JPH11128668A - Deodorization - Google Patents

Deodorization

Info

Publication number
JPH11128668A
JPH11128668A JP9311375A JP31137597A JPH11128668A JP H11128668 A JPH11128668 A JP H11128668A JP 9311375 A JP9311375 A JP 9311375A JP 31137597 A JP31137597 A JP 31137597A JP H11128668 A JPH11128668 A JP H11128668A
Authority
JP
Japan
Prior art keywords
activated carbon
deodorizing
deodorizing layer
odor
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9311375A
Other languages
Japanese (ja)
Inventor
Miki Nakano
美樹 中野
Shinji Hashimoto
真治 橋本
Ryoji Aikawa
亮二 相川
Toshiya Nashida
敏也 梨子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Universal Co Ltd
Original Assignee
Nikki Universal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Universal Co Ltd filed Critical Nikki Universal Co Ltd
Priority to JP9311375A priority Critical patent/JPH11128668A/en
Publication of JPH11128668A publication Critical patent/JPH11128668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of such secondary malodors which emit uncomfortable smells by a chemical change of the materials adsorbed on deodorants having an oxidation decomposition function as time passes by passing malodorous gases or hazardous gases through a fore-stage deodorizing layer consisting of activated carbon, then through a post-stage deodorizing layer consisting of the deodorants described above. SOLUTION: In the case of a deodorization and purification treatments of malodorous gases or hazardous gases in an atmosphere of a dwelling space, etc., the coarse particles in the treating gases are removed by a filter 2 while the treating gases are introduced into an air cleaner by a fan 3 and, thereafter, the treating gases are passed through the fore-stage deodorizing layer 4 consisting of the activated carbon and are then passed through the post-stage deodorizing layer 5 consisting of the deodorants having the oxidation decomposition function, by which air purification is effected. While the activated carbon used for the fore-stage deodorizing layer 4 is not particularly limited, activated carbon of coconut shells, coal, timber, resins, etc., is exemplified. While the deodorant which is used for the post-stage deodorizing layer 5 and has the oxidation decomposition function is not particularly limited, for example, the powder or moldings of a catalyst having the oxidation decomposition function or carries carried with the catalyst components are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高湿度環境下に於
いても発臭し難い脱臭方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deodorizing method which does not easily emit odor even in a high humidity environment.

【0002】[0002]

【従来の技術】一般家庭の居住空間、自動車等の車室
内、工場の作業場等の雰囲気中の各種の悪臭ガスまたは
有害ガス(以下臭気ガスと云う)を吸着処理や化学処理
によって脱臭浄化処理する空気清浄機が数多く開発され
使用されている。従来、物理的消臭法では、活性炭、ゼ
オライト、シリカゲル、アルミナなどの吸着剤が脱臭剤
として広く使用されてきた。また、臭気ガスを酸化分解
触媒を用いて接触分解する方法も広く行われている。物
理的消臭法と化学的消臭法を組み合わせ脱臭法も開発さ
れている。しかしながら、脱臭剤を比較的長期間にわた
って使用すると、特に高湿度環境下に於いて、脱臭剤自
体の着臭による発臭の問題や、脱臭剤に吸着された臭気
物質の化学変化により不快な臭気を発するようになると
いう問題が生じてくる。
2. Description of the Related Art Various odorous or harmful gases (hereinafter referred to as odorous gases) in the atmosphere of a living space of a general household, a cabin of an automobile or the like, a workshop of a factory, and the like are deodorized and purified by an adsorption treatment or a chemical treatment. Many air purifiers have been developed and used. Conventionally, in the physical deodorization method, adsorbents such as activated carbon, zeolite, silica gel, and alumina have been widely used as deodorants. Also, a method of catalytically decomposing odor gas using an oxidative decomposition catalyst is widely used. A deodorization method combining physical deodorization and chemical deodorization has also been developed. However, if the deodorant is used for a relatively long period of time, especially in a high-humidity environment, unpleasant odor is caused by the problem of odor caused by the odor of the deodorant itself, and unpleasant odor due to chemical change of the odorant adsorbed by the deodorant. Issue arises.

【0003】活性炭は、臭気ガス中の有害成分を吸着除
去するための脱臭剤として古くから使用されており、多
くの脱臭処理に適した活性炭の種類、形状が研究され開
発されてきた。例えば、特開昭60−135061号公
報には、活性炭、ゼオライト等の粉状物やイオン交換樹
脂から選ばれる物理的吸着能を有する吸着型脱臭剤と植
物油成分や脂肪族ジアルデヒド、鉄イオン+L−アスコ
ルビン酸等の化学反応型脱臭能を有する反応型脱臭剤と
を連続気泡発泡体中に含有せしめたことを特徴とするス
ポンジ状脱臭剤が開示されており、その詳細な説明中に
は吸着型脱臭剤の脱臭効果に加えて液状の反応型脱臭剤
の反応吸着効果が複合して脱臭の相乗効果が得られ、極
めて高い脱臭効果が得られるものであると記載されてい
る。
[0003] Activated carbon has long been used as a deodorant for adsorbing and removing harmful components in odorous gas, and the types and shapes of activated carbon suitable for many deodorizing treatments have been studied and developed. For example, Japanese Unexamined Patent Publication (Kokai) No. 60-135061 discloses an adsorption type deodorant having physical adsorption capacity selected from powdered substances such as activated carbon and zeolite and ion exchange resins, a vegetable oil component, an aliphatic dialdehyde, and an iron ion + L. -A sponge-like deodorizing agent characterized by including a reactive deodorizing agent having a chemical reaction-type deodorizing ability such as ascorbic acid in an open-cell foam is disclosed. It is described that a synergistic effect of deodorization is obtained by combining a reaction adsorption effect of a liquid reactive deodorant in addition to a deodorizing effect of a liquid type deodorant, and an extremely high deodorizing effect is obtained.

