JPH11131072A - Compound carbide sintered by electrosintering method - Google Patents

Compound carbide sintered by electrosintering method

Info

Publication number
JPH11131072A
JPH11131072A JP9300985A JP30098597A JPH11131072A JP H11131072 A JPH11131072 A JP H11131072A JP 9300985 A JP9300985 A JP 9300985A JP 30098597 A JP30098597 A JP 30098597A JP H11131072 A JPH11131072 A JP H11131072A
Authority
JP
Japan
Prior art keywords
powder
sintering
charcoal
metal oxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9300985A
Other languages
Japanese (ja)
Inventor
Shigehisa Ishihara
茂久 石原
Kenji Yamane
健司 山根
Takeshi Kozuka
毅士 古塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MOKUSHITSU FUKUGOU ZAIRYO GIJU
MOKUSHITSU FUKUGOU ZAIRYO GIJUTSU KENKYU KUMIAI
Original Assignee
MOKUSHITSU FUKUGOU ZAIRYO GIJU
MOKUSHITSU FUKUGOU ZAIRYO GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MOKUSHITSU FUKUGOU ZAIRYO GIJU, MOKUSHITSU FUKUGOU ZAIRYO GIJUTSU KENKYU KUMIAI filed Critical MOKUSHITSU FUKUGOU ZAIRYO GIJU
Priority to JP9300985A priority Critical patent/JPH11131072A/en
Publication of JPH11131072A publication Critical patent/JPH11131072A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound sintered carbide having high electrically conductive rating, by simultaneously both sintering at a higher temperature and molding into a product of a preferred shape in a short time calcined carbide powder from biomass as starting raw materials along with metal powder or metal oxide powder. SOLUTION: This compound sintered carbide is obtained by blending carbide powder obtained through calcining such biomass as woods (e.g. a Japanese cedar), coffee bean leavings and beer cake at about 700 deg.C with powder of metal (e.g. Fe) or metal oxide (e.g. Fe2 O3 ), by filling the resultant powder mixture as a raw material (preferably as an only raw material) into a mold and by both sintering and molding simultaneously it according to an electrosintering method where turning on the electricity among powdered grains under an application of pressure is conducted. Consequently, the compound sintered carbide having extraordinarily low volume resistivity and high electrical conductivity is obtained and enables utilization and mass-production of it as a graphite electrode material having a high-quality graphitized structure, an electrically conductive material or an electromagnetic shielding material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生物系有機資源で
あるバイオマスと、金属もしくは金属酸化物との混合物
を出発材料として通電焼結法により焼結されて導電性に
優れた炭素材料として用いられる複合焼結炭に関する。
BACKGROUND OF THE INVENTION The present invention relates to a carbon material having excellent electrical conductivity which is sintered by a current sintering method using a mixture of biomass, which is a biological organic resource, and a metal or metal oxide as a starting material. Composite sintered coal.

【0002】[0002]

【従来の技術】ところで、上記のバイオマスの一種であ
る木質原料を加熱処理することにより焼成炭化物である
木炭を得ることは、一般に知られている。そして、近
年、この木炭をさらに高品位化して炭素素材として有効
利用しようとする試みが行われている。この試みの一つ
として、その炭素素材を原料として所定形状の成形体に
成形して導電性材料もしくは電磁遮蔽材料等の用途に利
用することが考えられている。ここで、木質原料から高
品位の炭素素材を得るには、まず、300℃〜800℃
の低温度域で焼成して木炭を製造し、次に、この木炭を
800℃〜3000℃の高温度域で焼成して高品位の炭
素素材を製造するという低温度域と高温度域との2段焼
成が考えられる。そして、得られた炭素素材の粉末にバ
インダを混合させて加熱しながら所定形状に加圧成形す
ることにより、上記の成形体を得ることが考えられる。
そして、木炭を上記の高温度域で焼成するには外加熱型
の電気炉を用いるのが一般的である。
2. Description of the Related Art It is generally known to obtain wood charcoal, a calcined carbide, by subjecting a woody raw material, which is a type of biomass, to heat treatment. In recent years, attempts have been made to further improve the quality of this charcoal and to effectively use it as a carbon material. As one of the attempts, it has been considered that the carbon material is used as a raw material to be formed into a molded article having a predetermined shape and used for applications such as a conductive material or an electromagnetic shielding material. Here, in order to obtain a high-quality carbon material from a woody raw material, first, 300 ° C to 800 ° C.
To produce charcoal. Then, the charcoal is calcined in a high temperature range of 800 ° C. to 3000 ° C. to produce a high-grade carbon material. Two-stage firing is conceivable. Then, it is conceivable to obtain the above-mentioned molded body by mixing the obtained carbon material powder with a binder and pressing the mixture into a predetermined shape while heating.
In order to burn the charcoal in the above-mentioned high temperature range, it is general to use an external heating type electric furnace.

【0003】なお、従来より炭素材料を得る方法とし
て、例えばカーボンファイバを得る場合には、ポリアク
リルニトリル(PAN)、ピッチ、もしくは、ベンゼ
ン、メタン等を出発材料として、これらの出発材料を高
温処理することにより製造することが知られている。ま
た、電極材料用の炭素材料を得る場合には、コークスを
微粉とし、この微粉末に対しヒッチバインダを加えて高
温下で加圧することにより製造することが知られてい
る。
[0003] Conventionally, as a method for obtaining a carbon material, for example, when obtaining a carbon fiber, polyacrylonitrile (PAN), pitch, or benzene, methane or the like is used as a starting material, and these starting materials are treated at a high temperature. It is known that they are manufactured by performing It is also known that when a carbon material for an electrode material is obtained, coke is made into fine powder, a hitch binder is added to the fine powder, and the powder is pressed at a high temperature.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記の成形
体の製造においては、上記電気炉では炉内の昇温に数時
間を必要とする上、炭素素材への焼成処理後、炉内から
その炭素素材を取り出すまでに冷却を待つ必要があり、
炭素素材から成形体の成形までにもかなりの時間と手間
とを要することになる。さらに、上記の成形体の成形に
おいても、炭素素材の粉末をそれ単独で成形することは
できないため、バインダを用いる必要があり、しかも、
その成形に加圧もしくは加熱が必要になる。このように
多大な労力と時間とを要し、製造の能率が極めて低いも
のとなって量産性に欠けるという不都合がある。その
上、1000℃以上の焼成温度で焼成しても得られる成
形体の体積固有抵抗率は10-1Ω・cm程度(材料学会
誌 43,485 156頁1993年)と高く、この
ため、導電性材料や電磁遮蔽材料として用いる材料とし
てより高い導電性能が求められている。
However, in the production of the above-mentioned molded article, the above-mentioned electric furnace requires several hours to elevate the temperature in the furnace. It is necessary to wait for cooling before removing the carbon material,
It takes a considerable amount of time and effort to form a compact from a carbon material. Furthermore, even in the molding of the above-mentioned molded body, it is necessary to use a binder because the carbon material powder cannot be molded by itself, and furthermore,
Pressing or heating is required for the molding. As described above, a great deal of labor and time are required, and there is a disadvantage that the efficiency of the production becomes extremely low and the mass productivity is lacking. In addition, the volume resistivity of the compact obtained even after firing at a firing temperature of 1000 ° C. or more is as high as about 10 −1 Ω · cm (Journal of the Society of Materials, 43, 485, 156, 1993). There is a demand for higher conductivity as a material used as a conductive material or an electromagnetic shielding material.

