and the characteristic values of the obtained multifilament yarn are shown in Tables 1 and 2.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】表1から明らかなように、実施例1〜6で
得られたマルチフィラメント糸は、強度、弾性率が、い
ずれも産業資材用途にも十分供し得る値を有する繊維で
あった。
As is apparent from Table 1, the multifilament yarns obtained in Examples 1 to 6 were fibers having strength and elastic modulus which were both sufficiently usable for industrial materials.

【0028】これに対し、表2から明らかなように、比
較例1は加熱筒温度が低く、比較例3は引取り速度が低
く、比較例5は平均分子量が低いため、得られたマルチ
フィラメント糸はいずれも十分な強度、弾性率を有する
ものではなかった。また、比較例2は加熱筒温度が高す
ぎるため繊維が融着してしまい、比較例6は平均分子量
が高いため紡糸中に糸切れが多発した。比較例4は、加
熱筒を用いない従来の延伸法であるため、得られたマル
チフィラメント糸は、強度、弾性率とも不十分なもので
あった。
On the other hand, as is apparent from Table 2, Comparative Example 1 has a low heating cylinder temperature, Comparative Example 3 has a low take-off speed, and Comparative Example 5 has a low average molecular weight. None of the yarns had sufficient strength and elastic modulus. In Comparative Example 2, fibers were fused because the heating cylinder temperature was too high, and in Comparative Example 6, yarn breakage occurred frequently during spinning due to high average molecular weight. Comparative Example 4 is a conventional drawing method without using a heating tube, and thus the obtained multifilament yarn was insufficient in both strength and elastic modulus.

【0029】実施例7,8、比較例7,8 表3に示す光学純度のポリ−L−乳酸を使用し、実施例
1と同様の製造法で75d/36fのマルチフィラメン
ト糸を得た。吐出時の平均分子量はいずれも64000
であった。得られたマルチフィラメント糸の特性値と生
分解性を表3に示す。
Examples 7 and 8, Comparative Examples 7 and 8 Using poly-L-lactic acid having an optical purity shown in Table 3, a multifilament yarn of 75d / 36f was obtained in the same production method as in Example 1. The average molecular weight at the time of discharge is 64000
Met. Table 3 shows the characteristic values and biodegradability of the obtained multifilament yarn.

【0030】[0030]

【表3】 [Table 3]

【0031】表3から明らかなように、実施例7,8で
得られたマルチフィラメント糸は、いずれも実用に十分
な強度、弾性率を有すると同時に、土壌6カ月後の生分
解性も良好であった。これに対して、比較例7は、L体
の比率が低いため繊維の耐熱性が劣り、沸水中で融着し
てしまった。また、比較例8は、L体の比率が高いため
繊維の生分解性が劣り、強度の低下が少なかった。
As is clear from Table 3, the multifilament yarns obtained in Examples 7 and 8 have sufficient strength and elastic modulus for practical use, and also have good biodegradability after 6 months in soil. Met. On the other hand, in Comparative Example 7, the heat resistance of the fiber was poor due to the low ratio of the L-form, and the fiber was fused in boiling water. In Comparative Example 8, the biodegradability of the fiber was inferior because the ratio of the L-form was high, and the decrease in strength was small.

【0032】[0032]

【発明の効果】本発明によれば、産業資材用にも供する
ことができる強度と弾性率を有し、かつ、安価な生分解
性繊維が提供される。本発明のポリ乳酸繊維は、衣料用
資材として使用できる他、水産資材、農園芸資材、生活
資材、衛生材料、その他一般産業資材用として好適であ
り、使用後は微生物が存在する環境下に放置しておけば
一定期間後には完全に分解するため、この繊維を使用す
れば特別な廃棄物処理を必要とすることなく、廃棄物処
理による公害を防止することが可能となる。
According to the present invention, an inexpensive biodegradable fiber having strength and elastic modulus which can be used for industrial materials is provided. The polylactic acid fiber of the present invention can be used as a clothing material, as well as a marine material, an agricultural and horticultural material, a living material, a sanitary material, and other general industrial materials, and is left in an environment where microorganisms are present after use. If the fibers are decomposed completely after a certain period of time, the use of this fiber makes it possible to prevent pollution due to waste treatment without requiring special waste treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポリ乳酸繊維の製造法の一実施態様を
示す概略工程図である。
FIG. 1 is a schematic process chart showing one embodiment of a method for producing a polylactic acid fiber of the present invention.

【符号の説明】[Explanation of symbols]

