JPH11131175A - 耐火用圧延形鋼およびその製造方法 - Google Patents

耐火用圧延形鋼およびその製造方法

Info

Publication number
JPH11131175A
JPH11131175A JP29435297A JP29435297A JPH11131175A JP H11131175 A JPH11131175 A JP H11131175A JP 29435297 A JP29435297 A JP 29435297A JP 29435297 A JP29435297 A JP 29435297A JP H11131175 A JPH11131175 A JP H11131175A
Authority
JP
Japan
Prior art keywords
less
rolling
steel
solid solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29435297A
Other languages
English (en)
Inventor
Hiroaki Satou
寛哲 佐藤
Koichi Yamamoto
広一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29435297A priority Critical patent/JPH11131175A/ja
Publication of JPH11131175A publication Critical patent/JPH11131175A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【課題】 建造物の構造部材に用いる耐火性と靭性の優
れたフランジを有する形鋼、例えばH形鋼を高Ti添加
とMg系酸化物を分散させた鋳片を素材とし、これを加
速冷却型制御圧延により製造する。 【解決手段】 Mg合金等の添加により鋳片中にMg系
複合酸化物を微細分散させることにより、圧延加熱時の
γの細粒化と高Ti化による高温強度の増加及び加速冷
却型制御圧延の効果を高めることにより組織微細化を行
い、耐火性の優れた圧延形鋼を製造する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、建造物の構造部材
として用いられる耐火性と靭性に優れた圧延形鋼とその
製造方法に関するものである。
【0002】
【従来の技術】建築物の超高層化、建築設計技術の高度
化などから耐火設計の見直しが建設省総合プロジェクト
により行われ、昭和62年3月に「新耐火設計法」が制
定された。この規定により、旧法令による火災時に鋼材
の温度を350℃以下にするように耐火被覆するとした
制限が解除され、鋼材の高温強度と建築物の実荷重との
兼ね合いにより、それに適合する耐火被覆方法を決定で
きるようになった。即ち、鋼材が600℃での設計高温
強度を確保できる場合はそれに見合い耐火被覆を削減で
きるようになった。
【0003】このような動向に対応し、先に特開平2−
77523号公報に記載されたような耐火性の優れた建
築用低降伏比鋼および鋼材並びにその製造方法が提案さ
れている。この先行技術の要旨は600℃での降伏点が
常温時の2/3以上となるようにMo、Nbを添加し高
温強度を向上させたものである。鋼材の設計高温強度を
600℃に設定したのは、合金元素による鋼材費の増加
分と従来鋼材を耐火被覆する施工費との兼ね合いから最
も経済的であるという知見に基づいたものである。
【0004】また、従来は鋼のAl脱酸は溶製過程の初
期段階でAlが添加され、溶鋼の脱酸と生成したAl2
3 を浮上分離し高清浄化することを目的にしていた。
即ち、如何に溶鋼の酸素濃度を下げ、鋼中の粗大な一次
脱酸酸化物個数を減らすかに技術開発の主題が置かれて
いた。
【0005】
【発明が解決しようとする課題】本発明者等は、前述の
先行技術によって製造された鋼材を各種の形鋼、特に複
雑な形状から厳しい圧延造形上の制約を有するH形鋼の
素材に適用することを試みた結果、ウエブ、フランジ、
フィレットの各部位での圧延仕上げ温度、圧下率、冷却
速度に差が生じることから、部位により組織、特にベイ
ナイト組織割合が著しく異なり、常温・高温強度、延
性、靭性がばらつき、溶接構造用圧延鋼材(JIS G3106)
等の規準に満たない部位が生じた。また、高強度化、高
靭性化のための粒内フェライトの生成による組織微細化
では、フェライトの組織割合が比較的高い成分では効果
的であるが、ベイナイトの割合が高くなると組織の微細
化が困難となる欠点があった。加えて、従来の耐火鋼で
は600℃における高温強度を保証していたが、本発明
では、建築物の耐火被覆の非被覆化の適用範囲を広げる
ことを目的として、より高温(700℃)での高温強度
を保証できる耐火鋼を開発することを課題とした。
【0006】
【課題を解決するための手段】上記の課題を解決するた
めには、圧延時の加熱温度1200〜1300℃でもγ
粒径をASTM No.で6番以上に細粒化できれば、ベイ
