JPH11131165A - Heat treated type aluminum alloy for superplastic forming - Google Patents

Heat treated type aluminum alloy for superplastic forming

Info

Publication number
JPH11131165A
JPH11131165A JP9292977A JP29297797A JPH11131165A JP H11131165 A JPH11131165 A JP H11131165A JP 9292977 A JP9292977 A JP 9292977A JP 29297797 A JP29297797 A JP 29297797A JP H11131165 A JPH11131165 A JP H11131165A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
superplastic
superplastic forming
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9292977A
Other languages
Japanese (ja)
Inventor
Makoto Saga
誠 佐賀
Masao Kikuchi
正夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9292977A priority Critical patent/JPH11131165A/en
Publication of JPH11131165A publication Critical patent/JPH11131165A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to perform, under the conditions more relaxed than heretofore, practical superplastic forming of a heat treated type aluminum alloy capable of increasing strength by the application of T6 treatment, etc., after forming. SOLUTION: This aluminum alloy is a composition which consists of, by weight, 0.3-1.5% Mg, 0.4-2.0% Si, and the balance Al with inevitable impurities and the content of Fe among the inevitable impurities is regulated to <=0.15%, Further, the average crystalline grain size of this aluminum alloy is regulated to 15-120 μm. Moreover, in the region where strain rate (ε')(s<-1> ) and forming temp. T(K) satisfy ln(ε')<-65+10ln(T) [where ε'>=10<-4> s<-1> and T=673 to 853 deg.K], elongation is regulated to >=150%. Arbitrarily, one or >=2 kinds among <=0.4% Mn, <=0.1% Cr, <=0.1% Zr, <=0.1% V, <=0.1% Ti, and <=0.05% B can be incorporated, and further, <=0.8% Cu can be incorporated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超塑性成形用に適
した熱処理型アルミニウム合金に関する。
[0001] The present invention relates to a heat-treated aluminum alloy suitable for superplastic forming.

【0002】[0002]

【従来の技術】超塑性現象は、伸びが通常の加工条件で
は得られない程大きく、かつ、変形応力も小さいことが
特徴とされている。そこで近年それらの特徴を利用した
超塑性合金実用化のための研究開発が盛んに行われてい
る。特に、アルミニウム合金に関しては、軽量性の観点
から積極的に開発が行われており、なかでも5000系
合金は適当な強度とともに耐食性や表面処理性に優れて
いることから注目され、実用化されている合金もある。
2. Description of the Related Art The superplastic phenomenon is characterized in that elongation is so large that it cannot be obtained under ordinary working conditions and deformation stress is small. In recent years, research and development for practical use of superplastic alloys utilizing these features have been actively conducted. In particular, aluminum alloys are being actively developed from the viewpoint of lightness, and among them, 5000 series alloys have been attracting attention because they have excellent strength and excellent corrosion resistance and surface treatment properties, and have been put to practical use. Some alloys are available.

【0003】ところで、超塑性現象を発現させるための
条件としては、(1)安定で微細な等軸結晶粒(〜10
μm)を有する合金を、(2)加熱温度TはT>0.5
m(融点の絶対温度)、(3)低いひずみ速度(10
-4-1〜)での加工などが適切であると一般的に言われ
ている(例えば、大澤、西村:軽金属、39−10(1
989)、P.765−775など)。そこで、これま
でには、結晶粒を微細化すること、高温での加工に際し
ても熱的に安定な組織にすること、延性を阻害するキャ
ビティの発生を抑えることなどを指針として、合金開発
が行われてきている。
[0003] By the way, the conditions for manifesting the superplastic phenomenon include (1) stable and fine equiaxed crystal grains (-10 to 10);
μm), (2) the heating temperature T is T> 0.5
T m (absolute temperature of melting point), (3) low strain rate (10
And processing at -4 s -1 ~) is generally said to be suitable (e.g., Osawa, Nishimura: light metal, 39-10 (1
989), p. 765-775). So far, alloy development has been conducted based on the guidelines of refining crystal grains, making the structure thermally stable even at high temperatures, and suppressing the occurrence of cavities that impair ductility. Have been

