JPH11126630A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH11126630A
JPH11126630A JP9292274A JP29227497A JPH11126630A JP H11126630 A JPH11126630 A JP H11126630A JP 9292274 A JP9292274 A JP 9292274A JP 29227497 A JP29227497 A JP 29227497A JP H11126630 A JPH11126630 A JP H11126630A
Authority
JP
Japan
Prior art keywords
oxygen gas
group
electrode plate
battery
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9292274A
Other languages
Japanese (ja)
Inventor
Keiichi Wada
圭一 和田
Tsunemi Aiba
恒美 相羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9292274A priority Critical patent/JPH11126630A/en
Publication of JPH11126630A publication Critical patent/JPH11126630A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To accomplish great improvement of a liquid reduction characteristic in a hybrid battery and in a conventional battery and further improvement of that in a calcium battery by covering a group of electrodes by means of an oxygen gas-impermeable film passing no foaming oxygen gas. SOLUTION: In a lead-acid battery, for discomposing and dissolving oxygen gas in an electrolyte, an oxygen gas-impermeable film 2, which prevents oxygen gas generated from an electrode in a group of electrodes 1 from passing through so as to sufficiently diffuse the oxygen gas inside the group of electrodes 1, is put on almost the whole of the group of electrodes 1 excepting the lower ends in their installed condition. As the group of electrodes 1 is covered by means of the oxygen gas-impermeable film 2 in this way, oxygen gas generated in a charging time so as to be diffused inside the group of electrodes 1 can be held by means of the oxygen gas-impermeable film 2. Moreover, convection current can be generated when the oxygen gas collides against the oxygen gas-impermeable film 2. Therefore, the oxygen gas can be sufficiently diffused and dissolved in the electrolyte, and a part of the oxygen gas is absorbed on a negative electrode surface so that reduction of the solution can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極板群を電槽内に
収容した鉛蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-acid battery in which an electrode group is accommodated in a battery case.

【0002】[0002]

【従来の技術】現在、負極板にPb−Ca合金格子を用
い、正極板にPb−Sb合金格子を用いた電池(以下、
ハイブリッド電池と略記する。)、負極板と正極板にP
b−Ca合金格子を用いた電池(以下、カルシウム電池
と略記する。)、及び負極板と正極板にPb−Sb合金
格子を用いた電池(以下、コンベンショナル電池と略記
する。)がある。
2. Description of the Related Art At present, a battery using a Pb-Ca alloy lattice for a negative electrode plate and a Pb-Sb alloy lattice for a positive electrode plate (hereinafter, referred to as a battery).
Abbreviated as hybrid battery. ), P on the negative and positive plates
There are batteries using a b-Ca alloy lattice (hereinafter abbreviated as calcium batteries) and batteries using a Pb-Sb alloy lattice for a negative electrode plate and a positive electrode plate (hereinafter abbreviated as conventional batteries).

【0003】ハイブリッド電池及びコンベンショナル電
池は、正極格子にPb−Sb合金格子を用いているた
め、アンチモンの効果により正極活物質のサルフェーシ
ョン化を防止し、深い放電及び過放電での放置に強い電
池である。
[0003] Hybrid batteries and conventional batteries use a Pb-Sb alloy grid as the positive grid, so that the active material of the positive electrode is prevented from sulfation by the effect of antimony, and is resistant to deep discharge and overdischarge. is there.

【0004】カルシウム電池は、Pb−Ca合金格子を
正極板に用いているため、アンチモンが溶出し負極板へ
の電析に伴う、負極板の水素過電圧の低下が起こらない
ことから、ガスの発生及び電解液の減少が少ない電池で
ある。
Since the calcium battery uses a Pb—Ca alloy lattice for the positive electrode plate, antimony elutes and the hydrogen overvoltage of the negative electrode plate does not decrease due to electrodeposition on the negative electrode plate. And a battery with a small decrease in electrolyte.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ハイブ
リッド電池及びコンベンショナル電池では、水素過電圧
の低いSbを正極格子合金中に添加しているため、アン
チモンが溶出することで負極板の表面に析出し、水素ガ
スの著しい発生や電解液の減少、及び自己放電の問題点
がある。
However, in the hybrid battery and the conventional battery, since Sb having a low hydrogen overvoltage is added to the positive electrode lattice alloy, antimony elutes and precipitates on the surface of the negative electrode plate, and hydrogen is added. There are problems of remarkable generation of gas, decrease of electrolyte solution, and self-discharge.