ナイト組織割合が高くても組織微細化が可能となる。し
たがって、この高温加熱時のγ細粒化法の開発が課題と
なる。この目的を達成するには高温で分解せず安定に存
在する、微細な析出物を分散させ、これにより成長する
γ粒界をピンニングし、γ粒成長を抑制し細粒化する方
法が考えられる。本発明は、この析出物としてMg系酸
化物およびMg系酸化物とTiNの複合析出物が効果的
であることを見出し、これらを微細晶出・析出させた鋼
を開発したことである。
【0007】本発明は従来の発想とは異なり、製鋼過程
において適正な脱酸処理を行い、溶鋼の高清浄化、溶存
酸素濃度の調整を行い、その後Tiの多量添加、最後にSi
-Mg合金及びNi-Mg 合金を用い限定した量のMgを添加
し、凝固過程における冷却制御により、組成とサイズ、
分散密度を制御した微細なMg系酸化物を鋳片に微細分散
させ、生成させた酸化物を異相析出物(TiN 等) の優先
析出サイトとし活用した。
【0008】本願出願人は先に特開平7−216496
号にかかる出願で、前記酸化物を粒内フェライト変態核
として機能させ、粒内フェライトの生成により組織を微
細化し、H形鋼の部位間の材質特性の均質化と高靭性化
を達成する技術を出願した。本発明はこの出願とは異な
り、高温安定性の高い微細なMg系酸化物(主としてM
gO)およびMg系酸化物とTiN の複合析出物を高密度
分散させ、これらの析出物を圧延加熱時の1200〜1
300℃でのγ相の粒成長を抑制するためのピンニング
サイトとして機能させ、γ相の細粒化により組織の微細
化を達成したことが最大の特徴である。この組織の微細
化によりH形鋼の部位間の材質特性の均質化と高靭性化
を達成することと、従来の溶接用鋼に添加されているT
i量より多量のTiを添加しTiNとTiPおよびTi
Cの析出強化により700℃での降伏強度がSM490
鋼のJIS規格での常温の降伏点の下限値325MPa
の2/3の218MPa以上となる高温での高強度化を
達成することを特徴としている。さらに、ベイナイト組
織での靭性を向上させるために、靭性低下の原因となる
固溶PをTiPとして固定無害化したことも本発明の更
なる特徴である。
【0009】また、製造法におけるTMCPの特徴は厚
鋼板で多く行われている低温・大圧下圧延とは異なり、
形鋼における軽圧下の熱間圧延においても効率的に組織
の細粒化が可能となるように熱間圧延パス間で水冷し、
水冷、圧延、水冷とを繰り返し、H形鋼のフランジの表
面と内部に温度差を与え、軽圧下条件下においても、よ
り高温の板厚中央部への圧下浸透を高め、α生成核とな
る加工転位を導入し、板厚中央部での組織の微細化が達
成できる圧延中水冷方法を開発した。加えて、圧延後の
γ/α変態温度域を冷却制御することにより、核生成さ
せたフェライトの粒成長を抑制する方法によればミクロ
組織の微細化ができ、高能率で製造コストの安価な耐火
用圧延形鋼の生産が可能であると言う知見に基づき前記
課題を解決したものである。その要旨とするところは、
以下のとおりである。
【0010】(1)重量% で、C:0.04〜0.10% 、Si:0.0
5 〜0.25% 、Mn:0.5〜1.6%、Mo:0.4〜0.7%、Ti:0.08 〜
0.20% 、 Mg:0.0005 〜0.0050% 、N:0.002 〜0.006%、
Al:0.005% 以下、P:0.10% 以下、O:0.002 〜0.006%、を
含み、残部がFeおよび不可避不純物からなり、かつ、
(1)式で表す固溶Ti量が0.005%〜0.030%の範囲内に
あることを特徴とする耐火用圧延形鋼。
【0011】 固溶Ti=[Ti%]−(1.5[P%]+3.4[N%]) ・・(1) (2)重量% で、C:0.04〜0.10% 、Si:0.05 〜0.25% 、
Mn:0.5〜1.6%、Mo:0.4〜0.7%、Ti:0.08 〜0.20% 、 M
g:0.0005 〜0.0050% 、N:0.002 〜0.006%、Al:0.005%
以下、P:0.10% 以下、O:0.002 〜0.006%、を含み、更
に、Ni:1% 以下、Cu:1% 以下、Cr:0.5% 以下、Nb:0.03%
以下、V:0.1% 以下のいずれかの1種または2種以上を
含有し残部がFeおよび不可避不純物からなり、かつ、
(1)式で表す固溶Ti量が0.005%〜0.030%の範囲内に
あることを特徴とする耐火用圧延形鋼。
【0012】 固溶Ti=[Ti%]−(1.5[P%]+3.4[N%]) ・・(1) (3)耐火用圧延形鋼中に大きさ3μm 以下のMg系酸
化物を50個/mm2以上含有することを特徴とする(1)
または(2)記載の耐火用圧延形鋼。 (4)重量% で、C:0.04〜0.10% 、Si:0.05 〜0.25% 、
Mn:0.5〜1.6%、Mo:0.4〜0.7%、N:0.002 〜0.006%、 A
l:0.005% 以下、P:0.10% 以下、を含み、残部がFeおよ
び不可避不純物からなる溶鋼の酸素量を重量%で0.003
〜0.010%に調整し、次いで(1)式で表す固溶Ti量が0.