【0005】一方、粉末原料から焼結体を製造する方法
として通電焼結法が知られているが(特公昭56−49
849号公報参照)、この場合も、バインダとしての焼
結助材を必要とすると考えられている。
On the other hand, an electric current sintering method is known as a method for producing a sintered body from a powder raw material (JP-B-56-49).
In this case, it is considered that a sintering aid is required as a binder.

【0006】本発明は、このような事情に鑑みてなされ
たものであり、その目的とするところは、高温度焼成と
所定形状への成形とを同時にかつ短時間に行なうことに
より容易に焼結体を得つつ、バイオマスを含む物質を出
発材料として高い導電性能を有し緻密化された炭素材料
としての複合焼結炭を得ることにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to easily perform sintering by simultaneously performing high-temperature firing and forming into a predetermined shape in a short time. An object of the present invention is to obtain a composite sintered coal as a carbon material having high conductivity and a high density by using a substance containing biomass as a starting material while obtaining a body.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1〜5記載の発明は、バイオマスを含む物質
を焼成して得られた焼成炭化物の粉末に対し金属の粉末
もしくは金属酸化物の粉末を混合した混合粉末を原料と
し、この原料を型内に充填した状態で加圧しつつ粉末粒
子間に通電することにより焼結して複合焼結炭とするも
のである。
In order to achieve the above object, the invention according to claims 1 to 5 is directed to a method in which a metal powder or a metal oxide is added to a carbonized powder obtained by firing a material containing biomass. The mixed powder obtained by mixing the powders of the products is used as a raw material, and the raw material is filled in a mold and pressurized while applying electricity between the powder particles to sinter to obtain a composite sintered carbon.

【0008】ここで、上記バイオマスとは生物系有機資
源のことであり、木材,竹,草,コーヒー豆の殻等の植
物性残渣,紙,もしくは,パルプ等のセルロースを含む
物質のことである。また、このようなバイオマスを含む
物質とは例えば上記の紙,バージンパルプもしくは故紙
等と、フェノール系樹脂,オレフィン系樹脂もしくはデ
ンプン系生分解性樹脂等との複合材のことである。これ
らのバイオマスとしては、資源の有効活用の観点から、
例えば間伐材,製材屑,未利用木材,家屋解体材等の廃
木材、刈草、ヤシ殻、パームツリー、もしくは、ビール
粕,ジュースの絞り滓,焼酎粕,コーヒー滓,おから,
モミ殻,キビ殻,フスマ等の植物性残滓等の廃棄物質を
用いることが好ましい。また、バイオマスを含む物質を
焼成した焼成炭化物としてはほぼ300℃からほぼ80
0℃までの温度域で焼成したものが好ましく、また、金
属の粉末もしくは金属酸化物の粉末としては、Cu,A
l,Ag,Ti,Ni,Li,Si,Fe,Pt,V,
Cr,Mn,Co,Zr,Mo,Pd,K,Sn,Au
の内から選択された1種もしくは2種以上の金属の粉末
もしくはその1種もしくは2種以上の金属の各金属酸化
物の粉末とするのが好ましい。さらに、通電焼結法で型
内に充填するのはバインダを用いないで上記の混合粉末
のみを用いるのが好ましい。加えて、上記の複合焼結炭
は減圧状態で通電焼結が行われたものであることが好ま
しい。
[0008] Here, the above-mentioned biomass is a biological organic resource and is a substance containing plant residues such as wood, bamboo, grass, and coffee bean shells, and paper or cellulose such as pulp. . Further, such a substance containing biomass is, for example, a composite material of the above-mentioned paper, virgin pulp or waste paper, and a phenol-based resin, an olefin-based resin, a starch-based biodegradable resin, or the like. From the viewpoint of effective utilization of resources,
For example, thinned wood, sawdust, unused wood, waste wood such as house demolition material, cut grass, coconut shell, palm tree, or beer lees, juice scum, shochu lees, coffee grounds, okara,
It is preferable to use waste materials such as plant residues such as fir hulls, millet husks, and bran. Further, as a calcined carbide obtained by calcining a substance containing biomass, a temperature of approximately 300 ° C. to approximately 80 ° C.
It is preferable that the powder is fired in a temperature range up to 0 ° C., and the metal powder or the metal oxide powder is Cu, A
1, Ag, Ti, Ni, Li, Si, Fe, Pt, V,
Cr, Mn, Co, Zr, Mo, Pd, K, Sn, Au
It is preferable to use a powder of one or more metals selected from the above, or a powder of each metal oxide of one or more metals. Furthermore, it is preferable to use only the above-mentioned mixed powder without using a binder to fill the mold by the electric current sintering method. In addition, it is preferable that the above-mentioned composite sintered charcoal has been subjected to electric sintering under reduced pressure.

【0009】上記の構成の場合、バイオマスを含む物質
を焼成して得られた焼成炭化物は乱雑な結晶配列を有す
る無定形炭素材料であり難黒鉛化炭素材料であるにも拘
らず、上記の如き通電焼結により焼結された複合焼結炭
は緻密化されて良質な黒鉛化構造を有するものとなる。
加えて、この複合焼結炭は上記焼成炭化物の粉末に対し
金属の粉末もしくは金属酸化物の粉末を混合した混合粉
末を原料として焼結形成されたものであるため、焼成炭
化物の粉末のみを単独で原料として焼結形成した焼結炭
よりも大幅に高い導電性を示すものとなる。従って、こ
の複合焼結炭を、導電性材料、電磁遮蔽材、放電加工電
極,リチウム電池やカドミウム電池等の負極,温度差も
しくは濃度差発電における正・負極等の電極、スパッタ
リング用部材,サセプタ,ルツボもしくはボード等の半
導体プロセス用部材等の用途に用いることが可能にな
る。
In the case of the above structure, the calcined carbide obtained by calcining a substance containing biomass is an amorphous carbon material having a disordered crystal arrangement and a non-graphitizable carbon material. The composite sintered charcoal sintered by the electric current sintering is densified and has a high-quality graphitized structure.
In addition, since the composite sintered charcoal is formed by sintering a mixed powder obtained by mixing a metal powder or a metal oxide powder with the above-mentioned calcined carbide powder, only the calcined carbide powder alone is used. Thus, it exhibits significantly higher conductivity than sintered coal formed by sintering as a raw material. Therefore, this composite sintered charcoal can be used as a conductive material, an electromagnetic shielding material, an electric discharge machining electrode, a negative electrode such as a lithium battery or a cadmium battery, an electrode such as a positive / negative electrode for temperature difference or concentration difference power generation, a member for sputtering, a susceptor, It can be used for applications such as members for semiconductor processing such as crucibles and boards.