Y ポリ乳酸繊維 1 紡糸口金 2 冷却風吹付装置 3 筒状加熱装置 4 油剤付与装置 5 引取りローラ(第1ローラ) 6 第2ローラ 7 捲取装置 Y Polylactic acid fiber 1 Spinneret 2 Cooling air blowing device 3 Cylindrical heating device 4 Oil applying device 5 Take-up roller (first roller) 6 Second roller 7 Winding device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均分子量が5万〜10万、光学純度9
5.0〜99.5%のポリ−L−乳酸からなり、300
0m/分以上の捲取り速度で得られた繊維であって、強
度が4.0g/d以上、初期弾性率が60g/d以上、
10%伸張時の弾性率が7g/d以上であることを特徴
とするポリ乳酸繊維。
An average molecular weight of 50,000 to 100,000 and an optical purity of 9
Consisting of 5.0-99.5% poly-L-lactic acid, 300
A fiber obtained at a winding speed of 0 m / min or more, having a strength of 4.0 g / d or more, an initial elastic modulus of 60 g / d or more,
A polylactic acid fiber having an elastic modulus at 10% elongation of 7 g / d or more.
【請求項2】 平均分子量5万〜10万、光学純度9
5.0〜99.5%のポリ−L−乳酸を溶融紡出し、一
旦冷却固化した後、内壁温度が120〜170℃の筒状
加熱装置内を通過させ、繊維を集束し、油剤を付与した
後、表面速度が3000m/分以上の引取りローラで引
取り、捲取ることを特徴とするポリ乳酸繊維の製造法。
2. An average molecular weight of 50,000 to 100,000 and an optical purity of 9
5.0 to 99.5% of poly-L-lactic acid is melt-spun and once cooled and solidified, passed through a cylindrical heating device having an inner wall temperature of 120 to 170 ° C. to bundle fibers and apply an oil agent. And then taking up and winding up with a take-up roller having a surface speed of 3000 m / min or more.
JP29525397A 1997-10-28 1997-10-28 Method for producing polylactic acid fiber Expired - Lifetime JP3462977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29525397A JP3462977B2 (en) 1997-10-28 1997-10-28 Method for producing polylactic acid fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29525397A JP3462977B2 (en) 1997-10-28 1997-10-28 Method for producing polylactic acid fiber

Publications (2)

Publication Number Publication Date
JPH11131323A true JPH11131323A (en) 1999-05-18
JP3462977B2 JP3462977B2 (en) 2003-11-05

Family

ID=17818205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29525397A Expired - Lifetime JP3462977B2 (en) 1997-10-28 1997-10-28 Method for producing polylactic acid fiber

Country Status (1)

Country Link
JP (1) JP3462977B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761970B2 (en) 2001-07-30 2004-07-13 Toray Industries, Inc. Poly(lactic acid) fiber
JP2008156809A (en) * 2008-02-08 2008-07-10 Toray Ind Inc Low shrinkage aliphatic polyester fiber and method for producing the same
WO2010035951A3 (en) * 2008-09-25 2010-06-10 이홍구 Method for preparing pla fiber using coffee extract waste
US8101688B2 (en) 2002-08-30 2012-01-24 Toray Industries., Inc. Polylactic acid fiber yarn package, and textile products
CN109234820A (en) * 2018-09-14 2019-01-18 安徽丰原生物材料股份有限公司 A kind of preparation method of polylactic acid short-fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761970B2 (en) 2001-07-30 2004-07-13 Toray Industries, Inc. Poly(lactic acid) fiber
US8101688B2 (en) 2002-08-30 2012-01-24 Toray Industries., Inc. Polylactic acid fiber yarn package, and textile products
JP2008156809A (en) * 2008-02-08 2008-07-10 Toray Ind Inc Low shrinkage aliphatic polyester fiber and method for producing the same
WO2010035951A3 (en) * 2008-09-25 2010-06-10 이홍구 Method for preparing pla fiber using coffee extract waste
CN109234820A (en) * 2018-09-14 2019-01-18 安徽丰原生物材料股份有限公司 A kind of preparation method of polylactic acid short-fiber
CN109234820B (en) * 2018-09-14 2023-12-19 安徽丰原生物纤维股份有限公司 Preparation method of polylactic acid short fibers

Also Published As

Publication number Publication date
JP3462977B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP4562316B2 (en) Biodegradable fiber and method for producing the same
JP3462977B2 (en) Method for producing polylactic acid fiber
JP2008057082A (en) Method for producing polylactic acid monofilament
JP3462983B2 (en) Method for producing polylactic acid fiber
JP3585663B2 (en) Method for producing biodegradable monofilament
JP2001172821A (en) Production of polyoxymethylene fiber
JP4335987B2 (en) Method for producing polylactic acid-based multifilament
JP2009185397A (en) Polylactic acid fiber, method for producing the same and fiber product
JP2000154425A (en) Production of biodegradable monofilament
JP3599310B2 (en) Polylactic acid monofilament and method for producing the same
JP2001123371A (en) Biodegradable spun-bond nonwoven fabric
JPH1161561A (en) Biodegradable highly oriented undrawn yarn, and its production
JP3614020B2 (en) Method for producing aliphatic polyester multifilament
JPH11293519A (en) Biodegradable continuous filament and its production
JP3906349B2 (en) Biodegradable composite monofilament and its use
JP4745091B2 (en) Biodegradable polyester fiber for splitting
JP2007314899A (en) Polylactic acid monofilament, method for producing the same, and application of the same
JP2002105752A (en) Bulky biodegradable yarn and method for producing the same
JP4033714B2 (en) Polylactic acid fiber
JP3615841B2 (en) Biodegradable fishing line and method for producing the same
JPH1161560A (en) Biodegradable staple fiber and its production
JP2000027029A (en) Production of low shrinkage polyester yarn having high toughness
JP2004084081A (en) Polylactic acid fiber and method for producing the same
JPH08158154A (en) Biodegradable filament and its production
JPH11302925A (en) Polylactic acid-based filament and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

EXPY Cancellation because of completion of term