005%〜0.030%の範囲内になるようにTi:0.08 〜0.20% を
添加し、最後にMg:0.0005 〜0.0050% を順次添加して成
分調整した溶鋼を鋳造し、圧延することを特徴とする耐
火用圧延形鋼の製造方法。
【0013】 固溶Ti=[Ti%]−(1.5[P%]+3.4[N%]) ・・(1) (5)重量% でC:0.04〜0.10% 、Si:0.05 〜0.25% 、M
n:0.5〜1.6%、Mo:0.4〜0.7%、N:0.002 〜0.006%、 Al:
0.005% 以下、P:0.10% 以下、を含み、更に、Ni:1% 以
下、Cu:1% 以下、Cr:0.5% 以下、Nb:0.03%以下、V:0.1
% 以下のいずれかの1種または2種以上を含有し、残部
がFeおよび不可避不純物からなる溶鋼の酸素量を重量%
で0.003 〜0.010%に調整し、次いで(1)式で表す固溶
Ti量が0.005%〜0.030%の範囲内になるようにTi:0.08 〜
0.20% を添加し、最後にMg:0.0005 〜0.0050% を順次添
加して成分調整した溶鋼を鋳造し、圧延することを特徴
とする耐火用圧延形鋼の製造方法。
【0014】 固溶Ti=[Ti%]−(1.5[P%]+3.4[N%]) ・・(1) (6)1200〜1300℃の温度域に再加熱した後に鋳片の圧
延を開始し、圧延工程で形鋼のフランジ表面温度を700
℃以下に水冷し、以降の圧延パス間の復熱過程で圧延す
る水冷・圧延工程を一回以上繰り返し圧延し、圧延終了
後に0.5 〜10℃/sの冷却速度で700 〜400 ℃まで冷却し
放冷することを特徴とする(4)または(5)記載の耐
火用圧延形鋼の製造方法。
【0015】
【作用】鋼材の高温強度は鉄の融点のほぼ1/2 の温度の
700 ℃以下では常温での強化機構とほぼ同様であり、
1)フェライト結晶粒径の微細化、2)合金元素による
固溶体強化、3)硬化相による分散強化、4)微細析出
物による析出強化等によって支配される。一般に、高温
強度の上昇にはMo、Crの添加による析出強化と転位
の消失抑制による高温軟化抵抗を増加させることにより
達成されている。しかし、Mo、Crの添加は著しく焼
入性を上昇させ、添加なしでのフェライト+パーライト
組織から硬化相のベイナイト組織に変化させる。また、
ベイナイト組織を優先生成する成分系鋼を圧延H形鋼に
適用した場合は、その特異な形状からウェブ、フラン
ジ、フィレットの各部位で、圧延仕上げ温度、圧下率、
冷却速度に差を生じるため、各部位間で生成するベイナ
イト組織の割合が大きく変化する。この結果、部位によ
り常温・高温強度、延性、靭性が異なった値となり部位
間でのばらつきとなる。また、部位によっては規準に満
たない特性を示す部位が生じる。加えて、これらの元素
の添加により溶接部を著しく硬化させ、溶接熱影響部の
靭性を低下させる。本発明の特徴は、製鋼工程におい
て、溶鋼酸素の調整、脱酸元素の選択と添加手順の適正
化により、鋳片中に多数の微細なMg系酸化物およびM
g系酸化物とTiN の複合析出物を分散させることによ
り、形鋼圧延での高温加熱条件下においてもγ相の粗粒
化を抑制すること、および高Ti添加により高温強度の
確保とPによる脆化を低減する効果を有する鋳片を製造
することにある。この鋳片を素材とすることにより、高
温加熱・圧延によっても組織の微細化が達成でき、耐火
性・靭性に優れた形鋼の製造が可能となる。加えて本発
明では、熱間圧延工程において、熱間圧延パス間でフラ
ンジ表面を水冷し、その復熱時に圧延することを繰り返
すことによりフランジの板厚中心部に圧下浸透効果を付
与し、この部位においてもTMCPによる組織微細化効
果を高め、この組織微細化によりH形鋼の各部位におけ
る母材の機械特性を向上させるとともにバラツキを低減
し均質化を達成するものである。
【0016】以下に本発明形鋼の成分範囲と制御条件の
限定理由について述べる。Cは、鋼を強化するために添
加するもので、0.04% 未満では構造用鋼として必要な強
度が得られない。また、ベイナイト組織鋼においては0.