【0010】また、上記の通電焼結において、焼成炭化
物である木炭の粉末と、金属もしくは金属酸化物の粉末
との混合粉末を型内で加圧しながら直接パルス電圧を加
えることにより粉末粒子間にミクロ放電が生じ、これに
より、粉末粒子の表面にプラズマが発生してその表面が
清浄にされて活性化する。これと同時に、粉末粒子間に
ジュール熱が発生して粉末粒子同士が熱接合して複合さ
れ型に対応する所定形状に成形された状態の複合焼結体
が製造される。つまり、上記通電により上記混合粉末の
原料が内部から加熱され、その加熱された粉末粒子同士
の接触が加圧により促進されて互いに接合、すなわち、
焼結が行われて黒鉛化(結晶化)される。このため、従
来の電気炉を用いて高温度域の焼成を行なう場合と比べ
て、焼結と成形とが同時に行なわれて成形のための特別
な装置が不要となる上、電気炉内に入れたり、電気炉外
に出したりする手間が省略される。しかも、電気炉で昇
温させる場合と比べ、大幅に短時間(数分間)で焼成及
び焼結を完了させることができる上、上記の黒鉛化がよ
り低い温度で生じることになる。これにより、バイオマ
スを含む物質から導電性材料等の用途に用いる複合焼結
体を容易に得ることが可能になる。また、上記型に対し
バインダを混合せずに、上記混合粉末をのみ充填して複
合焼結体とすることにより、バインダ等の焼結助材が不
要となる上、そのバインダとの面倒な均一混合等の作業
も不要となり、より一層容易に複合焼結体を得ることが
可能になる。
[0010] In the above electric current sintering, a mixed powder of charcoal powder, which is a calcined carbide, and a powder of metal or metal oxide is directly applied with a pulse voltage while being pressed in a mold, so that powder particles are interposed between the powder particles. A micro-discharge occurs, which generates a plasma on the surface of the powder particles to clean and activate the surface. At the same time, Joule heat is generated between the powder particles, and the powder particles are thermally bonded to form a composite, thereby producing a composite sintered body in a state of being formed into a predetermined shape corresponding to the mold. That is, the raw material of the mixed powder is heated from the inside by the energization, and the contact between the heated powder particles is promoted by pressure and joined to each other, that is,
Sintering is performed to graphitize (crystallize). For this reason, sintering and molding are performed simultaneously and special equipment for molding is not required as compared with the case where firing is performed in a high temperature range using a conventional electric furnace, and the furnace is placed in an electric furnace. And the time and effort to get out of the electric furnace is eliminated. In addition, compared to the case where the temperature is raised in an electric furnace, firing and sintering can be completed in a much shorter time (several minutes), and the above-described graphitization occurs at a lower temperature. This makes it possible to easily obtain a composite sintered body used for applications such as a conductive material from a substance containing biomass. Further, by filling only the mixed powder into a composite sintered body without mixing the binder with the mold, a sintering aid such as a binder is not required, and troublesome uniformity with the binder is eliminated. Work such as mixing is not required, and a composite sintered body can be more easily obtained.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面に
基いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】<第1実施形態>図1は、本発明の複合焼
結体を通電焼結法により製造する装置を示し、1は型、
2,2は電極兼加圧用パンチ、3は原料の混合粉末であ
る。
<First Embodiment> FIG. 1 shows an apparatus for producing a composite sintered body of the present invention by an electric current sintering method.
Reference numerals 2 and 2 denote an electrode / pressing punch, and reference numeral 3 denotes a mixed powder of raw materials.

【0013】上記型1は、内部に上下に開口する円柱状
の孔1aが形成され、この孔1aの内径とほぼ同じ外径
の電極兼加圧用パンチ2,2が上下各側から上下方向に
相対移動可能に内嵌されるようになっている。そして、
上記型1内の両電極兼加圧用パンチ2,2間に混合粉末
3を充填した状態で両電極兼加圧用パンチ2,2が図示
省略のプレス装置により図1矢印方向に押圧され、同時
に図示省略の電源装置から両電極兼加圧用パンチ2,2
間に通電されて両者2,2間の混合粉末3が成形されか
つ焼結されるようになっている。
The mold 1 has a columnar hole 1a which is opened up and down inside. An electrode / pressing punch 2, 2 having an outer diameter substantially the same as the inner diameter of the hole 1a is formed vertically from each side. It is adapted to be fitted inside so as to be relatively movable. And
In a state where the mixed powder 3 is filled between the two-electrode / pressing punches 2 and 2 in the mold 1, the two-electrode / pressing punches 2 and 2 are pressed in the direction of the arrow in FIG. Pressing punches 2 and 2 for both electrodes
An electric current is supplied between them to form a mixed powder 3 between the two 2 and 2 and to be sintered.