【0004】また、活性炭は、吸着剤、触媒等が有害物
質によって被害を受けないようにするための前処理剤と
しても広く使用されており、例えば特開昭51−116
177号公報には、排気ガス中の溶剤を活性炭吸着法を
用いて吸着回収する方法において、粗大粒子を除去した
排ガスをファインフィルターおよび活性炭予備層を通し
た後、平均細孔径50Åの細孔を有する多孔質活性充填
剤層を通し、更に通常の活性炭によりマクロ孔に富む活
性炭で吸着を行うことによって、後段の吸着剤の吸着能
低下を来す不純物をガス状あるいは粒子状で含有する排
ガスから吸着剤の吸着能力を落すことなく溶剤を効率良
く回収する方法が開示されている。
Activated carbon is also widely used as a pretreatment agent for preventing adsorbents, catalysts and the like from being damaged by harmful substances.
No. 177 discloses a method for adsorbing and recovering a solvent in an exhaust gas using an activated carbon adsorption method. In the method, exhaust gas from which coarse particles have been removed is passed through a fine filter and an activated carbon preliminary layer, and then pores having an average pore diameter of 50 ° are removed. Through the porous activated filler layer having, and by performing adsorption with activated carbon rich in macropores using ordinary activated carbon, the exhaust gas containing impurities in the gaseous or particulate form that lowers the adsorbing ability of the adsorbent at the subsequent stage is removed from the exhaust gas. A method for efficiently recovering a solvent without reducing the adsorbing ability of an adsorbent is disclosed.

【0005】前述したように、種々の活性炭を組み合わ
せて脱臭能を改善したり、活性炭によって後段の処理に
とって不都合な物質もしくは、後段の機能を阻害する物
質を前処理する技術はいろいろと開発されている。しか
しながら、これらの先行技術文献には、経時時間並びに
環境の変化によって脱臭剤が発臭してくるという問題を
解決するための教示も示唆も全く存在しない。
As described above, various techniques have been developed to improve the deodorizing ability by combining various activated carbons, or to pretreat substances that are inconvenient for the subsequent treatment or inhibit the function of the latter by using activated carbon. I have. However, there is no teaching or suggestion in these prior art documents to solve the problem that the deodorant emits odor due to a change with time and environment.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明の目的
は、臭気ガスを脱臭剤が吸着することによって生ずる一
次的悪臭および時間の経過により脱臭剤に吸着された物
質の化学変化により不快な臭気を発するようになる二次
的悪臭の発生を防止した新規な脱臭方法を提供する点に
ある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a primary odor caused by adsorption of an odor gas by a deodorant and an unpleasant odor due to a chemical change of a substance adsorbed by the deodorant over time. It is an object of the present invention to provide a novel deodorizing method that prevents generation of a secondary odor that is generated.

【0007】[0007]

【発明が解決するための手段】本発明者らは、臭気ガス
を脱臭剤が吸着することによって生ずる一次的悪臭およ
び時間の経過により脱臭剤に吸着された物質の化学変化
により不快な臭気を発するようになる二次的悪臭の発生
を防止するため、種々の点から検討を加え鋭意研究を重
ねた結果、活性炭を主とする吸着剤とその他の酸化分解
機能を有する脱臭剤を特定の使用順序で組み合わせて使
用することにより脱臭剤の有効期間が飛躍的に延び、高
湿度環境下に於いても発臭し難いことを見いだした。本
発明は上記知見に基づいてなされたものである。
SUMMARY OF THE INVENTION The present inventors have developed a primary odor caused by the adsorption of an odor gas by a deodorant and an unpleasant odor due to a chemical change of a substance adsorbed on the deodorant over time. In order to prevent the generation of secondary odors, we conducted various studies and conducted intensive studies.As a result, we decided to use an adsorbent mainly composed of activated carbon and other deodorants with oxidative decomposition functions in a specific order of use. By using in combination, the effective period of the deodorant was dramatically extended, and it was found that it was difficult to emit odor even in a high humidity environment. The present invention has been made based on the above findings.

【0008】すなわち、本発明は、活性炭からなる前段
脱臭層を通した後、酸化分解機能を有する脱臭剤からな
る後段脱臭層を通すことを特徴とする脱臭方法に関す
る。
[0008] That is, the present invention relates to a deodorization method characterized in that after passing through a pre-deodorization layer made of activated carbon, it is passed through a post-deodorization layer made of a deodorant having an oxidative decomposition function.

【0009】[0009]

【発明の実施の形態】本発明の脱臭方法は、ファンなど
の空気導入手段により処理ガスを空気清浄機に導入し、
好ましくはまずフィルターにより処理ガス中のミストや
塵などの粗大粒子を除去した後、上流側に配設した活性
炭からなる前段脱臭層を通し、ついでその下流側に配設
した酸化分解機能を有する脱臭剤からなる後段脱臭層を
通すことにより空気浄化を行うものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the deodorizing method of the present invention, a processing gas is introduced into an air purifier by an air introducing means such as a fan.
Preferably, first, after removing coarse particles such as mist and dust in the processing gas by a filter, the filter is passed through a pre-stage deodorizing layer made of activated carbon provided on the upstream side, and then provided with a deoxidizing function having an oxidative decomposition function provided on the downstream side. Air purification is carried out by passing through a second-stage deodorizing layer made of an agent.

【0010】空気導入手段は、空気清浄機に処理ガスを
導入できる手段であれば型式およびその設置位置を問わ
ない。
The type of the air introduction means is not limited, as long as it can introduce the processing gas into the air purifier.

【0011】処理ガス中の粗大粒子を除去するためのフ
ィルターについてはとくに制限はなく、たとえばグラス
ウール等で構成される通常のフィルターにより処理ガス
中のすす、ミストや塵などの粒子状不純物やヤニなどを
物理的に除去減少させることができる。
There is no particular limitation on the filter for removing coarse particles in the processing gas. For example, a particulate filter such as soot, mist or dust in the processing gas or tar, etc., is filtered by a usual filter made of glass wool or the like. Can be physically removed.