10% を超える過剰の添加は、高炭素島状マルテンサイト
を生成し、母材靭性、耐溶接割れ性、溶接熱影響部(以
下HAZと略記)靭性などを著しく低下させるので、下
限を0.04%、上限を0.10% とした。
【0017】Siは、母材の強度確保、溶鋼の脱酸など
に必要であるが、0.25% を超えるとHAZ内に硬化組織
の高炭素島状マルテンサイトを生成し、溶接継手部靭性
を著しく低下させる。また、0.05% 未満では溶鋼の予備
脱酸が十分にできないためSi含有量を0.05〜0.25% の
範囲に限定した。Mnは母材の強度、靭性の確保には0.
5%以上の添加が必要であるが、溶接部の靭性、割れ性な
どに対する許容濃度の上限から1.6%とした。
【0018】Moは、母材強度および高温強度の確保に
有効な元素である。0.4%未満ではMo炭化物(Mo2C)の
析出が不十分で強化作用を発揮できないため十分な高温
強度が確保できず、0.7%超では、焼入性の上昇により母
材及びHAZが過剰に硬化し、靭性が劣化するため0.4
〜0.7%に限定した。Tiは、母材の常温強度・高温強度
の確保および靭性向上に重要な元素である。0.08% 未満
ではTiN、TiPとTiCの析出が十分ではなく、ま
た、0.2%を超えると粗大なTiNを生成し、靭性劣化お
よびUST欠陥を生じるためTi:0.08 〜0.20% に限定し
た。加えて、固溶Ti=[Ti%]−(1.5[P%]
+3.4[N%])で表す固溶Ti量を0.005%〜0.030%
の範囲内に限定した。この理由は、この固溶Ti量が0.
005%未満では、TiN、TiP、TiCを十分に生成で
きなく、また、0.030%を超える過剰の固溶Tiが母相の
靭性を著しく劣化させるためにこの式で限定した。
【0019】Mg添加に使用したMg合金はSi-Mg-Al及び
Ni-Mg である。Mg合金を用いた理由は合金化によりM
g含有濃度を低減し、溶鋼への添加時の脱酸反応を抑制
し、添加時の安全性の確保とMgの歩留を向上させるた
めである。Mgを0.0005〜0.005%に限定するのは、Mg
も強力な脱酸元素であり、晶出したMg酸化物は溶鋼中
で容易に浮上分離されるため0.005%を超えて添加して
も、これ以上は歩留まらないため上限を0.005%とした。
また、0.0005% 未満では目的のMg系酸化物の分散密度
が不足するため下限を0.0005% とした。なお、ここでの
Mg系酸化物は、主にMgOと表記しているが、電子顕
微鏡解析などによると、この酸化物はTi、微量のAl
および不純物として含まれているCaなどとの複合酸化
物を形成している。
【0020】Nは、α相中に固溶し、強度を上昇させる
が、上部ベイナイト組織では、高炭素島状マルテンサイ
トを生成し靭性を劣化させるので、固溶Nはできるだけ
低減する必要がある。しかし、本発明でのNはTiと化
合させ鋼中にTiNを微細析出させ、固溶Nを低減させ
た上で、TiNによる結晶の粒成長を抑制し組織微細化
を達成させるために添加している。従って、この効果の
発現には、N量が0.002%未満ではTiNの析出量が不足
し、0.006%超では析出量は十分となるが、粗大なTiN
が析出し、靭性を損ねるのでN:0.002 〜0.006%に限定
した。
【0021】Alを0.005%以下としたのは、Alは強力
な脱酸元素であり、0.005%超の含有では、M gOの生成
が阻害され、微細な分散ができないため0.005%以下に制
限した。次いで、成分を調整した溶鋼の酸素量を重量%
で0.003 〜0.010%に調整するのは、溶鋼の高清浄化およ
び鋳片中に微細なMg系酸化物を晶出させるために行う
ものである。この溶鋼の[O] 濃度が0.003%未満では微細
な酸化物が減少し、圧延再加熱時のγ細粒化ができな
い。一方、0.010%を超える場合は、他の条件を満たして
いても、酸化物は3μm以上の大きさに凝集粗大化し、
脆性破壊の起点となり、靭性の劣化をまねくため、溶鋼
の[O] 濃度を重量%で0.003 〜0.010%に限定した。
【0022】この溶鋼の酸素量の調整は酸素量が0.010%
を超える場合は、真空脱ガス、Al、Si、Mg添加に
より0.010%以下に低減し、0.003%未満の場合は、酸化鉄
を添加し増加させる方法で行った。 次に上述の溶鋼に
Ti、Mgと順次添加するのは、Mgは強力脱酸元素で
あり、先に生成したTi酸化物とMgを反応させ酸素を
奪い微細なMgOを形成させるためである。
【0023】さらに、Mg合金の添加により重量%でMg:
0.001〜0.005%に調整した溶鋼を後述する一定の鋳造冷
却速度で鋳込む。Pは、耐蝕性を向上させ、鋼の強化に
も寄与するが、靭性を劣化させるので、通常は精練によ
り極力低減している。ここでは、このPをTiPとして
析出強化に利用するものであるが、0.10% を超える添加