【0014】上記混合粉末3は、バイオマスを焼成して
得られた焼成炭化物の粉末と、金属の粉末もしくは金属
酸化物の粉末とを混合したものである。上記焼成炭化物
の粉末は、バイオマスとしての伐採木や間伐材等を原料
として図外の炭化炉でほぼ300℃〜ほぼ800℃の低
温度域で加熱処理することにより得た焼成炭化物(木
炭)を所定径の粉末に調整したものである。また、上記
金属の粉末もしくは金属酸化物の粉末は、Cu,Al,
Ag,Ti,Ni,Li,Si,Fe,Pt,V,C
r,Mn,Co,Zr,Mo,Pd,K,Sn,Auの
内から選択された1種もしくは2種以上の金属の粉末、
もしくは、上記1種もしくは2種以上の金属の金属酸化
物の粉末を用いる。焼成炭化物の粉末と、金属粉末もし
くは金属酸化物粉末との混合比率は、重量比で焼成炭化
物粉末100に対し金属粉末もしくは金属酸化物粉末1
〜50とするのが好ましい。もちろん金属粉末もしくは
金属酸化物粉末を重量比で50以上としてもよいが、重
量比で50程度の混合比率で十分に高い導電性能を有す
る複合焼結体にすることができる。一方、金属粉末もし
くは金属酸化物粉末の節約・低減化という観点からはそ
の混合比率を小さくすることが好ましく、重量比で1〜
25,25〜50、細かくは1〜10,11〜25の範
囲の値とするのが好ましい。
The mixed powder 3 is obtained by mixing a powder of a calcined carbide obtained by calcining biomass with a metal powder or a metal oxide powder. The powder of the above-mentioned calcined carbide is obtained by calcining charcoal (charcoal) obtained by performing a heat treatment at a low temperature range of about 300 ° C. to about 800 ° C. in a carbonizing furnace (not shown) using cut wood or thinned wood as biomass as a raw material. The powder is adjusted to have a predetermined diameter. The metal powder or metal oxide powder may be Cu, Al,
Ag, Ti, Ni, Li, Si, Fe, Pt, V, C
powder of one or more metals selected from r, Mn, Co, Zr, Mo, Pd, K, Sn, and Au;
Alternatively, a metal oxide powder of one or more of the above metals is used. The mixing ratio of the calcined carbide powder and the metal powder or metal oxide powder is 100 parts by weight of the calcined carbide powder to 1 metal powder or metal oxide powder.
It is preferably set to 50. Of course, the weight ratio of the metal powder or the metal oxide powder may be 50 or more, but a mixed ratio of about 50 by weight can provide a composite sintered body having sufficiently high conductivity. On the other hand, from the viewpoint of saving and reducing the metal powder or the metal oxide powder, it is preferable to reduce the mixing ratio, and the weight ratio is 1 to 1.
It is preferable to set the value in the range of 25, 25 to 50, specifically 1 to 10, 11 to 25.

【0015】そして、この混合粉末3を上記型1内の両
電極兼加圧用パンチ2,2間に充填し、この充填した混
合粉末3を上記両電極兼加圧用パンチ2,2間に挟み込
んで加圧しながら所定電流を数分間にわたり通電する。
この通電により、まず、混合粉末3の粒子間にミクロ放
電を起こさせてその粒子表面にプラズマを発生させ、こ
れにより、粒子表面を清浄化させて活性化させる。これ
と連続して、上記通電により混合粉末3の粒子間にジュ
ール熱を発生させて、その熱により粒子同士を焼成しな
がら熱接合させる。この結果、上記型1の内周面と両電
極兼加圧パンチ2,2の各先端面とにより所定の円柱形
状に成形された複合焼結体が得られる。
The mixed powder 3 is filled between the punches 2 and 2 for both electrodes in the mold 1 and the filled powder 3 is sandwiched between the punches 2 and 2 for both electrodes. A predetermined current is applied for several minutes while applying pressure.
By this energization, first, micro-discharge is caused between the particles of the mixed powder 3 to generate plasma on the surface of the particles, whereby the surface of the particles is cleaned and activated. Continuing with this, Joule heat is generated between the particles of the mixed powder 3 by the above-mentioned energization, and the particles are thermally bonded while firing the particles. As a result, a composite sintered body formed into a predetermined cylindrical shape by the inner peripheral surface of the mold 1 and the tip surfaces of both electrodes and the press punches 2 and 2 is obtained.

【0016】なお、上記の型1内への充填は上記の混合
粉末3のみを用いて行うのが好ましいが、その混合粉末
3に対し固定炭素50%以上を含有する焼結助材を30
重量%程度以下の範囲で混合するようにしてもよい。ま
た、上記の混合粉末3に対し他の無機質粉末,セラミッ
クス粉末等を混合し、木炭粉末,金属粉末,金属酸化物
粉末,無機質粉末,セラミックス粉末等からなる複合焼
結体を得るにしてもよい。また、得られる焼結体を厚み
方向に濃度分布が変化するようなもの(傾斜機能材料)
にするために、上記の木炭粉末と他の金属粉末等との混
合割合を上記厚み方向に変化させて型1内に充填し、こ
れを加圧しながら通電焼結してもよい。さらに、上記の
通電焼結法を実施する型1や両電極兼加圧パンチ2,2
が設置された空間を所定の負圧もしくは真空状態にして
行なってもよい。また、Ar,N2 ,He等の不活性ガ
ス中或いは空気中で行ってもよい。
It is preferable that the above-mentioned filling into the mold 1 is performed using only the above-mentioned mixed powder 3, but the sintering aid containing 50% or more of fixed carbon is added to the mixed powder 3.
You may make it mix in the range of about weight% or less. Further, another inorganic powder, ceramic powder, or the like may be mixed with the mixed powder 3 to obtain a composite sintered body including charcoal powder, metal powder, metal oxide powder, inorganic powder, ceramic powder, and the like. . In addition, the obtained sintered body whose concentration distribution changes in the thickness direction (functionally graded material)
In order to achieve this, the mixing ratio of the charcoal powder and the other metal powder or the like may be changed in the thickness direction to fill the mold 1 and then be subjected to current sintering while pressing. Further, a mold 1 for carrying out the above-mentioned electric current sintering method, a double electrode / pressing punch 2, 2
May be performed at a predetermined negative pressure or a vacuum state in the space in which is installed. Further, it may be carried out in an inert gas such as Ar, N2, He or in air.

【0017】<第2実施形態>図2は、本発明の複合焼
結炭を通電焼結法により製造するための装置を示し、1
1はフレーム、12は型である黒鉛製のダイス、13
a,13bはダイス12内に嵌入される上下の各パン
チ、14a,14bは上下の両パンチ13a,13bを
挟む上下部の各電極、15は上下部電極14a,14b
に接続された電源、16は上部電極14bを押圧する油
圧シリンダ、17は上記ダイス12,上下両パンチ13
a,13b及び上下部電極14a,14bを内部に配設
した真空チャンバ、18は真空チャンバ17内を真空引
きするための真空ポンプ、19は両パンチ13a,13
b間に挟まれたダイス12内の温度を計測する放射温度
計である。
<Second Embodiment> FIG. 2 shows an apparatus for producing a composite sintered carbon according to the present invention by an electric current sintering method.
1 is a frame, 12 is a graphite die as a mold, 13
a and 13b are upper and lower punches fitted into the die 12, 14a and 14b are upper and lower electrodes sandwiching the upper and lower punches 13a and 13b, and 15 is upper and lower electrodes 14a and 14b.
, A hydraulic cylinder 16 for pressing the upper electrode 14b, 17 a die 12 and upper and lower punches 13
a, 13b and upper and lower electrodes 14a, 14b are disposed inside; a vacuum pump 18 for evacuating the vacuum chamber 17; and 19, both punches 13a, 13
This is a radiation thermometer that measures the temperature inside the die 12 sandwiched between the b.