【0004】従来、超塑性加工には、結晶粒径を微細に
かつ均一にするための製造条件には制約が多く、また加
工についても低ひずみ速度での加工が要求されてきた。
すなわち、超塑性現象の実用化に対しては、特開昭57
−76145号公報に開示されているように合金として
特殊な成分系や、また、特開昭58−81957号公報
に開示のように特殊な製造条件を必須とするものであ
り、製造コスト面からも望ましいものではなかった。ま
た、加工条件に関しても、東:軽金属、39−11(1
989)、P.751−764に記載のように、低ひず
み速度が必要であることから生産性に対しても問題があ
った。
Conventionally, in superplastic working, there are many restrictions on manufacturing conditions for making the crystal grain size fine and uniform, and processing at a low strain rate has also been required.
That is, for practical use of the superplastic phenomenon, Japanese Patent Laid-Open No.
As disclosed in JP-A-76145, a special component system as an alloy and special production conditions as disclosed in JP-A-58-81957 are essential. Was also not desirable. Regarding the processing conditions, East: Light Metal, 39-11 (1
989), p. As described in U.S. Pat. No. 751-764, there is a problem in productivity because a low strain rate is required.

【0005】しかし、超塑性成形に際して、実用的には
500%や1000%といったような非常に大きな伸び
が要求されることはまれであり、200%程度の伸びが
達成できれば十分である場合が多いことに着目し、発明
者らは特殊な条件を採用せずに製造が容易で、かつ、生
産性に優れた超塑性成形を可能とするAl−Mg系合金
板およびその成形方法を特開平8−199272号公報
にて既に開示している。
However, in superplastic forming, a very large elongation such as 500% or 1000% is rarely required in practice, and it is often sufficient to achieve an elongation of about 200%. In view of the above, the inventors of the present invention disclosed an Al-Mg-based alloy sheet which is easy to manufacture without adopting special conditions and enables superplastic forming with excellent productivity, and a method for forming the same. No. 199,272.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記アルミ
ニウム合金は非熱処理型の5000系合金をベースとし
ているために、成形後の引張強度が300MPa以上の
材料とすることは困難であった。本発明は、従来、超塑
性現象が認められないとされていた熱処理型の6000
系合金においても、5000系合金に近い超塑性を発現
させ、超塑性成形後にT6処理等の適切な熱処理を施す
ことによって、引張強度300MPa以上の高い強度を
得ることができる熱処理型アルミニウム合金を提供する
ことを目的とする。ここでT6処理とは、溶体化処理後
人工時効硬化処理したものを意味する。
However, since the above-mentioned aluminum alloy is based on a non-heat-treated 5000-series alloy, it has been difficult to use a material having a tensile strength of 300 MPa or more after molding. The present invention relates to a heat treatment type 6000, which is conventionally considered to have no superplastic phenomenon.
A heat-treatable aluminum alloy that exhibits superplasticity close to that of a 5000-type alloy and performs appropriate heat treatment such as T6 treatment after superplastic forming to obtain a high tensile strength of 300 MPa or more. The purpose is to do. Here, the T6 treatment means a solution subjected to an artificial age hardening treatment after the solution treatment.

【0007】[0007]

【課題を解決するための手段】発明者らは、実用的な超
塑性成形性を確保して、かつ、適用部材の一層の軽量化
を行うために成形後の常温での高強度化を検討の結果、
6000系合金においても、超塑性が発現し得ることを
見出し、超塑性加工が可能な成分、組織、成形方法を限
定するに至って本発明を完成させたもので、本発明の要
旨は以下のとおりである。
Means for Solving the Problems The inventors have studied to increase the strength at room temperature after forming in order to secure practical superplastic formability and further reduce the weight of applicable members. As a result,
The present inventors have found that superplasticity can also be exhibited in 6000 series alloys, and have completed the present invention by limiting the components, structures, and forming methods capable of superplastic working. The gist of the present invention is as follows. It is.