では、過剰な固溶Pにより靭性劣化を生じるため上限を
0.10% に限定した。また、下限については、TiPを析
出させるためには、0.02% を超える含有が望ましい。た
だし、通常の精練工程を経た鋳片には、0.03% 程度のP
が含有されている。
【0024】不可避不純物として含有するSについて
は、それらの量を特に限定しないが凝固偏析による溶接
割れ、靭性の低下を生じるので、極力低減すべきであり
S量は0.01% 未満に制限することが望ましい。上述した
元素に加えて、本発明においては母材強度の上昇、およ
び母材の靭性向上の目的で、Ni、Cu、Cr、Nb、
Vの1種または2種以上を含有することができる。
【0025】Crは、焼入性の向上により母材の強化に
有効である。しかし、1.0%を超える過剰の添加は靭性お
よび硬化性の観点から有害となるため上限を1.0%とし
た。Ni、Cuは、母材の強靭性を高める極めて有効な
元素であるが1.0%を超える添加は合金コストを増加させ
経済的でないので上限を1.0%とした。Nbは、Nb炭窒
化物の析出による強化と焼入性の上昇による強化を有
し、常温・高温強度の増加を目的に添加される。ただ
し、Nb:0.03%越える添加では、粗大なNbTi炭窒化物
を生成し、母材及び溶接部靭性を低下させるために 0.0
3%以下に制限した。
【0026】Vは、微量添加により圧延組織を微細化で
き、バナジン炭窒化物の析出により強化することから低
合金化でき溶接特性を向上できる。しかしながら、Vの
過剰な添加は溶接部の硬化や、母材の高降伏点化をもた
らすので、含有量の上限を0.1%とした。成分調整を完了
した溶鋼を鋳込む際の冷却速度は、Mg系酸化物粒子の
個数の増加とその粒成長を抑制するため、鋳込み開始か
ら900 ℃までの冷却速度を0.5〜20℃/sで冷却するのが
望ましい。すなわち、過冷却により晶出する複合酸化物
の核生成数を増加させると同時に冷却中の粒成長を抑制
し、大きさ3μm以下にした酸化物を鋳片に50個/m
2 以上含有させるために行うものである。この温度間
の冷却速度が0.5℃/s未満の緩冷却では複合酸化物
は凝集粗大化し、50個/mm2 未満となり靭性、延性
を低下させるからである。一方、冷却速度の上限は現状
の鋳造技術での冷却速度の限界である20℃/s以下と
する。 次に、鋳片中にMg系酸化物およびMg系酸化物が
50個/mm2 以上含む必要がある理由について述べ
る。製品の材質特性は製鋼、鋳造工程に支配される先天
的因子の鋳片の凝固組織、成分偏析、本発明の微細複合
酸化物、析出物等と圧延、TMCP、熱処理工程等によ
り支配される後天的因子のミクロ組織により決定され
る。当然、この因子が含まれた鋳片の性質は後の工程に
おいても継承される。本発明の特徴は、この鋳片の先天
的因子の1つを制御することにあり、鋳片中に高温での
γ粒成長の抑制機能を発揮する微細なMg系酸化物を分
散晶出させることにある。これらの粒子の分散個数が5
0個/mm2 未満では、1200〜1300℃加熱にお
けるγ粒径がASTM No.6番以上の細粒を得ることは
できないため下限を50個/mm2 とする。
【0027】なお、Mg系酸化物個数はX線マイクロア
ナライザー(EPMA)で測定し決定したものであり、
またこの分散状態は圧延後の鋼材においても変わらな
い。上記の処理を経た鋳片は、次いで1200〜130
0℃の温度域に再加熱する。この温度域に再加熱温度を
限定したのは、熱間加工による形鋼の製造には塑性変形
を容易にするため1200℃以上の加熱が必要であり、
かつV、Nb、Moなどの元素を十分に固溶させる必要
があるため再加熱温度の下限を1200℃とした。その
上限は加熱炉の性能、経済性から1300℃とした。
【0028】熱間圧延のパス間で水冷し、圧延中に一回
以上、フランジ表面温度を700℃以下に冷却し、次の
圧延パス間の復熱過程で圧延する水冷・圧延工程を1回
以上繰り返し行うとしたのは、圧延パス間の水冷によ
り、フランジの表層部と内部とに温度差を付与し、軽圧
下条件においても内部への加工歪みを浸透させるため
と、水冷により短時間で低温圧延を実現させTMCPを
効率的に行うためである。フランジ表面温度を700℃
以下に冷却した後、復熱過程で圧延するのは、仕上げ圧
延後の加速冷却による表面の焼入れ硬化を抑制し厚み方
向の硬さ分布を均一にさせるために行うものである。そ
の理由は、フランジ表面温度を700℃以下に冷却すれ
ば、表層部では、一旦γ/α変態温度を切り、次の圧延
までに表層部は復熱昇温し、γ/αの二相共存温度域で
の加工となり、γ細粒化と加工された微細αとの混合組
織を形成する。これにより表層部の焼入性は著しく低減
でき、加速冷却により生じる表面層の焼入れ硬化を抑制
できるからである。
【0029】また、圧延終了後、引続き、0.5〜10