【0018】上記ダイス12は、図3に詳細を示すよう
に、内部に上下方向に開口する円柱状の孔12aが形成
され、この孔12aの内径とほぼ同じ外径の各パンチ1
3a,13bが上下各側から上下方向に相対移動可能に
内嵌されるようになっている。そして、真空ポンプ18
の作動により真空チャンバ17内を所定の真空状態に
し、油圧シリンダ16を作動させて上部電極14aを介
して上側パンチ13aを押圧することにより上下パンチ
13a,13b間の焼結対象の粉末20(図4参照)を
加圧しつつ、上下部電極14a,14bに対し電源15
から通電させて焼結するようになっている。この際の焼
結温度を放射温度計19により計測しながら所定温度に
する。
As shown in detail in FIG. 3, the die 12 is formed with a cylindrical hole 12a which is open in the vertical direction, and each punch 1 having an outer diameter substantially equal to the inner diameter of the hole 12a.
3a and 13b are internally fitted so as to be relatively movable in the vertical direction from the upper and lower sides. And the vacuum pump 18
The vacuum chamber 17 is evacuated to a predetermined vacuum state by operating the hydraulic cylinder 16 and the upper punch 13a is pressed via the upper electrode 14a to thereby sinter the powder 20 between the upper and lower punches 13a and 13b (see FIG. 4), and a power supply 15 is applied to the upper and lower electrodes 14a and 14b.
And then sintering. The sintering temperature at this time is set to a predetermined temperature while being measured by the radiation thermometer 19.

【0019】次に、前述のバイオマスを含む物質を出発
材料として焼結炭を得るプロセスについて図4に基づい
て説明する。基本的には、第1実施形態の場合と同様の
木質系材料を図示省略の炭化炉でほぼ300℃〜800
℃の低温度域で加熱処理して炭化させることにより焼成
炭化物(木炭)を得る低温焼成と、その木炭を粉砕して
所定径に調整した粉末に第1実施形態と同様の金属粉末
もしくは金属酸化物粉末を第1実施形態と同様に所定量
混合して混合粉末を得る原料調整と、通電焼結(放電焼
結)により800℃〜3000℃の高温度域で焼結して
複合焼結炭を得る高温焼成とを行う。上記低温焼成で
は、炭化炉での加熱処理に伴い発生した煙をアフタバー
ナにより燃焼させて無公害化させた上で排気する。ま
た、上記高温焼成では、上記木炭を粉砕処理して所定径
の粉末にし、その木炭粉末と上記金属粉末もしくは金属
酸化物粉末とをそれぞれ計量して均一に混合しその混合
粉末の所定量をダイス12の上下パンチ13a,13b
間に型詰めし、その後、真空チャンバ17内で所定の真
空状態下で上記の油圧シリンダ16により所定の高圧力
を付与しつつ放電焼結し、これを冷却して複合焼結炭を
得る。
Next, a process for obtaining sintered coal using the above-described biomass-containing substance as a starting material will be described with reference to FIG. Basically, the same woody material as in the case of the first embodiment is applied at a temperature of about 300 ° C. to 800 ° C. in a carbonization furnace (not shown).
A low-temperature baking to obtain a calcined carbide (charcoal) by heat treatment and carbonization in a low temperature range of ℃, and the same metal powder or metal oxide as in the first embodiment into a powder obtained by pulverizing the charcoal to a predetermined diameter. Raw material preparation to obtain a mixed powder by mixing a predetermined amount of the material powder in the same manner as in the first embodiment, and sintering in a high temperature range of 800 ° C. to 3000 ° C. by electric current sintering (discharge sintering) to form a composite sintered carbon And firing at a high temperature. In the low-temperature firing, smoke generated by the heat treatment in the carbonization furnace is burned by an afterburner to make it pollution-free, and then exhausted. In the high-temperature firing, the charcoal is pulverized into powder having a predetermined diameter, and the charcoal powder and the metal powder or metal oxide powder are respectively weighed and uniformly mixed, and a predetermined amount of the mixed powder is diced. 12 upper and lower punches 13a, 13b
The mold is packed in the gap, and then, under a predetermined vacuum state in the vacuum chamber 17, the above-mentioned hydraulic cylinder 16 applies a predetermined high pressure to discharge sintering, and the resultant is cooled to obtain a composite sintered carbon.

【0020】[0020]

【実施例】以下、実施例においてさらに詳細に説明す
る。
The present invention will be described below in more detail with reference to examples.

【0021】<実施例1>杉材をほぼ700℃の温度で
加熱処理して焼成炭化物を製造し、これを20〜40メ
ッシュの粉末にして木炭粉末とする。一方、金属粉末と
してFeを同様に20〜40メッシュの粉末にしてFe
粉末を用意する。そして、0.3053gの木炭粉末に
対し0.1619gのFe粉末を均一に混合し、木炭/
Feの混合粉末を用意する。この混合粉末の原料のみを
型1内に充填し、型1の保護のために1〜0.1Torr
の真空雰囲気で、加圧力を500Kg/cm2 、電流値
を750A、電圧を3.3Vにして5分間焼結して木炭
/Feの複合焼結体を作成した(表1の試料No.1参
照)。そして、得られた複合焼結体のかさ密度(g/c
m3 )と体積固有抵抗率(Ω・cm)とを測定した。
<Example 1> A cedar material is heat-treated at a temperature of approximately 700 ° C to produce a calcined carbide, which is made into a powder of 20 to 40 mesh to obtain a charcoal powder. On the other hand, Fe was similarly converted into powder of 20 to 40 mesh as metal powder,
Prepare powder. Then, 0.10619 g of Fe powder was uniformly mixed with 0.3053 g of charcoal powder, and the charcoal /
A mixed powder of Fe is prepared. Only the raw material of the mixed powder is filled in the mold 1 and 1 to 0.1 Torr for protection of the mold 1.
In a vacuum atmosphere of 500 kg / cm 2, a current value of 750 A and a voltage of 3.3 V for 5 minutes to produce a charcoal / Fe composite sintered body (see sample No. 1 in Table 1). ). And the bulk density (g / c) of the obtained composite sintered body
m3) and the volume resistivity (Ω · cm) were measured.

【0022】なお、本実施例1及び以下の実施例2〜4
では、混合粉末と電極兼加圧用パンチ2,2との間に黒
鉛シートを介在させて炭素が各パンチ2に付着するのを
防止するようにした。
The first embodiment and the following embodiments 2 to 4
Then, a graphite sheet is interposed between the mixed powder and the electrode / pressing punches 2 to prevent carbon from adhering to the punches 2.