【0012】本発明の脱臭方法に係る空気清浄機の上流
側に配設される前段脱臭層に用いられる活性炭は、吸着
剤としての機能を果たす材料であればとくに制限はな
い。活性炭の性能は、その原材料に左右される場合が多
いが、活性炭の原料としては、椰子殻、石炭、木材、ピ
ッチ、樹脂等があげられ、その使用目的、用途に応じて
適宜選択できる。活性炭の形状は特に制限するものでは
なく、粉末状、破砕状、円柱状、ペッレト状等の粒状の
活性炭や、ハニカム状に成型した活性炭や、繊維状活性
炭をフェルト状、糸状、織物状、紙状に加工したものな
どを用いることができる。ハニカム状活性炭は、圧力損
失が低く大量のガス処理に適しており、繊維状活性炭
は、粒状活性炭に比べ吸着・脱着速度が大幅に改善され
さらに低濃度における吸着量も大きいので好適な実施形
態である。
The activated carbon used in the pre-deodorization layer disposed upstream of the air purifier according to the deodorization method of the present invention is not particularly limited as long as it is a material that functions as an adsorbent. The performance of activated carbon often depends on its raw material, but raw materials of activated carbon include coconut shell, coal, wood, pitch, resin, and the like, and can be appropriately selected according to the purpose and use of the activated carbon. The shape of the activated carbon is not particularly limited, and powdered, crushed, columnar, pelletized, etc., activated carbon, honeycomb-shaped activated carbon, fibrous activated carbon, felt, thread, woven, paper What was processed into the shape can be used. Honeycomb activated carbon has a low pressure loss and is suitable for treating large amounts of gas.Fibrous activated carbon has a significantly improved adsorption / desorption speed compared to granular activated carbon, and has a large amount of adsorption at a low concentration. is there.

【0013】しかしながら、活性炭は、疎水性で極性が
極めて乏しいため、湿度が高い環境下でも、非極性分
子、例えばベンゼン、トルエン等の溶剤臭からなる悪臭
を選択的に良く吸着する特性を有しているが、一方、ア
ンモニア、アミン類あるいはアルデヒド類等の極性分子
は吸着し難く、吸着速度も遅いので、例えば、喫煙臭を
活性炭に通してもアンモニア等の刺激臭やアセトアルデ
ヒド等からなる悪臭が漏洩してくる。
However, since activated carbon is hydrophobic and has very poor polarity, it has the property of selectively adsorbing bad odors from non-polar molecules, for example, solvent odors such as benzene and toluene, even in high humidity environments. However, on the other hand, polar molecules such as ammonia, amines or aldehydes are hardly adsorbed and the adsorption speed is slow.For example, even if a smoking odor is passed through activated carbon, a pungent odor such as ammonia or a malodor such as acetaldehyde is generated. Leaks out.

【0014】また、後述の酸化分解機能を有する脱臭剤
は、特に高湿度環境下においては、特定はできないが処
理ガス中のいずれかの臭気成分または有機物と反応し、
それらが脱臭剤上で化学変化を生じて嗅覚閾値の非常に
低い臭気物質を生成すると考えられる。すなわち、酸化
分解機能を有する脱臭剤は、二次的に生成する臭気物質
による異臭を発生し、新たな異臭発生の要因を生ずると
考えられる。
The deodorant having an oxidative decomposition function, which will be described later, reacts with any odor component or organic substance in the processing gas, although it cannot be specified particularly in a high humidity environment,
It is believed that they cause a chemical change on the deodorant to produce odorants with very low olfactory thresholds. That is, it is considered that the deodorant having the oxidative decomposition function generates an unpleasant odor due to the odor substance generated secondarily, and causes a new factor of the generation of an unpleasant odor.

【0015】そこで、本発明においては、その上流側に
配設された活性炭によりこれらの原因物質を吸着除去ま
たは化学変化させることを狙ったものである。
In view of the above, the present invention aims to adsorb and remove these causative substances or chemically change them by activated carbon disposed upstream thereof.

【0016】本発明の脱臭方法に係る空気清浄機の下流
に配設される後段脱臭層に用いられる酸化分解機能を有
する脱臭剤は、臭気ガスを酸化分解処理することができ
る脱臭剤であればとくに制限はない。酸化分解機能を有
する脱臭剤は、例えば、酸化分解機能を有する触媒の粉
体または成形体あるいは担体に触媒成分を担持したもの
でもよい。
The deodorizing agent having an oxidative decomposition function used in the latter deodorizing layer disposed downstream of the air purifier according to the deodorizing method of the present invention is a deodorizing agent capable of oxidatively decomposing odor gas. There are no particular restrictions. The deodorant having an oxidative decomposition function may be, for example, a catalyst powder having a oxidative decomposition function, a molded product, or a carrier having a catalyst component supported thereon.

【0017】前記担体としてはとくに制限はないが、通
常多孔質担体を使用し、反応ガスが流通可能であって圧
力損失の少ない担体であることが好ましい。例えば、コ
ージライト、アルミナ、シリカアルミナ、チタニアシリ
カ、ゼオライト、セピオライト、ゼオライト−セピオラ
イト混合物等の無機質担体が適している。担体の形状
は、ハニカム状、スポンジ状、マット状、織布状、板
状、円筒状あるいは粒状等の形状をとることができる
が、特に反応ガスの流通が容易なハニカム構造体もしく
は三次元網状構造体が圧力損失が低く大量のガス処理に
適しており好ましい。ハニカムのセル形状は任意であ
り、三角、四角、五角、六角などの多角形状やコルゲー
ト状などの形状をとることができる。例えば、特公昭5
9−15028号公報に提案されているようなセラミッ
ク繊維の集合体(ニチアス社製ハニクル担体)、すなわ
ち、珪酸ゲルにより互いに結合されているシリカ繊維、
アルミナ繊維、アルミノシリケート繊維、ジルコニア繊
維などの無機質繊維から選択されるセラミック繊維のシ
ート状集合体をハニカム状に積層して構成されるハニカ
ム構造体が、圧力損失も少なく幾何学的表面積も大きく
かつ高い含水率を有するため活性成分を多く担持させる
ことができるので特に好ましい。
The carrier is not particularly limited, but it is preferable to use a porous carrier, which is generally a carrier through which a reaction gas can flow and has a small pressure loss. For example, inorganic carriers such as cordierite, alumina, silica alumina, titania silica, zeolite, sepiolite, and a zeolite-sepiolite mixture are suitable. The shape of the carrier may be a honeycomb shape, a sponge shape, a mat shape, a woven fabric shape, a plate shape, a cylindrical shape, a granular shape, or the like. The structure is preferable because it has a low pressure loss and is suitable for processing a large amount of gas. The cell shape of the honeycomb is arbitrary, and may be a polygonal shape such as a triangle, a square, a pentagon, or a hexagon, or a shape such as a corrugated shape. For example,
An aggregate of ceramic fibers as proposed in JP-A-9-15028 (a honeycomb carrier manufactured by Nichias), that is, silica fibers bonded to each other by a silicate gel;
A honeycomb structure formed by laminating a sheet-like aggregate of ceramic fibers selected from inorganic fibers such as alumina fibers, aluminosilicate fibers, and zirconia fibers in a honeycomb shape has a low pressure loss and a large geometric surface area. It is particularly preferable because it has a high water content and can support a large amount of the active ingredient.