℃/sの冷却速度で700〜400℃まで冷却し放冷す
るとしたのは、加速冷却によりフェライトの粒成長抑制
とベイナイト組織を微細化し高強度・高靭性を得るため
である。次いで、加速冷却を700〜400℃で停止す
るのは、700℃を超える温度で停止した場合は、部分
的にAr1 点以上となりγ相を残存し、これを核にフェラ
イトが成長し粗粒化するため加速冷却の停止温度を70
0℃以下とした。また、400℃未満の冷却では、その
後の放冷中にベイナイト相のラス間に生成する高炭素島
状マルテンサイトが、冷却中に焼戻されセメンタイトを
析出することにより分解できず、硬化相として存在する
ことになる。この高炭素島状マルテンサイトは脆性破壊
の起点として作用し、靭性低下を招く。これらの理由に
より、加速冷却の停止温度を700〜400℃に限定し
た。
【0030】
【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を調整後、Ti、次い
でMg合金を添加し、連続鋳造により250 〜300mm 厚鋳
片に鋳造した。鋳片の冷却速度はモールド下方の二次冷
却帯の水量と鋳片の引き抜き速度の選択によりおよそ5
℃/sに制御した。該鋳片を加熱し、粗圧延工程の図示
は省略するが、図1に示すユニバーサル圧延装置列でH
形鋼に圧延した。圧延パス間水冷は中間ユニバーサル圧
延機4の前後に水冷装置5aを設け、フランジ外側面の
スプレー冷却とリバース圧延の繰り返しにより行い、圧
延後の加速冷却は仕上げユニバーサル圧延機6で圧延終
了後にその後面に設置した冷却装置5bでフランジ外側
面をスプレー冷却した。
【0031】機械特性は図2に示す、フランジ2の板厚
2 の中心部(1/2 ・t2)でフランジ幅全長(B) の1/4,
1/2 幅(1/4・B, 1/2・B)から、採集した試験片を用い求
めた。なお、これらの箇所についての特性を求めたの
は、フランジ 1/4・F 部はH形鋼の平均的な機械特性を
示し、フランジ 1/2・F 部はその特性が最も低下するの
で、これらの2箇所によりH形鋼の機械試験特性を代表
できると判断したためである。
【0032】表1、表3には、本発明鋼及び比較鋼の化
学成分値を、表2、表4には、これらの鋼の圧延中の水
冷回数および圧延仕上げ温度を示す。
【0033】
【表1】
【0034】
【表2】
【0035】
【表3】
【0036】
【表4】
【0037】次いで、表5、表6には、これらのH形鋼
の機械試験特性値を示す。なお、圧延加熱温度は130
0℃に揃えた。この温度に設定したのは、一般的に加熱
温度の低下によりγ粒は細粒化し、機械試験特性を向上
させることは周知であり、高温加熱条件では機械特性の
最低値を示すと推定され、この値がそれ以下の加熱温度
での機械試験特性を代表できると判断したためである。
また、各表で下線を付した数値は本発明の範囲外であ
る。
【0038】
【表5】
【0039】
【表6】
【0040】表5、6に示すように、本発明によるH形
鋼1〜5、A1〜A3では、SM490級鋼でのJIS規格
の降伏強度の下限値+120N/mm2以内(YP=325〜445N/m
m2)に制御され、しかも、降伏比(YP/TS )も0.8 以下
の低YR値を満たし、抗張力(前記JISG 3106)
及び700℃での降伏強度が220N/mm2以上を満たしてい
る。シャルピー衝撃吸収エネルギー値についても−10
℃で47(J) 以上でありJIS規格値を十分に満たして
いる。
【0041】一方、比較鋼のH形鋼6では、固溶Ti=
[Ti%]−(1.5[P%]+3.4[N%])で表
される固溶Ti量が0.030%を超え、過剰固溶Tiが母材
の靭性を劣化させている。逆に、H形鋼7では、固溶T
i量が0.005%未満でかつO量が0.007%と上限を超え、H
形鋼8では、Tiが0.08% 未満で、それぞれTiN、T
iP、TiCの生成が十分でなく、700℃での高温強
度を達成できない。また、H形鋼9はTiが0.20% を超
え、粗大なTiNを生成、靭性が劣化する。
【0042】H形鋼10では、Mg量が不足し、Mg酸
化物の生成個数が不足し、γ粒径が粗大となり、組織微
細化が達成できず所望する高温強度、靭性値を得ること
ができない。比較鋼のH形鋼A4についても、固溶Ti
量が0.005%未満で、高温強度を得ることができず、H形
鋼A6は、固溶Ti量が0.030%を超え、所望靭性値を得
ることができない。
【0043】H形鋼A5では、圧延中の水冷がなされて
いず、十分な組織微細化が達成できず、高温強度、靭性
とも目標値を達成できない。即ち、本発明の製造法の要
件が総て満たされた時に、表5、6に示されるH形鋼1
〜5、A1〜A3のように、圧延形鋼の機械試験特性の
最も保証しにくいフランジ板厚1/2,幅1/2 部においても