【0023】<実施例2>上記実施例1の木炭粉末0.
3081gに対し、金属粉末として20〜40メッシュ
のAl粉末0.1670gを均一に混合し、木炭/Al
の混合粉末を用意する。この混合粉末の原料のみを型1
内に充填し、1〜0.1Torr の真空雰囲気で、加圧力
を500Kg/cm2 、電流値を500A、電圧を3.
1Vにして5分間焼結して木炭/Alの複合焼結体を作
成した(表1の試料No.2参照)。そして、得られた
複合焼結体のかさ密度(g/cm3 )と体積固有抵抗率
(Ω・cm)とを測定した。
<Embodiment 2> The charcoal powder of the above-described embodiment 1 was used.
To 3081 g, 0.1670 g of Al powder of 20 to 40 mesh as a metal powder is uniformly mixed, and the charcoal / Al
A mixed powder of is prepared. Using only the raw material of this mixed powder in mold 1
In a vacuum atmosphere of 1 to 0.1 Torr, a pressure of 500 kg / cm @ 2, a current of 500 A, and a voltage of 3.
By sintering at 1 V for 5 minutes, a charcoal / Al composite sintered body was prepared (see Sample No. 2 in Table 1). Then, the bulk density (g / cm 3) and the volume specific resistivity (Ω · cm) of the obtained composite sintered body were measured.

【0024】<実施例3>上記実施例1の木炭粉末0.
3032gに対し、金属酸化物粉末として20〜40メ
ッシュのFe2 O3 粉末0.1618gを均一に混合
し、木炭/Fe2 O3 の混合粉末を用意する。この混合
粉末の原料のみを型1内に充填し、1〜0.1Torr の
真空雰囲気で、加圧力を500Kg/cm2 、電流値を
900A、電圧を4.0Vにして5分間焼結して木炭/
Fe2 O3 の複合焼結体を作成した(表1の試料No.
3参照)。そして、得られた複合焼結体のかさ密度(g
/cm3 )と体積固有抵抗率(Ω・cm)とを測定し
た。
<Embodiment 3> The charcoal powder of the above-mentioned embodiment 1 was used.
To 3032 g, 0.1618 g of a 20-40 mesh Fe2 O3 powder as a metal oxide powder is uniformly mixed to prepare a mixed powder of charcoal / Fe2 O3. Only the raw material of this mixed powder was filled in a mold 1 and sintered in a vacuum atmosphere of 1 to 0.1 Torr at a pressure of 500 kg / cm @ 2, a current value of 900 A and a voltage of 4.0 V for 5 minutes. /
A composite sintered body of Fe2 O3 was prepared (Sample No. 1 in Table 1).
3). And the bulk density (g
/ Cm3) and volume resistivity (Ω · cm).

【0025】<実施例4>上記実施例1の木炭粉末0.
3000gに対し、金属粉末として20〜40メッシュ
のCu粉末0.1500gを均一に混合し、木炭/Cu
の混合粉末を用意する。この混合粉末の原料のみを型1
内に充填し、1〜0.1Torr の真空雰囲気で、加圧力
を500Kg/cm2 、電流値を550A、電圧を2.
7Vにして5分間焼結して木炭/Cuの複合焼結体を作
成した(表1の試料No.4参照)。そして、得られた
複合焼結体のかさ密度(g/cm3 )と体積固有抵抗率
(Ω・cm)とを測定した。
<Embodiment 4> The charcoal powder of the above-mentioned embodiment 1 was used.
To 3000 g, 0.1500 g of 20 to 40 mesh Cu powder is uniformly mixed as a metal powder, and charcoal / Cu
A mixed powder of is prepared. Using only the raw material of this mixed powder in mold 1
And in a vacuum atmosphere of 1 to 0.1 Torr, a pressure of 500 kg / cm @ 2, a current value of 550 A, and a voltage of 2.
By sintering at 7V for 5 minutes, a charcoal / Cu composite sintered body was prepared (see Sample No. 4 in Table 1). Then, the bulk density (g / cm 3) and the volume specific resistivity (Ω · cm) of the obtained composite sintered body were measured.

【0026】<実施例5>実施例3と同様に木炭粉末
と、Fe2 O3 粉末との組み合わせの場合について、木
炭粉末と、Fe2 O3 粉末との混合割合を木炭粉末10
0に対しFe2 O3粉末50の重量比、木炭粉末100
に対しFe2 O3 粉末25の重量比にそれぞれ設定した
2種類の混合粉末を用いて、焼結温度(内部温度)をほ
ぼ1000℃〜2000℃の間で種々変化させて木炭/
Fe2 O3 の複合焼結体を作成し、それぞれの体積固有
抵抗率(Ω・cm)を測定した。なお、この場合の焼結
条件としては、加圧力を500Kg/cm2 、焼結時間
を5分間とし、電流値及び電圧を変化させて内部温度が
ほぼ1000℃〜2000℃になるようにした。
<Embodiment 5> As in the case of Embodiment 3, in the case of a combination of charcoal powder and Fe2 O3 powder, the mixing ratio of charcoal powder and Fe2 O3 powder
Weight ratio of Fe2 O3 powder 50 to 0, charcoal powder 100
The sintering temperature (internal temperature) was changed variously between approximately 1000 ° C. and 2000 ° C. by using two types of mixed powders each set to the weight ratio of the Fe 2 O 3 powder 25, and
A composite sintered body of Fe2 O3 was prepared, and the volume specific resistivity (Ω · cm) was measured. The sintering conditions in this case were as follows: the pressure was 500 kg / cm 2, the sintering time was 5 minutes, and the current value and voltage were changed so that the internal temperature was approximately 1000 ° C. to 2000 ° C.

【0027】<試験結果1>上記の実施例1〜4の配
合,焼結条件及び測定結果を表1に示す。
<Test Results 1> Table 1 shows the composition, sintering conditions, and measurement results of Examples 1 to 4 described above.

【0028】[0028]

【表1】 [Table 1]

【0029】(体積固有抵抗率)表1の試験結果による
と、Fe2 O3 を混合した実施例3及びFeを混合した
実施例1の体積固有抵抗率がそれぞれ3.916×10
-4Ω・cm,4.125×10-4Ω・cmと極めて低い
値を示し、実施例4の体積固有抵抗率が3.980×1
-3Ω・cm、実施例2の体積固有抵抗率が2.468
×10-2Ω・cmとかなり低い値を示した。これらの木
炭粉末に金属粉末もしくは金属酸化物粉末を混合した複
合焼結体においては、もっとも高い体積固有抵抗率を示
した実施例2ですら、木炭を1000℃以上で焼成した
場合の体積固有抵抗率10-1Ω・cm(前掲の材料学会
誌参照)と比較しても大幅に低く、優れた導電性を示す
ものが得られた。従って、導電材料もしくは電磁遮蔽材
料として好適に用いることができるものが得られてい
る。
(Volume resistivity) According to the test results shown in Table 1, the volume resistivity of Example 3 in which Fe 2 O 3 was mixed and the volume resistivity of Example 1 in which Fe was mixed were 3.916 × 10 3 respectively.
−4 Ω · cm and 4.125 × 10 −4 Ω · cm, which are extremely low values, and the volume resistivity of Example 4 was 3.980 × 1.
0 −3 Ω · cm, and the specific volume resistivity of Example 2 is 2.468.
It was a very low value of × 10 -2 Ω · cm. In the composite sintered body obtained by mixing the metal powder or the metal oxide powder with the charcoal powder, even in Example 2, which exhibited the highest volume resistivity, the volume resistivity when the charcoal was fired at 1000 ° C. or more. Even when compared with a rate of 10 -1 Ω · cm (see the above-mentioned journal of the Society of Materials), a material exhibiting excellent conductivity was obtained. Therefore, a material that can be suitably used as a conductive material or an electromagnetic shielding material has been obtained.