【0018】前記触媒成分としては、臭気ガスを酸化分
解することのできるものであれば良く特に制限されな
い。好ましい触媒成分は、ロジウム、パラジウム、ルテ
ニウム、イリジウムおよび白金からなる白金族元素;
鉄、コバルト、クロミウムおよびニッケルからなる遷移
金属元素;銅および銀などの第I族元素;マンガンなど
の第VII族元素;亜鉛などの第II族元素および、セ
リウム、ランタンなどの希土類金属などである。これら
の金属の1種類またはこれらを適宜組み合わせて触媒成
分とする。触媒成分は元素状の金属、その酸化物あるい
は複合体の状態で使用でき、含浸法、スラリ−法、ウォ
ッシュコ−ト法等の従来法により担体に担持して用いら
れる。
The catalyst component is not particularly limited as long as it can oxidatively decompose odor gas. Preferred catalyst components are platinum group elements consisting of rhodium, palladium, ruthenium, iridium and platinum;
Transition metal elements composed of iron, cobalt, chromium and nickel; group I elements such as copper and silver; group VII elements such as manganese; group II elements such as zinc, and rare earth metals such as cerium and lanthanum. . One of these metals or a suitable combination thereof is used as a catalyst component. The catalyst component can be used in the form of an elemental metal, its oxide or a complex, and is used by being supported on a carrier by a conventional method such as an impregnation method, a slurry method, a wash coat method, or the like.

【0019】また、これらの金属イオンをゼオライトに
イオン交換処理したものが、好適に使用できる。例え
ば、アンモニアやジメチルアミン、トリメチルアミン等
のアミン類等の塩基性の臭気成分並びに硫化水素、メチ
ルメルカプタンのような悪臭成分に対して特に効果的な
脱臭性能を有する銅成分でY型ゼオライトをイオン交換
したものが特に好ましく、これと、アルデヒドやジメチ
ルサルファイトに対する吸着性能に特に優れた疎水性シ
リカライトと組み合わせた脱臭剤は、優れた脱臭効果を
有し、雰囲気中の湿度に影響を受けにくい秀逸な脱臭剤
である。
Those obtained by subjecting these metal ions to ion exchange treatment with zeolite can be suitably used. For example, ion exchange Y-type zeolite with a basic odor component such as amines such as ammonia, dimethylamine and trimethylamine, and a copper component having a particularly effective deodorizing performance against malodorous components such as hydrogen sulfide and methyl mercaptan. The deodorant in combination with the hydrophobic silicalite, which is particularly excellent in the adsorption performance for aldehyde and dimethyl sulfite, has an excellent deodorizing effect and is not easily affected by the humidity in the atmosphere. It is a deodorant.

【0020】触媒成分の担持量は、使用する触媒成分お
よび処理すべき悪臭ガス成分により異なるが、一般に、
白金族元素の場合には、0.1〜10g/リットル、好
ましくは0.5〜5g/リットル、更に好ましくは1〜
2g/リットルであり、その他の卑金属元素の場合に
は、10〜100g/リットル、好ましくは20〜70
g/リットル、更に好ましくは30〜50g/リットル
である。希土類金属を併用する場合には、希土類金属を
1〜100g/リットル、好ましくは5〜20g/リッ
トル担持させる。
The amount of the catalyst component to be carried varies depending on the catalyst component used and the malodorous gas component to be treated.
In the case of a platinum group element, 0.1 to 10 g / liter, preferably 0.5 to 5 g / liter, and more preferably 1 to 5 g / liter.
2 g / liter, and in the case of other base metal elements, 10 to 100 g / liter, preferably 20 to 70 g / liter.
g / liter, more preferably 30 to 50 g / liter. When a rare earth metal is used in combination, the rare earth metal is supported at 1 to 100 g / l, preferably 5 to 20 g / l.

【0021】空気清浄機の後段脱臭層に用いられる酸化
分解機能を有する脱臭剤は、特に活性炭で吸着除去し難
いアンモニア、アミン類やアルデヒド類等の極性分子を
効率よく酸化分解除去できるものが好ましい。
The deodorizing agent having an oxidative decomposition function used in the latter deodorizing layer of the air purifier is preferably one capable of efficiently oxidatively decomposing and removing polar molecules such as ammonia, amines and aldehydes which are difficult to adsorb and remove with activated carbon. .

【0022】次いで本発明の脱臭方法を図1を用いて説
明する。処理ガスは、ファン3によりライン1よりフィ
ルター2に入り、すす、ミスト、塵などの処理ガス中の
粒子状不純物やヤニなどを除き、活性炭からなる前段脱
臭層4を通り、活性炭により処理ガス中に含まれる悪臭
成分並びにはっきりとは特定できないが後段脱臭層の酸
化分解機能を有する脱臭剤による化学反応によって二次
的に異臭成分に変換される成分を吸着除去した後、酸化
分解機能を有する脱臭剤からなる後段脱臭層5を通り、
ここで、前段脱臭層の活性炭で吸着除去でされなかった
悪臭成分が脱臭剤により酸化分解されたり、後段脱臭層
により吸着除去され、浄化された処理ガスはライン6か
ら排出される。
Next, the deodorizing method of the present invention will be described with reference to FIG. The processing gas enters the filter 2 from the line 1 by the fan 3, and removes particulate impurities such as soot, mist, dust, etc. in the processing gas and dusts, and passes through the former deodorizing layer 4 made of activated carbon. The odor components contained in the odor and the components that are not clearly identified but are converted to off-flavor components by a chemical reaction with a deodorizing agent having an oxidative decomposition function in the later deodorizing layer are adsorbed and removed, and then the deodorant having an oxidative decomposition function Through the second deodorizing layer 5 composed of the agent,
Here, the offensive odor components that have not been adsorbed and removed by the activated carbon of the former deodorizing layer are oxidatively decomposed by the deodorant, or are adsorbed and removed by the latter deodorizing layer, and the purified processing gas is discharged from the line 6.