十分な常温・高温強度、低温靭性を有する、耐火性及び
靭性の優れた圧延形鋼の生産が可能になる。なお、本発
明が対象とする圧延形鋼は上記実施例のH形鋼に限らず
I形鋼、山形鋼、溝形鋼、不等辺不等厚山形鋼等のフラ
ンジを有する形鋼にも適用できることは勿論である。
【0044】
【発明の効果】本発明による圧延形鋼は機械試験特性の
最も保証しにくいフランジ板厚1/2,幅1/2 部においても
十分な強度、靭性を有し、高温特性に優れ、耐火材の被
覆を大幅に省略できる、優れた耐火性及び靭性を持つ形
鋼が圧延ままで製造可能になり、施工コスト低減、工期
の短縮による大幅なコスト削減が図られ、大型建造物の
信頼性向上、安全性の確保、経済性等の産業上の効果は
極めて顕著なものがある。
【図面の簡単な説明】
【図1】本発明法を実施する装置配置例の略図である。
【図2】H形鋼の断面形状および機械試験片の採取位置
を示す図である。
【符号の説明】
1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 5b…仕上げ圧延機後面冷却装置 6…仕上げ圧延機
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI E04C 3/04 E04C 3/04

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 重量% で、 C:0.04〜0.10% 、 Si:0.05 〜0.25% 、 Mn:0.5〜1.6%、 Mo:0.4〜0.7%、 Ti:0.08 〜0.20% 、 Mg:0.0005 〜0.0050% 、 N:0.002 〜0.006%、 Al:0.005% 以下、 P:0.10% 以下、 O:0.002 〜0.006%、 を含み、残部がFeおよび不可避不純物からなり、かつ、
    (1)式で表す固溶Ti量が0.005%〜0.030%の範囲内に
    あることを特徴とする耐火用圧延形鋼。 固溶Ti=[Ti%]−(1.5[P%]+3.4[N%]) ・・(1)
  2. 【請求項2】 重量% で、 C:0.04〜0.10% 、 Si:0.05 〜0.25% 、 Mn:0.5〜1.6%、 Mo:0.4〜0.7%、 Ti:0.08 〜0.20% 、 Mg:0.0005 〜0.0050% 、 N:0.002 〜0.006%、 Al:0.005% 以下、 P:0.10% 以下、 O:0.002 〜0.006%、 を含み、更に、Ni:1% 以下、Cu:1% 以下、Cr:0.5% 以
    下、Nb:0.03%以下、V:0.1% 以下のいずれかの1種また
    は2種以上を含有し、残部がFeおよび不可避不純物から
    なり、かつ、(1)式で表す固溶Ti量が0.005%〜0.03
    0%の範囲内にあることを特徴とする耐火用圧延形鋼。 固溶Ti=[Ti%]−(1.5[P%]+3.4[N%]) ・・(1)
  3. 【請求項3】 耐火用圧延形鋼中に大きさ3μm 以下の
    Mg系酸化物を50個/mm2以上含有することを特徴とす
    る請求項1または2記載の耐火用圧延形鋼。
  4. 【請求項4】 重量% で、 C:0.04〜0.10% 、 Si:0.05 〜0.25% 、 Mn:0.5〜1.6%、 Mo:0.4〜0.7%、 N:0.002 〜0.006%、 Al:0.005% 以下、 P:0.10% 以下、 を含み、残部がFeおよび不可避不純物からなる溶鋼の酸
    素量を重量%で0.003〜0.010%に調整し、次いで(1)
    式で表す固溶Ti量が0.005%〜0.030%の範囲内になるよう
    にTi:0.08 〜0.20% を添加し、最後にMg:0.0005 〜0.00
    50% を順次添加して成分調整した溶鋼を鋳造し、圧延す
    ることを特徴とする耐火用圧延形鋼の製造方法。 固溶Ti=[Ti%]−(1.5[P%]+3.4[N%]) ・・(1)
  5. 【請求項5】 重量% で、 C:0.04〜0.10% 、 Si:0.05 〜0.25% 、 Mn:0.5〜1.6%、 Mo:0.4〜0.7%、 N:0.002 〜0.006%、 Al:0.005% 以下、 P:0.10% 以下、 を含み、更に、Ni:1% 以下、Cu:1% 以下、Cr:0.5% 以
    下、Nb:0.03%以下、V:0.1% 以下のいずれかの1種また
    は2種以上を含有し、残部がFeおよび不可避不純物から
    なる溶鋼の酸素量を重量%で0.003 〜0.010%に調整し、
    次いで(1)式で表す固溶Ti量が0.005%〜0.030%の範囲
    内になるようにTi:0.08 〜0.20% を添加し、最後にMg:
    0.0005 〜0.0050% を順次添加して成分調整した溶鋼を