【0008】(1)重量%で、Mg:0.3〜1.5
%、Si:0.4〜2.0%、および残部:Alおよび
不可避的不純物から成り、該不可避的不純物のうちFe
は0.15%以下であり、平均結晶粒径が15〜120
μmであって、ひずみ速度ε'(s-1)と成形温度T
(K)とが、下記の関係: ln(ε')<−65+10ln(T)、 ただし、ε' ≧10-4-1,T=673〜853K を満たす範囲において、伸びが150%以上であること
を特徴とする超塑性成形用熱処理型アルミニウム合金。
(1) Mg: 0.3-1.5% by weight
%, Si: 0.4 to 2.0%, and the balance: Al and unavoidable impurities.
Is 0.15% or less, and the average crystal grain size is 15 to 120%.
μm, the strain rate ε ′ (s −1 ) and the molding temperature T
(K) and the following relationship: ln (ε ′) <− 65 + 10ln (T), where elongation is 150% or more in a range satisfying ε ′ ≧ 10 −4 s −1 , T = 673 to 853K. A heat-treated aluminum alloy for superplastic forming, characterized in that:

【0009】(2)更に、重量%で、Mn:0.4%以
下、Cr:0.1%以下、Zr:0.1%以下、V:
0.1%以下、Ti:0.1%以下、およびB:0.0
5%以下、のうちの1種または2種以上を含有すること
を特徴とする(1)記載の超塑性成形用熱処理型アルミ
ニウム合金。
(2) Further, in weight%, Mn: 0.4% or less, Cr: 0.1% or less, Zr: 0.1% or less, V:
0.1% or less, Ti: 0.1% or less, and B: 0.0
The heat-treated aluminum alloy for superplastic forming according to (1), wherein one or more of 5% or less are contained.

【0010】(3)更に、Cu:0.8重量%以下を含
有することを特徴とする(1)または(2)に記載の超
塑性成形用熱処理型アルミニウム合金。
(3) The heat-treated aluminum alloy for superplastic forming according to (1) or (2), further comprising Cu: 0.8% by weight or less.

【0011】[0011]

【発明の実施の形態】以下に本発明の合金組成、超塑性
加工条件等の限定理由を説明する。まず、本発明におけ
る合金組成の限定理由について述べる。MgおよびSi
は、以下に記述する加工条件における超塑性成形性の確
保、ならびに成形後、T6処理等を行った後の強度上昇
に寄与する必須の基本合金成分であり、Mg:0.3〜
0.9%、Si:0.4〜1.5%を含有させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the alloy composition, superplastic working conditions and the like of the present invention will be described below. First, the reasons for limiting the alloy composition in the present invention will be described. Mg and Si
Is an essential basic alloy component that contributes to ensuring superplastic formability under the processing conditions described below and increasing the strength after performing T6 treatment and the like after forming, and Mg: 0.3 to
0.9%, Si: 0.4 to 1.5%.