【0023】[0023]

【実施例】以下に、実施例、比較例および試験例によっ
て本発明をさらに詳しく説明する。ただし、本発明はこ
れらの実施例により何ら限定されるものではない。
The present invention will be described below in more detail with reference to Examples, Comparative Examples and Test Examples. However, the present invention is not limited at all by these examples.

【0024】実施例1 セル形状が正方形で、セル密度が1平方インチ当たり5
00セルの京セラ社製ハニカム状活性炭(商品名:AB
165、活性炭として65重量%含有)を、大きさが縦
75mm、横75mm、厚さ20mmに成型し、前段脱
臭層Aを調製した。
EXAMPLE 1 A square cell having a cell density of 5 per square inch
00 cell honeycomb activated carbon manufactured by Kyocera (brand name: AB
165, containing 65% by weight as activated carbon) were molded to a size of 75 mm in length, 75 mm in width, and 20 mm in thickness to prepare a first-stage deodorized layer A.

【0025】600gの田中化学社製硝酸マンガン溶液
{Mn(NO32として50重量%含有}に、117g
の硝酸銅結晶{Cu(NO3)2・3H2O}を溶解し、さ
らにこれを208gのイオン交換水で希釈して、Mnに
換算して10.0重量%の硝酸マンガンと、Cuにして
3.3重量%の硝酸銅を含有する硝酸マンガン・硝酸銅
水溶液を調製した。
117 g of a manganese nitrate solution (containing 50% by weight as Mn (NO 3 ) 2 ) manufactured by Tanaka Chemical Co., Ltd.
Of copper nitrate crystal {Cu (NO 3 ) 2 .3H 2 O}, and further diluted with 208 g of ion-exchanged water to obtain 10.0% by weight of manganese nitrate in terms of Mn and Cu. To prepare a manganese nitrate / copper nitrate aqueous solution containing 3.3% by weight of copper nitrate.

【0026】イオン交換水44重量部に、ペンタシル型
ゼオライト(シリカ/アルミナのモル比が250のUO
P社製、商品名:シリカライトS−115)24重量部
と、Y型ゼオライト(シリカ/アルミナのモル比が6の
UOP社製、商品名:LZY84)12重量部と、Al
23換算で20重量%のアルミナを含むアルミナゾル2
0重量部とを加え、湿式ボールミルを用いて8時間、混
合・粉砕してスラリーを調製した。
In 44 parts by weight of ion-exchanged water, a pentasil-type zeolite (UO having a silica / alumina molar ratio of 250) was used.
Company P, trade name: silicalite S-115) 24 parts by weight, Y-type zeolite (silica / alumina, molar ratio of 6 manufactured by UOP, trade name: LZY84) 12 parts by weight, and Al
Alumina sol 2 containing 20% by weight of alumina in terms of 2 O 3
And 0 parts by weight, and mixed and pulverized for 8 hours using a wet ball mill to prepare a slurry.

【0027】このスラリーに、75mm×75mm×、
厚さ20mmの大きさのケイ酸ゲルにより互いに結合さ
れているセラミック繊維のシート状集合体をハニカム状
に積層して構成されている1平方インチ当たり600セ
ルのニチアス社製コルゲートハニカム担体(商品名:ハ
ニクル)を浸漬し、引き上げ、余剰のスラリーを空気を
吹き付けて除去した後、150℃の温度で1時間乾燥
し、さらに400℃の温度で1時間焼成した。
[0027] To this slurry, 75mm x 75mm x,
Nichias corrugated honeycomb carrier (trade name: 600 cells per square inch) constituted by laminating in a honeycomb shape a sheet-like aggregate of ceramic fibers bonded to each other by a silicate gel having a thickness of 20 mm. : Honeycomb) was immersed, pulled up, and the excess slurry was removed by blowing air, dried at 150 ° C. for 1 hour, and fired at 400 ° C. for 1 hour.

【0028】前記硝酸マンガン・硝酸銅水溶液に、前記
焼成したコルゲートハニカム担体を浸漬し、引き上げ、
空気を吹き付けて余剰の水溶液を除去した後、120℃
の温度で1時間乾燥した後、空気を流通しながら400
℃の温度でさらに1時間焼成し、脱臭剤1リットル当た
り100gのシリカライト、50gのYゼオライト、1
7gのアルミナ並びにMnO2換算で38gの活性酸化
マンガンおよびCuO換算で10gの活性酸化銅を担持
して、後段用脱臭剤Xを調製した。
The baked corrugated honeycomb carrier is immersed in the manganese nitrate / copper nitrate aqueous solution, pulled up,
After blowing excess air to remove excess aqueous solution,
After drying for 1 hour at a temperature of 400
C. for another 1 hour at a temperature of 100 ° C., and 100 g of silicalite, 50 g of Y zeolite,
7 g of alumina, 38 g of active manganese oxide in terms of MnO 2 , and 10 g of active copper oxide in terms of CuO were supported, to prepare a deodorizer X for the subsequent stage.