    鋳造し、圧延することを特徴とする耐火用圧延形鋼の製
    造方法。 固溶Ti=[Ti%]−(1.5[P%]+3.4[N%]) ・・(1)
  6. 【請求項6】 1200〜1300℃の温度域に再加熱した後に
    鋳片の圧延を開始し、圧延工程で形鋼のフランジ表面温
    度を700 ℃以下に水冷し、以降の圧延パス間の復熱過程
    で圧延する水冷・圧延工程を一回以上繰り返し圧延し、
    圧延終了後に0.5 〜10℃/sの冷却速度で700 〜400 ℃ま
    で冷却し放冷することを特徴とする請求項4または5記
    載の耐火用圧延形鋼の製造方法。
JP29435297A 1997-10-27 1997-10-27 耐火用圧延形鋼およびその製造方法 Withdrawn JPH11131175A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29435297A JPH11131175A (ja) 1997-10-27 1997-10-27 耐火用圧延形鋼およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29435297A JPH11131175A (ja) 1997-10-27 1997-10-27 耐火用圧延形鋼およびその製造方法

Publications (1)

Publication Number Publication Date
JPH11131175A true JPH11131175A (ja) 1999-05-18

Family

ID=17806607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29435297A Withdrawn JPH11131175A (ja) 1997-10-27 1997-10-27 耐火用圧延形鋼およびその製造方法

Country Status (1)

Country Link
JP (1) JPH11131175A (ja)

Similar Documents

Publication Publication Date Title
KR101563929B1 (ko) 낮은 용접 크렉 감도와 800MPa의 항복 강도를 갖는 강판 및 그 제조 방법
JP2760713B2 (ja) 耐火性及び靱性の優れた制御圧延形鋼の製造方法
JP2661845B2 (ja) 含オキサイド系耐火用形鋼の制御圧延による製造方法
JP2001003136A (ja) 高強度高靱性圧延形鋼とその製造方法
WO2006118339A1 (ja) 耐火用鋼材およびその製造方法
JP2007284712A (ja) 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
JP3699670B2 (ja) 低温靱性に優れた高強度鋼板の製造方法
JP2579841B2 (ja) 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法
JP5008879B2 (ja) 強度および低温靭性の優れた高張力鋼板および高張力鋼板の製造方法
CN113604736B (zh) 一种屈服强度800MPa级高强度中厚板及其制备方法
JP3397271B2 (ja) 耐火用圧延形鋼およびその製造方法
JPH0483821A (ja) 耐火性及び溶接部靭性の優れたh形鋼の製造方法
JP3285732B2 (ja) 耐火用圧延形鋼およびその製造方法
JPH10204572A (ja) 700℃耐火圧延形鋼およびその製造方法
JP3472017B2 (ja) 耐火圧延形鋼およびその製造方法
JP3181448B2 (ja) 含酸化物分散鋳片及びその鋳片による靱性の優れた圧延形鋼の製造方法
JP3241199B2 (ja) 酸化物粒子分散鋳片及びその鋳片を素材とする靭性の優れた圧延形鋼の製造方法
JP3426425B2 (ja) 耐火圧延形鋼用鋳片およびそれを素材とする耐火用圧延形鋼の製造方法
JP3004155B2 (ja) 靭性の優れた形鋼の製造方法
JPH04157117A (ja) 母材および溶接部靭性の優れた圧延形鋼の製造方法
JP3107698B2 (ja) 強度・靱性および耐火性の優れたフランジを有する形鋼の製造方法
JP3285731B2 (ja) 耐火用圧延形鋼およびその製造方法
JP3241198B2 (ja) 耐火用酸化物粒子分散鋳片及びこの鋳片を素材とした耐火用圧延形鋼の製造方法
JPH11131175A (ja) 耐火用圧延形鋼およびその製造方法
JPH05132716A (ja) 靭性の優れた圧延形鋼の製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104