【0012】Feは一般に不純物として混入するが、混
入するとAl−Fe−Si等の金属間化合物が形成さ
れ、超塑性成形時にキャビティを発生させやすくして超
塑性成形を阻害する。そこで混入許容範囲は0.15%
以下とする。なお本発明合金においては、任意にMn、
Cr、Zr、V、Ti、Bのうち一種以上を含有させる
ことができる。Mn、Cr、Zr、V、Ti、Bは、超
塑性成形時に、結晶粒径の異常成長を防止する効果を有
する。Mnを0.4%以上添加すると、Al6 MnやF
e、Siと金属間化合物を形成し、超塑性成形時にキャ
ビティが生成されやすくなる。またCr、Zr、V、T
iをいずれも0.1%を超えて添加すると同様に超塑性
成形時にキャビティが生成されやすくなる。一方、Bは
Tiと共存して、結晶粒の均質化を促進する。しかし、
0.05%を超えて添加するとTiB2 が生成し、キャ
ビティが形成されやすくなり、超塑性成形を阻害する。
Fe is generally mixed as an impurity, but when mixed, an intermetallic compound such as Al-Fe-Si is formed, which tends to generate cavities during superplastic forming and hinders superplastic forming. Therefore, the allowable mixing range is 0.15%
The following is assumed. In the alloy of the present invention, optionally Mn,
One or more of Cr, Zr, V, Ti, and B can be contained. Mn, Cr, Zr, V, Ti, and B have an effect of preventing abnormal growth of the crystal grain size during superplastic forming. When 0.4% or more of Mn is added, Al 6 Mn or F
e, an intermetallic compound is formed with Si, and cavities are easily generated during superplastic forming. Cr, Zr, V, T
Similarly, when i is added in excess of 0.1%, cavities are likely to be generated during superplastic forming. On the other hand, B coexists with Ti and promotes homogenization of crystal grains. But,
If added in excess of 0.05%, TiB 2 is generated, and cavities are easily formed, which hinders superplastic forming.

【0013】したがって、Mnの添加量は0.4%以
下、Cr、Zr、V、Tiの添加量は0.1%以下と
し、Bの添加量は0.05%以下とする。さらに本発明
合金においては、必要に応じてCuを含有させてもよ
い。Cuは加工後、T6処理等を行ったときの強度を上
昇させるのに有効である。本系合金の場合、0.8%を
超えてCuを含有させると結晶粒界に偏析してキャビテ
ィが発生しやすくなり、超塑性成形が阻害される。そこ
で添加量は、0.8%以下とする。またCuは耐食性を
阻害するので、耐食性が要求される場合には、0.35
%以下とすることが好ましい。
Therefore, the added amount of Mn is 0.4% or less, the added amount of Cr, Zr, V, and Ti is 0.1% or less, and the added amount of B is 0.05% or less. Further, the alloy of the present invention may contain Cu as necessary. Cu is effective in increasing the strength when performing T6 treatment or the like after processing. In the case of the present alloy, if Cu is contained in excess of 0.8%, cavities are liable to be segregated at crystal grain boundaries and superplastic forming is hindered. Therefore, the addition amount is set to 0.8% or less. Also, Cu impairs the corrosion resistance.
% Is preferable.

【0014】次に平均結晶粒径を規定する理由を説明す
る。従来、超塑性を発現させるためには結晶粒径は微細
化させることが一般的であると報告されている(例え
ば、馬場、吉田:塑性と加工、27−302(198
6)、P333−338など)。しかし、本発明者らが
鋭意検討した結果、生産性の高い超塑性成形加工を可能
とするには、従来の知見よりも大きい結晶粒径、すなわ
ち15〜120μmの範囲で良いことが判明した。
Next, the reason for defining the average crystal grain size will be described. Conventionally, it has been reported that in order to develop superplasticity, it is general to refine the crystal grain size (for example, Baba, Yoshida: Plasticity and Processing, 27-302 (198)
6), P333-338, etc.). However, as a result of intensive studies by the present inventors, it has been found that a crystal grain size larger than the conventional knowledge, that is, a range of 15 to 120 μm, is sufficient to enable superplastic forming with high productivity.

【0015】さらに、本発明合金を用いて超塑性成形を
可能とする加工条件の範囲を規定する理由について説明
する。実用的な超塑性成形として必要な伸びは、成形後
の強度確保のために最小限の板厚が必要であることか
ら、例えば500%以上の大きな超塑性伸びは必要とは
されず、破断までの全伸びで、150%程度以上の伸び
があれば、必要十分である場合が多い。そこで発明者ら
は、熱処理型アルミニウム合金を中心に、高生産性を可
能とする高いひずみ速度で実用的な超塑性伸びを有する
合金板について鋭意検討を行った。
Further, the reason for defining the range of the processing conditions for enabling superplastic forming using the alloy of the present invention will be described. The elongation required for practical superplastic forming requires a minimum sheet thickness in order to secure the strength after forming. For example, a large superplastic elongation of 500% or more is not required. If the elongation is about 150% or more in the total elongation, it is often necessary and sufficient. Therefore, the inventors have intensively studied alloy plates having a practical superplastic elongation at a high strain rate enabling high productivity, mainly on heat-treated aluminum alloys.