【0006】一方、カルシウム電池では、正極格子にS
b合金格子を用いていないため、正極活物質のサルフェ
ーション化が著しく、深い放電及び過放電での放置に弱
いという問題点、及び高温での使用により正極格子が伸
びて短絡するという問題点がある。
On the other hand, in a calcium battery, S
Since the b-alloy grid is not used, there is a problem that the sulfation of the positive electrode active material is remarkable, and it is weak to leave in deep discharge and over-discharge, and there is a problem that the positive grid expands and short-circuits when used at a high temperature. .

【0007】さらに、近年になって自動車の電装品の増
加、自動車の仕様の変化によるボンネット内の過密化に
より電池の環境が高温化し、電解液の減少が促進すると
いう点が全ての電池に共通する深刻な問題となってい
る。
Further, in recent years, all batteries have a common point that the environment of the battery becomes high temperature due to the increase in the number of electric components of the automobile and the overcrowding in the hood due to the change of the specification of the automobile, and the reduction of the electrolyte is promoted. Has become a serious problem.

【0008】本発明の目的は、ハイブリッド電池及びコ
ンベンショナル電池では減液特性の大幅改善を図ること
ができ、カルシウム電池では減液特性をさらに改善する
ことができる鉛蓄電池を提供することにある。
An object of the present invention is to provide a lead-acid battery that can greatly improve the liquid reduction characteristics of a hybrid battery and a conventional battery, and can further improve the liquid reduction characteristics of a calcium battery.

【0009】[0009]

【課題を解決するための手段】本発明は、セパレータを
介して負極板と正極板を交互に積層してなる極板群を電
槽内に収容した鉛蓄電池を改良するものである。
SUMMARY OF THE INVENTION The present invention is to improve a lead-acid battery in which an electrode group formed by alternately stacking a negative electrode plate and a positive electrode plate via a separator is accommodated in a battery case.

【0010】本発明の鉛蓄電池では、極板群は気泡状態
の酸素ガスが通過しない酸素ガス不透過膜で覆われてい
る。酸素ガス不透過膜は、設置状態で下端を除いた極板
群のほぼ全体を覆ってよいし、設置状態で上側となる部
分のみを覆ってもよい。
[0010] In the lead storage battery of the present invention, the electrode group is covered with an oxygen gas impermeable film through which oxygen gas in a bubble state does not pass. The oxygen gas impermeable membrane may cover substantially the entire electrode group except the lower end in the installed state, or may cover only the upper part in the installed state.

【0011】本発明で、設置状態で上側となる部分と
は、設置状態(ストラップが上向きとなる縦置きの設置
状態と、極板の板面が縦向きで且つストラップが横向き
となる横置きの設置状態とがある。)での極板群の上端
面(上向きの極板積層面)のみの場合と、極板群の上端
面とこの上端面につらなる極板群の上側周面とを含む場
合とがある。
In the present invention, the upper part in the installed state is defined as an installed state (a vertically installed state in which the strap is directed upward, or a horizontal installed state in which the plate surface of the electrode plate is oriented vertically and the strap is oriented horizontally. And the upper end surface of the electrode plate group and the upper peripheral surface of the electrode plate group extending from the upper end surface of the electrode plate group. There are cases.

【0012】この酸素ガス不透過膜は、充電時に正極板
から発生する酸素ガスを電解液中に十分に分散,溶解さ
せ、この酸素ガスの一部を負極板表面でガス吸収反応を
させ、水の減少を抑えるものである。
The oxygen gas impermeable membrane sufficiently disperses and dissolves the oxygen gas generated from the positive electrode plate during charging in the electrolytic solution, and causes a part of the oxygen gas to undergo a gas absorption reaction on the surface of the negative electrode plate. Is to suppress the decrease in

【0013】従来、電解液の攪拌を良く行う目的で電槽
のリブを水平にする、あるいは電解液の蒸発を抑える目
的でプラスチックのビーズを浮かべる等の方法が知られ
ており、これらの方法も酸素ガスの分散,溶解に効果が
あるものと推測されるが、実際には効果はほとんど得ら
れないことが分かっている。その理由は、極板群内に分
散する酸素ガスを十分に保持できないためと考えられ
る。
Conventionally, there have been known methods of leveling the ribs of a battery case for the purpose of better stirring the electrolytic solution, and floating plastic beads for the purpose of suppressing the evaporation of the electrolytic solution. These methods are also known. It is presumed that this is effective in dispersing and dissolving oxygen gas, but it is known that practically no effect is obtained. The reason is considered to be that oxygen gas dispersed in the electrode group cannot be sufficiently held.