【0029】口径80mm×80mm、長さ150mm
のガス流通式箱型脱臭試験器を1日平均30本のタバコ
が喫煙される42m3の部屋(温度25℃、相対湿度5
0%)に設置した。前記脱臭試験器の入口側に前段脱臭
層Aを設置し、その後ろに後段脱臭剤Xを設置し、可変
速式シロッコファンにより毎秒1mの風速で、脱臭試験
器に空気を4週間連続循環させた後、部屋の温度を30
℃、相対湿度を70%に調整し同様に喫煙のある状態で
さらに3日間運転した後に、脱臭試験器の吹き出し口側
の臭気強度を6段階評価法で6人で測定評価した。その
平均評価の結果を表1に示す。
Diameter 80 mm x 80 mm, length 150 mm
Gas flow type box-deodorizing tester daily average 30 pieces of 42m 3 room cigarette is smoked (temperature 25 ° C., relative humidity 5
0%). A first-stage deodorizing layer A was installed at the inlet side of the deodorizing tester, a second-stage deodorizing agent X was installed behind the former, and air was continuously circulated through the variable-speed sirocco fan at a wind speed of 1 m per second for 4 weeks. After the room temperature reaches 30
After adjusting the temperature and the relative humidity to 70% and operating again in the state of smoking for three days, the odor intensity at the outlet side of the deodorization tester was measured and evaluated by six persons using a six-point evaluation method. Table 1 shows the results of the average evaluation.

【0030】実施例2 縦80mm、横80mm、厚さ20mmの大きさをもつ
20メッシュステンレス製金網容器に、二村化学社製粒
状成型活性炭(商品名:太閤TG)を充填して前段脱臭
層Bを形成した。この前段脱臭層Bを実施例1の前段脱
臭層Aのかわりに設置したことを除いて実施例1と同様
に、脱臭試験器の吹き出し口側の臭気強度を評価試験
し、その平均評価の結果を表1に示す。
Example 2 A 20 mesh stainless steel wire mesh container having a size of 80 mm in length, 80 mm in width and 20 mm in thickness is filled with granular activated carbon (trade name: Taiko TG) manufactured by Nimura Chemical Co., Ltd. Was formed. An evaluation test was conducted on the odor intensity on the outlet side of the deodorization tester in the same manner as in Example 1 except that the predeodorization layer B was installed instead of the predeodorization layer A in Example 1, and the results of the average evaluation Are shown in Table 1.

【0031】実施例3 厚さ10mmのポリウレタンフォームに活性炭粉末を練
り込んで添着したクラレ社製脱臭フィルター(品番:#
2000)を、縦75mm、横75mmの大きさに切り
出し、これを二枚重ねて前段脱臭層Cとした。この前段
脱臭層Cを実施例1の前段脱臭層Aのかわりに設置した
ことを除いて実施例1と同様に、脱臭試験器の吹き出し
口側の臭気強度を評価試験し、その平均評価の結果を表
1に示す。
Example 3 A deodorizing filter manufactured by Kuraray (product number: #) in which activated carbon powder was kneaded and impregnated into a polyurethane foam having a thickness of 10 mm.
2000) was cut out into a size of 75 mm in length and 75 mm in width, and two of them were stacked to obtain a pre-stage deodorized layer C. An evaluation test was conducted on the odor intensity on the outlet side of the deodorization tester in the same manner as in Example 1 except that the predeodorization layer C was installed instead of the predeodorization layer A in Example 1, and the results of the average evaluation Are shown in Table 1.

【0032】実施例4 イオン交換水44重量部に、ペンタシル型ゼオライト
(シリカ/アルミナのモル比が250のUOP社製、商
品名:シリカライトS−115)36重量部とAl23
換算で20重量%のアルミナを含むアルミナゾル20重
量部とを加え、湿式ボールミルを用いて8時間、混合・
粉砕してスラリーを調製した。このスラリーに、75m
m×75mm×、厚さ20mmの大きさの実施例4で用
いたと同様のニチアス社製コルゲートハニカム担体を浸
漬し、引き上げ、余剰のスラリーを空気を吹き付けて除
去した後、150℃の温度で1時間乾燥し、さらに40
0℃の温度で1時間焼成した。この焼成したコルゲート
ハニカム担体を、実施例1と同じ硝酸マンガン・硝酸銅
水溶液に含浸処理して、脱臭剤1リットル当たり150
gのシリカライト、17gのアルミナ並びにMnO2
算で38gの活性酸化マンガンおよびCuO換算で10
gの活性酸化銅を担持した後段脱臭剤Yを調製した。
Example 4 36 parts by weight of pentasil-type zeolite (manufactured by UOP having a silica / alumina molar ratio of 250, trade name: silicalite S-115) and 44 parts by weight of ion-exchanged water and Al 2 O 3
20 parts by weight of an alumina sol containing 20% by weight of alumina were added and mixed for 8 hours using a wet ball mill.
The slurry was prepared by grinding. 75m to this slurry
The same Nichias corrugated honeycomb carrier as used in Example 4 having a size of mx 75 mm x thickness of 20 mm was immersed and pulled up, and excess slurry was removed by blowing air. Dry for an additional 40 hours
Baking was performed at a temperature of 0 ° C. for 1 hour. The fired corrugated honeycomb carrier was impregnated with the same aqueous solution of manganese nitrate and copper nitrate as in Example 1 to obtain a 150 g / l deodorant.
g of silicalite, 17 g of alumina and 38 g of activated manganese oxide in terms of MnO 2 and 10 in terms of CuO.
A second stage deodorizer Y supporting g of active copper oxide was prepared.

【0033】実施例1の後段脱臭層Xにかえて後段脱臭
層Yを設置したことを除いて、実施例1と同様に脱臭試
験器の吹き出し口側の臭気強度を評価試験し、その平均
評価の結果を表1に示す。
The odor intensity at the outlet of the deodorization tester was evaluated in the same manner as in Example 1 except that the latter-stage deodorizing layer Y was provided instead of the latter-stage deodorizing layer X, and the average evaluation was performed. Table 1 shows the results.