【0016】その結果、合金組成と結晶粒径を上記のよ
うに規定したアルミニウム合金板を下記の加工条件の範
囲内で成形すれば、本発明の目的である150%以の超
塑性伸びが得られることを見出した。まず、ひずみ速度
ε’は生産性の観点から、ε’≧10-4-1とした。ひ
ずみ速度ε’<10-4-1であると、加工に時間を要し
すぎ、実用的ではない。
As a result, if an aluminum alloy sheet having the above-defined alloy composition and crystal grain size is formed within the following processing conditions, a superplastic elongation of 150% or more, which is the object of the present invention, can be obtained. Was found to be. First, the strain rate ε ′ was set to ε ′ ≧ 10 −4 s −1 from the viewpoint of productivity. If the strain rate ε ′ <10 −4 s −1 , processing takes too much time and is not practical.

【0017】つぎに、加工温度T=673〜833Kと
した。673K以下の温度では、実用的な超塑性現象が
得られないので、加工温度の下限は673Kとした。ま
た、833Kより高いと、加工中に結晶粒径が粗大化を
起こし適切な超塑性成形が行えなくなる。本発明におい
ては、ひずみ速度と加工温度に応じて、ひずみ速度ε'
(s-1)と成形温度T(K)とが、 ln(ε')<−65+10ln(T) を満たすようにすると、変形抵抗が軽減でき、超塑性成
形が非常に有利に行えることを実験的に見いだした。
Next, the processing temperature T was set to 673 to 833K. At a temperature of 673K or lower, a practical superplastic phenomenon cannot be obtained, so the lower limit of the processing temperature was 673K. On the other hand, if the temperature is higher than 833K, the crystal grain size becomes coarse during processing, so that appropriate superplastic forming cannot be performed. In the present invention, according to the strain rate and the processing temperature, the strain rate ε '
When (s -1 ) and the molding temperature T (K) are set to satisfy ln (ε ′) <− 65 + 10ln (T), the deformation resistance can be reduced, and superplastic forming can be performed very advantageously. Was found.

【0018】[0018]

【実施例】【Example】

(実施例1)実施例に基づき、本発明を具体的に説明す
る。表1に示すアルミニウム合金について、それぞれ常
法にしたがってDC鋳造法により鋳造を行い、得られた
鋳塊に530℃で5時間の均質化処理を施してから、熱
間圧延および冷間圧延を行って、厚さ1mmの圧延板と
した後、熱処理を施し、同じく表1に示すような平均結
晶粒径に調整した。このときの結晶粒径は、板厚中心部
の圧延方向の断面組織写真を100倍で撮影し、切片法
により平均切片長を求めて平均結晶粒径とした。
(Example 1) The present invention will be specifically described based on examples. Each of the aluminum alloys shown in Table 1 was cast by a DC casting method according to a conventional method, and the obtained ingot was subjected to a homogenization treatment at 530 ° C. for 5 hours, followed by hot rolling and cold rolling. Then, after a rolled plate having a thickness of 1 mm was formed, a heat treatment was performed to adjust the average crystal grain size as shown in Table 1. The crystal grain size at this time was obtained by taking a photograph of the cross-sectional structure in the rolling direction at the center of the plate thickness at a magnification of 100, and calculating the average intercept length by the intercept method to obtain the average crystal grain size.