【0014】以下に、本発明の作用について詳しく説明
する。
Hereinafter, the operation of the present invention will be described in detail.

【0015】正極板から発生した酸素ガスを電解液中に
拡散させることにより、その酸素ガスが負極板の表面に
移動し、(1)式に示すように負極板のPbが酸素ガス
により酸化反応が起こると考えられる。このことにより
過充電時に発生した酸素ガスを吸収し、減液量を減らす
ことができる。さらに、ハイブリッド電池及びコンベン
ショナル電池では、負極板の表面にアンチモンが析出
し、局部的に鉛との電位差が生じるため自己放電反応が
起こる。負極板では、(2)式のような自己放電反応に
より水素が発生し、電解液が減少する。
By diffusing oxygen gas generated from the positive electrode plate into the electrolytic solution, the oxygen gas moves to the surface of the negative electrode plate, and Pb of the negative electrode plate is oxidized by the oxygen gas as shown in equation (1). Is thought to occur. As a result, oxygen gas generated during overcharging can be absorbed, and the amount of liquid reduction can be reduced. Further, in the hybrid battery and the conventional battery, antimony precipitates on the surface of the negative electrode plate, and a potential difference from lead is locally generated, so that a self-discharge reaction occurs. In the negative electrode plate, hydrogen is generated by a self-discharge reaction as in the equation (2), and the amount of electrolyte decreases.

【0016】しかし本発明では、極板群を覆う酸素ガス
不透過膜の存在により、充電時に発生して極板群内に分
散させる酸素ガスをこの酸素ガス不透過膜で保持させる
ことができ、この酸素ガスが電解液中に十分に分散,溶
解して、(1)式の反応が先行し、自己放電による電解
液の減少を抑えることができる。
However, in the present invention, the presence of the oxygen gas impermeable film covering the electrode group allows the oxygen gas generated during charging and dispersed in the electrode group to be held by the oxygen gas impermeable film. This oxygen gas is sufficiently dispersed and dissolved in the electrolytic solution, and the reaction of the formula (1) precedes, and a decrease in the electrolytic solution due to self-discharge can be suppressed.

【0017】[0017]

【化1】 特に、設置状態で下端を除いた極板群のほぼ全体を酸素
ガス不透過膜で覆うと、設置状態で上側となる部分のみ
を覆うものよりよりも、極板群内に分散させる酸素ガス
を十分に保持させることができる。
Embedded image In particular, when the entirety of the electrode group except the lower end is covered with the oxygen gas impermeable film in the installed state, the oxygen gas dispersed in the electrode group is more dispersed than the one that covers only the upper part in the installed state. It can be held sufficiently.

【0018】[0018]

【発明の実施の形態】図1及び図2は、本発明に係る鉛
蓄電池における実施の形態の第1例と第2例を示したも
のである。
1 and 2 show a first example and a second example of an embodiment of a lead-acid battery according to the present invention.

【0019】本例の鉛蓄電池では、電解液中に酸素ガス
を分散,溶解させるために、図1,図2に示すように、
極板群1の極板から発生した酸素ガスを透過させない
で、該極板群1内に酸素ガスを十分に分散させることの
できる酸素ガス不透過膜2を、設置状態で下端を除いた
極板群1のほぼ全体に被せ(図1)、または極板群1の
設置状態で上側となる部分のみに被せ(図2)ている。
In the lead-acid battery of this embodiment, in order to disperse and dissolve oxygen gas in the electrolyte, as shown in FIGS.
An oxygen gas-impermeable membrane 2 capable of sufficiently dispersing oxygen gas in the electrode plate group 1 without permitting oxygen gas generated from the electrode plates of the electrode plate group 1 to pass therethrough is provided with an electrode in which the lower end is removed in an installed state. It covers almost the entire plate group 1 (FIG. 1), or covers only the upper part in the installation state of the electrode group 1 (FIG. 2).