【0034】実施例5 イオン交換水44重量部に、ペンタシル型ゼオライト
(シリカ/アルミナのモル比が250のUOP社製、商
品名:シリカライトS−115)18重量部と、ホプカ
ライト粉体(東洋CCI社製、商品名KCG−1P)1
8重量部と、SiO2換算で20重量%のシリカを含む
シリカゾル20重量部とを加え、ターボミキサーを用い
て8時間混合・分散してスラリーを調製した。このスラ
リーに、75mm×75mm×、厚さ20mmの大きさ
の実施例4で用いたと同様のニチアス社製コルゲートハ
ニカム担体を浸漬し、引き上げ、余剰のスラリーを空気
を吹き付けて除去した後、150℃の温度で1時間乾燥
して、脱臭剤1リットル当たり75gのシリカライト、
75gのホプカライトおよび17gのシリカを担持し
て、後段脱臭剤Zを調製した。
Example 5 18 parts by weight of pentasil-type zeolite (manufactured by UOP having a silica / alumina molar ratio of 250, trade name: silicalite S-115) and 44 parts by weight of ion-exchanged water and hopcalite powder (Toyo) CCG, product name KCG-1P) 1
8 parts by weight and 20 parts by weight of silica sol containing 20% by weight of silica in terms of SiO 2 were added, and mixed and dispersed using a turbo mixer for 8 hours to prepare a slurry. In this slurry, a Nichias corrugated honeycomb carrier similar to that used in Example 4 having a size of 75 mm × 75 mm × 20 mm in thickness was immersed and pulled up, and excess slurry was blown with air to remove the slurry. Dried for 1 hour at a temperature of 75 g of silicalite per liter of deodorant,
Second-stage deodorant Z was prepared by supporting 75 g of hopcalite and 17 g of silica.

【0035】実施例1の後段脱臭層Xにかえて後段脱臭
層Zを設置したことを除いて、実施例1と同様に脱臭試
験器の吹き出し口側の臭気強度を評価試験し、その平均
評価の結果を表1に示す。
The odor intensity on the outlet side of the deodorizing tester was evaluated and evaluated in the same manner as in Example 1 except that the latter deodorizing layer Z was provided in place of the latter deodorizing layer X, and the average evaluation was performed. Table 1 shows the results.

【0036】比較例1 入口側に実施例1の後段脱臭層Xを設置し、その後ろに
実施例1の前段脱臭層Aを配設したことを除いて実施例
1と同様に脱臭試験器の吹き出し口側の臭気強度を評価
試験し、その平均評価の結果を表1に示す。
COMPARATIVE EXAMPLE 1 A deodorizing test apparatus was prepared in the same manner as in Example 1 except that the latter-stage deodorizing layer X of Example 1 was provided on the inlet side, and the former-stage deodorizing layer A of Example 1 was provided behind the latter. An evaluation test was conducted on the odor intensity on the outlet side, and the results of the average evaluation are shown in Table 1.

【0037】比較例2 入口側に実施例1の後段脱臭層Xを設置し、その後ろに
も実施例1の後段脱臭層Xを配設したことを除いて実施
例1と同様に脱臭試験器の吹き出し口側の臭気強度を評
価試験し、その平均評価の結果を表1に示す。
COMPARATIVE EXAMPLE 2 A deodorizing test apparatus was prepared in the same manner as in Example 1 except that the latter-stage deodorizing layer X of Example 1 was provided on the inlet side, and the latter-stage deodorizing layer X of Example 1 was also provided behind the latter. The evaluation test was conducted on the odor intensity on the outlet side of the sample, and the results of the average evaluation are shown in Table 1.

【0038】比較例3 実施例1の後段脱臭層として、後段脱臭層Xのかわりに
前段脱臭層Aを設置したことを除いて実施例1と同様に
脱臭試験器の吹き出し口側の臭気強度を評価試験し、そ
の平均評価の結果を表1に示す。
Comparative Example 3 The odor intensity on the outlet side of the deodorization tester was measured in the same manner as in Example 1 except that the former deodorizing layer A was provided instead of the latter deodorizing layer X as the latter deodorizing layer. The evaluation test was conducted, and the results of the average evaluation are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】6段階臭気強度評価 0 : 無臭 1 : やっと感知できる臭い(検知閾値濃度) 2 : 何の臭いであるかがわかる弱い臭い(認知閾値
濃度) 3 : 楽に感知できる臭い 4 : 強い臭い 5 : 強烈な臭い
6-step odor intensity evaluation 0: odorless 1: odor finally detectable (detection threshold density) 2: weak odor (recognition threshold density) that tells what odor is 3: odor easily detectable 4: strong odor 5 : Strong smell