【0019】これらの合金板の超塑性伸びを調べるため
に表2に示す温度およびひずみ速度の条件でJIS5号
試験片を用いて引張試験を行った。また得られた合金板
に対してT6処理(540℃で溶体化処理を行い、17
5℃で10時間の人工時効硬化処理を実施)を行い、引
張試験を行って機械的性質の評価も行った。
In order to examine the superplastic elongation of these alloy sheets, a tensile test was performed using JIS No. 5 test pieces under the conditions of temperature and strain rate shown in Table 2. T6 treatment (solution treatment at 540 ° C.)
An artificial age hardening treatment was performed at 5 ° C. for 10 hours), and a tensile test was performed to evaluate mechanical properties.

【0020】表2における本発明例No. 1〜12は、い
ずれも合金成分および結晶粒径が本発明で規定する範囲
内にあり、かつ本発明で規定する加工条件において加工
した例である。これらは、いずれも150%を超える超
塑性伸びを示した。また、T6材の引張強度も300M
Pa以上の値が得られた。これに対して比較例No. 13
〜17は、合金成分および結晶粒径が本発明で規定する
範囲内であるが、本発明で規定する加工条件を満たさな
かったために、150%以上の伸びが得られなかった。
Examples Nos. 1 to 12 of the present invention in Table 2 are examples in which the alloy components and the crystal grain sizes are all within the ranges specified by the present invention and are processed under the processing conditions specified by the present invention. All of these exhibited a superplastic elongation exceeding 150%. Also, the tensile strength of T6 material is 300M
A value of Pa or more was obtained. On the other hand, Comparative Example No. 13
In Nos. To 17, the alloy components and the crystal grain size were within the ranges specified in the present invention, but the elongation of 150% or more was not obtained because the processing conditions specified in the present invention were not satisfied.

【0021】一方、比較例No. 18〜21は、合金成分
が本発明で規定する範囲外であるために、本発明で規定
する加工条件を満たしていても、150%以上の伸びが
得られなかったものである。また合金No. 22は合金成
分および加工条件において、結晶粒径が本発明により規
定される値以上の大きさであったために、伸びが150
%に達しなかった。 (実施例2)表1中の合金No. A5の成分を有する合金
を用いて、常法にしたがいDC鋳造後、熱間圧延、冷間
圧延を行い、厚さ2mmの合金板を得た。この合金板を
793℃で10秒の熱処理を施して平均結晶粒径30μ
mに調整した。このようにして製造した合金板より18
0mmφの試験片を採取し、成形温度773K、成形速
度10-2-1の条件で、ホットプレスを用いて円筒深絞
り試験(パンチ径:50mmφ)を行った。
On the other hand, in Comparative Examples Nos. 18 to 21, the elongation of 150% or more was obtained even if the processing conditions specified in the present invention were satisfied because the alloy components were outside the range specified in the present invention. That was not. Alloy No. 22 had an elongation of 150 mm because the crystal grain size was larger than the value specified by the present invention in the alloy components and processing conditions.
% Did not reach. Example 2 An alloy having the composition of alloy No. A5 in Table 1 was subjected to DC casting, then hot rolling and cold rolling according to a conventional method, to obtain an alloy plate having a thickness of 2 mm. This alloy plate was subjected to a heat treatment at 793 ° C. for 10 seconds to obtain an average crystal grain size of 30 μm.
m. From the alloy plate manufactured in this way, 18
A test piece of 0 mmφ was collected and subjected to a cylindrical deep drawing test (punch diameter: 50 mmφ) using a hot press at a molding temperature of 773 K and a molding speed of 10 -2 s -1 .