【0030】(かさ密度)かさ密度についても、上記の
Fe2 O3 を混合した実施例3及びFeを混合した実施
例1がそれぞれ2.45g/cm3 ,2.29g/cm
3 と極めて高い値を示し、実施例2及び実施例4でもそ
れぞれ1.60g/cm3 ,1.75g/cm3 と木炭
粉末のみを焼結した場合よりもかなり高い値を示した。
(Bulk Density) Regarding the bulk density, Example 3 in which Fe 2 O 3 was mixed and Example 1 in which Fe was mixed were 2.45 g / cm 3 and 2.29 g / cm 3 , respectively.
3 and shows an extremely high value, Example 2 and Example 4 also respectively 1.60 g / cm 3, exhibited a significantly higher value than when sintering only 1.75 g / cm 3 and charcoal powder.

【0031】(焼結時間及び焼結温度)焼結時間につい
ては、実施例1〜実施例4においてそれぞれ5分間とし
たが、内部温度が1300℃〜1700℃の高温焼成を
行うことができ、そのような高温焼成を電気炉を用いる
場合と比べ極めて短時間で行うことができた。
(Sintering time and sintering temperature) The sintering time was 5 minutes in each of Examples 1 to 4, but high-temperature sintering with an internal temperature of 1300 ° C to 1700 ° C can be performed. Such high-temperature sintering could be performed in an extremely short time as compared with the case of using an electric furnace.

【0032】<試験結果2>上記の実施例5についての
測定結果を図5に示す。
<Test Result 2> FIG. 5 shows the measurement results of Example 5 described above.

【0033】図5によれば、木炭/Fe2 O3 の混合比
率が重量比で100/50の場合の体積固有抵抗率(同
図の点線参照)は焼結温度が1000℃〜2000℃の
範囲では4×10-4Ω・cm前後の値を示し、混合比率
が重量比で100/25の場合の体積固有抵抗率(同図
の実線参照)は焼結温度が1000℃〜2000℃の範
囲では5×10-3Ω・cm〜9×10-4Ω・cmと焼結
温度が高い程、値が低くなる傾向を示した。従って、混
合比率が100/25と金属酸化物粉末の混合量を少な
くしていっても、木炭を1000℃以上で焼成した場合
の体積固有抵抗率10-1Ω・cm(前掲の材料学会誌参
照)と比較しても大幅に低く、優れた導電性を示すもの
が得られた。これらの体積固有抵抗率の測定結果の傾向
から見ると、上記のFe2 O3 粉末の混合量を上記の1
00/25の場合よりもさらに少なくして終局的には木
炭/Fe2 O3 の混合比率を重量比で100/1にした
としても、上記の木炭を1000℃以上で焼成した場合
よりも低い体積固有抵抗率を達成し得ると考えられる。
また、Fe2 O3 粉末の混合量を上記の100/50程
度にすれば、黒鉛と同等以上の低体積固有抵抗率を実現
して高導電性能を実現することができる。
According to FIG. 5, when the mixing ratio of charcoal / Fe 2 O 3 is 100/50 by weight, the volume resistivity (see the dotted line in FIG. 5) is obtained when the sintering temperature is in the range of 1000 ° C. to 2000 ° C. It shows a value of about 4 × 10 −4 Ω · cm, and the volume resistivity (see the solid line in the figure) when the mixing ratio is 100/25 in weight ratio, when the sintering temperature is in the range of 1000 ° C. to 2000 ° C. The value tended to decrease as the sintering temperature increased from 5 × 10 −3 Ω · cm to 9 × 10 −4 Ω · cm. Therefore, even when the mixing ratio of the metal oxide powder is reduced to 100/25, the volume resistivity of charcoal fired at 1000 ° C. or higher is 10 −1 Ω · cm (the Journal of Materials Society, supra). (See Reference Example 1), and a material exhibiting excellent conductivity was obtained. From the tendency of the measurement results of the specific volume resistivity, the mixing amount of the above Fe2 O3 powder is
Even if the mixing ratio of charcoal / Fe2 O3 is eventually reduced to 100/1 by weight ratio even more than in the case of 00/25, the volume specificity is lower than in the case where the above charcoal is calcined at 1000 ° C. or more. It is believed that resistivity can be achieved.
Further, if the mixing amount of the Fe2 O3 powder is set to about 100/50 as described above, a low volume resistivity equal to or higher than that of graphite can be realized, and high conductivity can be realized.

【0034】[0034]

【発明の効果】以上説明したように、請求項1〜請求項
5のいずれかに記載の通電焼結法により焼結された複合
焼結炭によれば、バイオマスを含む物質を焼成して得ら
れる焼成炭化物は難黒鉛化炭素材料であるにも拘らず、
この焼成炭化物の粉末に対し金属粉末もしくは金属酸化
物粉末を混合した混合粉末を原料として通電焼結により
焼結された複合焼結炭により、緻密化されて良質な黒鉛
化構造を有する炭素材料,黒鉛材料を提供することがで
きる上に、極めて低電気抵抗(高導電性)を有する炭素
材料を提供することができるようになる。さらに、上記
の複合焼結炭は通電焼結法により容易に得ることができ
る。
As described above, according to the composite sintered charcoal sintered by the electric current sintering method according to any one of claims 1 to 5, the material containing biomass is obtained by firing. Although the calcined carbide is a non-graphitizable carbon material,
A carbon material having a high-density graphitized structure by a composite sintered charcoal sintered by current sintering using a mixed powder obtained by mixing a metal powder or a metal oxide powder with the powder of the calcined carbide; In addition to providing a graphite material, a carbon material having extremely low electric resistance (high conductivity) can be provided. Further, the above-described composite sintered coal can be easily obtained by an electric current sintering method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態及び実施例で用いる型及
び電極兼パンチを示す断面説明図である。
FIG. 1 is an explanatory sectional view showing a mold and an electrode / punch used in a first embodiment and an example of the present invention.