【0041】表1より明らかなように、実施例1〜5の
入口側に、活性炭からなる前段脱臭層、出口側に酸化分
解機能を有する脱臭剤からなる後段脱臭層を配設した本
発明の脱臭方法による吹き出し口の臭気強度は、上流に
酸化分解機能を有する脱臭剤、下流に活性炭からなる脱
臭層を配設した比較例1の脱臭方法と比較して格段に低
く、本発明の脱臭方法が異臭を発生し難いことがわか
る。すなわち、脱臭処理は、単純に活性炭と酸化分解機
能を有する脱臭剤とによって役割分担しているのではな
く、処理ガスをまず活性炭からなる前段脱臭層を通した
後、酸化分解機能を有する脱臭剤からなる後段脱臭層を
通すことによってはじめて、格段に入口側に、異臭を発
生し難いことが証明された。また、本発明の脱臭方法に
よる吹き出し口の臭気強度は、上流、下流とも酸化分解
機能を有する脱臭剤を配設した比較例2並びに上流、下
流とも活性炭からなる脱臭層を配設した比較例3の脱臭
方法による吹き出し口臭気強度と比較しても格段に低く
本発明の脱臭方法が異臭を発生し難いことがわかる。な
お、実施例2の場合は、活性炭がポリウレタンフォーム
に練り込んで添着されているので表面に露頭している活
性炭の割合が少なく、ポリウレタンフォームそのものの
露頭割合が多いため、ポリウレタンフォームにミストや
塵が付着しやすく、付着したミストからの臭気放出や、
付着した塵に吸着した臭気の放出が多いので吹き出し口
臭気強度が他の物より強くなったものと考えられる。す
なわち、活性炭からなる前段脱臭層を通した後、酸化分
解機能を有する脱臭剤からなる後段脱臭層を通す本発明
の脱臭方法は、まず活性炭に処理ガスを通すことによっ
て、理由は明解でなく処理ガス中のいずれのものか特定
もできないが脱臭剤上で化学変化を生じ臭気物質を生成
する原因物質を、吸着除去または化学変化させることが
できるので、長期にわたり高湿度環境下で脱臭処理して
も異臭の放出が非常に少なくないことが裏付けられた。
As is clear from Table 1, in the present invention, the former deodorizing layer made of activated carbon was provided on the inlet side of Examples 1 to 5, and the latter deodorizing layer was made of the deodorizing agent having an oxidative decomposition function on the outlet side. The odor intensity of the outlet by the deodorizing method is much lower than that of Comparative Example 1 in which a deodorizing agent having an oxidative decomposition function is provided upstream and a deodorizing layer made of activated carbon is provided downstream. It turns out that it is hard to generate a bad smell. That is, the deodorizing treatment is not simply performed by the activated carbon and the deodorizing agent having the oxidative decomposition function, but the processing gas is first passed through the former deodorizing layer made of the activated carbon, and then the deodorizing agent having the oxidizing decomposition function. For the first time, it was proved that an unpleasant odor was unlikely to be generated at the entrance side by passing through a deodorizing layer consisting of. Further, the odor intensity at the outlet by the deodorizing method of the present invention was determined in Comparative Example 2 in which a deodorizing agent having an oxidative decomposition function was disposed both upstream and downstream, and Comparative Example 3 in which a deodorizing layer made of activated carbon was disposed both upstream and downstream. In comparison with the odor intensity of the outlet by the deodorizing method, it can be seen that the deodorizing method of the present invention hardly generates an unpleasant odor. In the case of Example 2, since the activated carbon was kneaded into the polyurethane foam and impregnated, the proportion of the activated carbon exposed on the surface was small, and the proportion of the exposed polyurethane foam itself was large. Is easy to adhere, odor release from the attached mist,
It is probable that the emission odor intensity of the outlet was higher than that of the other substances because the amount of odor adsorbed by the attached dust was large. In other words, the deodorization method of the present invention, in which the treatment gas is first passed through the activated carbon, is passed through the pre-deodorization layer made of activated carbon, and then passed through the latter deodorization layer made of a deodorizer having an oxidative decomposition function. Although it is not possible to identify any of the gases, it is possible to adsorb and remove or chemically change the substances that cause chemical changes on the deodorant and generate odorous substances. It was confirmed that the emission of off-flavor was not very low.

【0042】[0042]

【発明の効果】活性炭からなる前段脱臭層を通した後、
酸化分解機能を有する脱臭剤からなる後段脱臭層を通す
ことにより、長期間脱臭処理しても、また高湿度環境下
で脱臭処理しても異臭放出を非常に少なくでき、脱臭剤
の交換や再生の期間を大幅に延長できる。
After passing through the former deodorizing layer made of activated carbon,
By passing through the post-deodorizing layer consisting of a deodorizing agent with oxidative decomposition function, even when deodorizing for a long period of time or even in a high-humidity environment, the emission of off-odors can be extremely reduced, and replacement and regeneration of the deodorizing agent Can be greatly extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の脱臭方法を説明するためのフローシー
トである。
FIG. 1 is a flow sheet for explaining a deodorizing method of the present invention.

【符号の説明】[Explanation of symbols]

1 ライン 2 フィルター 3 ファン 4 前段脱臭層 5 後段脱臭層 6 ライン 1 line 2 filter 3 fan 4 front deodorization layer 5 rear deodorization layer 6 line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梨子田 敏也 神奈川県平塚市四之宮1212番地 日揮ユニ バーサル株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshiya Nashida 1212 Shinomiya, Hiratsuka-shi, Kanagawa Prefecture JGC Universal Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 活性炭からなる前段脱臭層を通した後、
酸化分解機能を有する脱臭剤からなる後段脱臭層を通す
ことを特徴とする脱臭方法。
1. After passing through a pre-deodorization layer made of activated carbon,
A deodorizing method characterized by passing through a second deodorizing layer comprising a deodorizing agent having an oxidative decomposition function.
JP9311375A 1997-10-27 1997-10-27 Deodorization Pending JPH11128668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9311375A JPH11128668A (en) 1997-10-27 1997-10-27 Deodorization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9311375A JPH11128668A (en) 1997-10-27 1997-10-27 Deodorization

Publications (1)

Publication Number Publication Date
JPH11128668A true JPH11128668A (en) 1999-05-18

Family

ID=18016428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9311375A Pending JPH11128668A (en) 1997-10-27 1997-10-27 Deodorization

Country Status (1)

Country Link
JP (1) JPH11128668A (en)

Similar Documents

Publication Publication Date Title
US6096277A (en) Pollutant removal from air in closed spaces
Lee et al. Evaluation of activated carbon filters for removal of ozone at the PPB level
JP2002119809A (en) Filter and air cleaner and air conditioner using the same
WO2001062307A1 (en) Apparatus for removing chemical substance
JP3722866B2 (en) Hydrophobic deodorizing material and method for regenerating the same
JP4780490B2 (en) Activated carbon filter
JP2000210534A (en) Photocatalyst deodorizing filter
JP2000210372A (en) Air cleaning film and deodorant filter
JP2002191682A (en) Air cleaner and air cleaning filter
JPH11128668A (en) Deodorization
JPH0947500A (en) Deodorization filter
JP4948817B2 (en) Deodorant with active oxygen scavenging ability and air purifier using the same
JP3546766B2 (en) Deodorizing catalyst
JPH07155611A (en) Catalyst and method for removing malodorous substance
JP4033552B2 (en) Air purifying filter and air purifier using the same
JP3618186B2 (en) Manufacturing method of improved deodorant
JPH1033646A (en) Toilet deodorizing catalyst
JP3029764B2 (en) Deodorant
JPH0810315A (en) Air cleaning agent and deodorizing filter using the same for air cleaner
JP2000262844A (en) Deodorizing filter
JPH0630977A (en) Air cleaning agent and air cleaner
JP2006217995A (en) Deodorant, method of manufacturing deodorant, and deodorizer using the deodrant
JP2001327585A (en) Deodorant body, dust collecting and deodorizing device using the same and method for using deodorant body
JP2000237538A (en) Photocatalytic air purifier
JP2002028486A (en) Adsorption and decomposition agent of aldehydes and producing method thereof