【0022】その結果、成形高さが25mmでも破断す
ることなく良好な成形を行うことができた。
As a result, good molding could be performed without breaking even if the molding height was 25 mm.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、実用上十分な超塑性成形性を有し、適切な熱処
理を施すことによって300MPa以上の引張強度を有
する熱処理型アルミニウム合金板を提供することが可能
となる。したがって、本発明は工業的価値の極めて高い
発明であるといえる。
As is apparent from the above description, according to the present invention, a heat-treated aluminum alloy having a practically sufficient superplastic formability and having a tensile strength of 300 MPa or more when subjected to an appropriate heat treatment. It is possible to provide a board. Therefore, it can be said that the present invention is an invention having extremely high industrial value.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Mg:0.3〜1.5%、 Si:0.4〜2.0%、および 残部:Alおよび不可避的不純物 から成り、該不可避的不純物のうちFeは0.15%以
下であり、 平均結晶粒径が15〜120μmであって、 ひずみ速度ε'(s-1)と成形温度T(K)とが、下記の
関係: ln(ε')<−65+10ln(T)、 ただし、ε' ≧10-4-1,T=673〜853K を満たす範囲において、伸びが150%以上であること
を特徴とする超塑性成形用熱処理型アルミニウム合金。
1. The composition according to claim 1, comprising Mg: 0.3 to 1.5%, Si: 0.4 to 2.0%, and the balance: Al and unavoidable impurities. 0.15% or less, the average crystal grain size is 15 to 120 μm, and the strain rate ε ′ (s −1 ) and the molding temperature T (K) have the following relationship: ln (ε ′) <− 65 + 10ln (T), wherein elongation is 150% or more in a range satisfying ε ′ ≧ 10 −4 s −1 and T = 673 to 853K.
【請求項2】 更に、重量%で、 Mn:0.4%以下、 Cr:0.1%以下、 Zr:0.1%以下、 V:0.1%以下、 Ti:0.1%以下、および B:0.05%以下、 のうちの1種または2種以上を含有することを特徴とす
る請求項1記載の超塑性成形用熱処理型アルミニウム合
金。
2. Mn: 0.4% or less, Cr: 0.1% or less, Zr: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less by weight% And B: 0.05% or less. The heat-treatable aluminum alloy for superplastic forming according to claim 1, further comprising one or more of the following:
【請求項3】 更に、Cu:0.8重量%以下を含有す
ることを特徴とする請求項1または2に記載の超塑性成
形用熱処理型アルミニウム合金。
3. The heat-treated aluminum alloy for superplastic forming according to claim 1, further comprising Cu: 0.8% by weight or less.
JP9292977A 1997-10-24 1997-10-24 Heat treated type aluminum alloy for superplastic forming Withdrawn JPH11131165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9292977A JPH11131165A (en) 1997-10-24 1997-10-24 Heat treated type aluminum alloy for superplastic forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9292977A JPH11131165A (en) 1997-10-24 1997-10-24 Heat treated type aluminum alloy for superplastic forming

Publications (1)

Publication Number Publication Date
JPH11131165A true JPH11131165A (en) 1999-05-18

Family

ID=17788884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9292977A Withdrawn JPH11131165A (en) 1997-10-24 1997-10-24 Heat treated type aluminum alloy for superplastic forming

Country Status (1)

Country Link
JP (1) JPH11131165A (en)

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
EP3464659A1 (en) 6xxx-series aluminium alloy forging stock material and method of manufacting thereof
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH0372147B2 (en)
JP6871990B2 (en) Aluminum alloy plate and its manufacturing method
WO2019025227A1 (en) 6xxxx-series rolled sheet product with improved formability
CA2880692A1 (en) 2xxx series aluminum lithium alloys
JP3157068B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP2002348625A (en) Aluminum alloy sheet with superior warm formability, and manufacturing method therefor
JP4117243B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP2844411B2 (en) Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JPH11302764A (en) Aluminum alloy excellent in high temperature characteristic
JPH0447019B2 (en)
JPH0547615B2 (en)
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JPH11131165A (en) Heat treated type aluminum alloy for superplastic forming
JP2003301249A (en) Superplastic forming process of high-strength member made of aluminum alloy
JPH08199272A (en) Aluminum alloy sheet and forming method
JPH0718389A (en) Production of al-mg series alloy sheet for forming

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104