【図2】第2実施形態で用いる通電焼結装置の模式図で
ある。
FIG. 2 is a schematic diagram of an electric current sintering apparatus used in a second embodiment.

【図3】図2の通電焼結装置で用いる型及びパンチの一
部切欠き斜視図である。
FIG. 3 is a partially cutaway perspective view of a mold and a punch used in the electric current sintering apparatus of FIG. 2;

【図4】第2実施形態での製造プロセスを示す工程図で
ある。
FIG. 4 is a process chart showing a manufacturing process in a second embodiment.

【図5】木炭/Fe2 O3 についての焼結温度と体積固
有抵抗率との関係図である。
FIG. 5 is a diagram showing the relationship between sintering temperature and specific volume resistivity for charcoal / Fe2 O3.

【符号の説明】[Explanation of symbols]

1 型 3 混合粉末(原料) 12 ダイス(型) 20 混合粉末(原料) 1 type 3 mixed powder (raw material) 12 die (type) 20 mixed powder (raw material)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 バイオマスを含む物質を焼成して得られ
た焼成炭化物の粉末に対し金属の粉末もしくは金属酸化
物の粉末を混合した混合粉末を原料とし、この原料が型
内に充填された状態で加圧されつつ粉末粒子間に通電さ
れて焼結されてなることを特徴とする通電焼結法により
焼結された複合焼結炭。
1. A mixed powder in which a metal powder or a metal oxide powder is mixed with a calcined carbide powder obtained by calcining a substance containing biomass, and the raw material is filled in a mold. A composite sintered charcoal sintered by an electric current sintering method, characterized in that it is sintered by being energized between powder particles while being pressurized.
【請求項2】 請求項1において、 バイオマスを含む物質はセルロースを含む物質であるこ
とを特徴とする通電焼結法により焼結された複合焼結
炭。
2. The composite sintered coal according to claim 1, wherein the biomass-containing substance is a cellulose-containing substance.
【請求項3】 請求項1において、 金属の粉末もしくは金属酸化物の粉末は、Cu,Al,
Ag,Ti,Ni,Li,Si,Fe,Pt,V,C
r,Mn,Co,Zr,Mo,Pd,K,Sn,Auの
内から選択された1種もしくは2種以上の金属の粉末も
しくは上記1種もしくは2種以上の金属の金属酸化物の
粉末であることを特徴とする通電焼結法により焼結され
た複合焼結炭。
3. The method according to claim 1, wherein the metal powder or the metal oxide powder comprises Cu, Al,
Ag, Ti, Ni, Li, Si, Fe, Pt, V, C
a powder of one or more metals selected from r, Mn, Co, Zr, Mo, Pd, K, Sn, and Au, or a powder of a metal oxide of one or more of the above metals A composite sintered charcoal sintered by an electric current sintering method.
【請求項4】 請求項1において、 焼成炭化物は、ほぼ300℃からほぼ800℃までの温
度域で焼成されたものであることを特徴とする通電焼結
法により焼結された複合焼結炭。
4. The composite sintered carbon according to claim 1, wherein the calcined carbide is calcined in a temperature range from about 300 ° C. to about 800 ° C. .
【請求項5】 請求項1において、 型内に充填された粉末原料に対する加圧と通電とが減圧
状態で行われて焼結されてなることを特徴とする通電焼
結法により焼結された複合焼結炭。
5. The method according to claim 1, wherein the powder raw material filled in the mold is pressurized and energized in a reduced pressure state and sintered. Composite sintered charcoal.
JP9300985A 1997-10-31 1997-10-31 Compound carbide sintered by electrosintering method Pending JPH11131072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9300985A JPH11131072A (en) 1997-10-31 1997-10-31 Compound carbide sintered by electrosintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9300985A JPH11131072A (en) 1997-10-31 1997-10-31 Compound carbide sintered by electrosintering method

Publications (1)

Publication Number Publication Date
JPH11131072A true JPH11131072A (en) 1999-05-18

Family

ID=17891449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9300985A Pending JPH11131072A (en) 1997-10-31 1997-10-31 Compound carbide sintered by electrosintering method

Country Status (1)

Country Link
JP (1) JPH11131072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198658B2 (en) * 2002-10-09 2007-04-03 Kobe Steel, Ltd. Method for producing feed material for molten metal production and method for producing molten metal
CN115740442A (en) * 2022-11-24 2023-03-07 北京科技大学 Composite electrode for sintering, preparation process, sintering device and sintering method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198658B2 (en) * 2002-10-09 2007-04-03 Kobe Steel, Ltd. Method for producing feed material for molten metal production and method for producing molten metal
CN115740442A (en) * 2022-11-24 2023-03-07 北京科技大学 Composite electrode for sintering, preparation process, sintering device and sintering method

Similar Documents

Publication Publication Date Title
CN102206080B (en) Graphite material for monocrystalline silicon growth thermal field in solar photovoltaic industry and production method thereof
CN101913593B (en) Graphite material for producing nanogate carbon and preparation method thereof
CN101684520B (en) Ultrasonic-assisted densification device
CN107840328B (en) A kind of isostatic pressing formed graphite and its production method
KR20210145218A (en) Process for Fabrication of Highly Activated, Monolithic Reticulated Biochar Electrodes
CN108610049B (en) Isotropic graphite material, method for the production thereof and use thereof
CN112366315A (en) Production method of lithium battery negative electrode material
CN110468320A (en) A kind of high rigidity and the cermet of high tenacity and its preparation method and application
CN106448795B (en) Sub- titanium oxide-metal composite conductive material and preparation method thereof
JPH11131072A (en) Compound carbide sintered by electrosintering method
CN113070473A (en) Heating porous matrix and preparation method thereof
JPS6242878B2 (en)
JP2000007436A (en) Graphite material and its production
KR20130125547A (en) Method for manufacturing active carbon for electrode using cokes and method for manufacturing active carbon composition for electrode
JP2000038588A (en) Conductive metallic composite sintered compact
JPH10120465A (en) Sintered carbon sintered by electrical conductive sintering and production of sintered compact of baked carbonized product
JP5404195B2 (en) Method for producing electrode catalyst for fuel cell
CN111410537B (en) Boron carbide-based complex phase ceramic material with linear conductive characteristic and preparation method thereof
CN112479200A (en) Method for producing cathode material by using waste heat with co-firing
JP2016204255A (en) Container for firing and manufacturing method of container for firing
US3296021A (en) Heat-resistant and oxidationproof materials
CN110760822A (en) Manufacturing method of PECVD graphite boat carrier
CN111564607A (en) Negative electrode material, preparation method and application thereof
CN110090963A (en) A kind of high tenacity conductivity type composite polycrystal-diamond and preparation method thereof
CN1765737A (en) Graphite flake for diamond synthesis and its preparation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127