【0020】図1に示すように縦置きの設置状態の場合
で、極板群1の下端を除いたほぼ全体を酸素ガス不透過
膜2で覆うとは、同極性の極板耳部3を接続しているス
トラップ4が存在する極板群1の上端面(上向きの極板
積層面)と、この上端面につらなる極板群1の全周面と
を酸素ガス不透過膜2で覆うものである。この場合、同
極性の極板耳部3が隣接配置されている箇所でのこれら
耳部3の相互間は、酸素ガス不透過膜2で覆った方がよ
いが、覆わなくても所要の効果は得ることができる。
As shown in FIG. 1, in a vertically installed state, covering substantially the entirety of the electrode plate group 1 except for the lower end with the oxygen gas impermeable film 2 means that the electrode plate ears 3 of the same polarity are covered. The upper end surface of the electrode group 1 on which the connected straps 4 are present (upward stacking surface of the electrode plates) and the entire peripheral surface of the electrode group 1 connected to the upper end surface are covered with the oxygen gas impermeable film 2. It is. In this case, it is better to cover between the lugs 3 where the polar tab lugs 3 of the same polarity are adjacently arranged with the oxygen gas impermeable membrane 2. Can be obtained.

【0021】横置きの設置状態の場合での極板群1のほ
ぼ全体の覆い方は、横置き状態での極板群1の上端面
(上向きの極板積層面)と、この上端面につらなる極板
群1の全周面とを、縦置きの設置状態の場合と同様に酸
素ガス不透過膜2で覆うものである。
In the case of the horizontal installation state, almost the entire electrode group 1 is covered by the upper end surface (upwardly stacked electrode plate surface) of the electrode group 1 in the horizontal installation state and the upper end surface. The entire peripheral surface of the electrode group 1 is covered with the oxygen gas impermeable film 2 as in the case of the vertically installed state.

【0022】図2に示すように縦置きの設置状態の場合
で、極板群1の上側となる部分のみを酸素ガス不透過膜
2で覆うとは、同極性の極板耳部3を接続しているスト
ラップ4が存在する極板群1の上端面(上向きの極板積
層面)と、この上端面につらなる極板群1の上側周面と
を酸素ガス不透過膜2で覆うものである。この場合も、
同極性の極板耳部3が隣接配置されている箇所でのこれ
ら耳部3の相互間は、酸素ガス不透過膜2で覆った方が
よいが、覆わなくても所要の効果は得ることができる。
As shown in FIG. 2, in a vertically installed state, covering only the upper portion of the electrode plate group 1 with the oxygen gas impermeable film 2 means connecting the electrode plate ears 3 of the same polarity. The upper end surface of the electrode group 1 on which the straps 4 are present (upwardly stacked electrode plate surface) and the upper peripheral surface of the electrode group 1 connected to the upper end surface are covered with the oxygen gas impermeable film 2. is there. Again,
It is better to cover the space between the ears 3 where the pole ears 3 of the same polarity are arranged adjacently with the oxygen gas impermeable membrane 2. Can be.

【0023】横置きの設置状態の場合での極板群1の上
側となる部分のみの覆い方は、横置き状態での極板群1
の上端面(上向きの極板積層面)と、この上端面につら
なる極板群1の上側周面とを、縦置きの設置状態の場合
と同様に酸素ガス不透過膜2で覆うものである。
In the horizontal installation state, only the upper part of the electrode group 1 is covered by the electrode group 1 in the horizontal state.
And the upper peripheral surface of the electrode plate group 1 connected to the upper end surface is covered with the oxygen gas impermeable film 2 in the same manner as in the vertically installed state. .

【0024】このような極板群1は、図示しないが電解
液と共に電槽内に収容されて、鉛蓄電池が構成されてい
る。
Such an electrode plate group 1 is housed in a battery case together with an electrolytic solution, not shown, to constitute a lead storage battery.

【0025】このように極板群1に酸素ガス不透過膜2
を被せると、充電時に発生して極板群1内に分散させる
酸素ガスをこの酸素ガス不透過膜2で保持させることが
でき、またこの酸素ガスがこの酸素ガス不透過膜2にぶ
つかることで対流を起こさせることができ、このため極
板群1内に酸素ガスを十分に分散,溶解させることがで
きる。この場合、正極板は負極板の間に挟まれており、
正極板から発生した酸素ガスは該正極板とその隣の負極
板の間を通って上昇するが、本発明では酸素ガス不透過
膜2で極板群1の外に出るのが阻止され、前述した現象
が生ずることになる。
As described above, the electrode group 1 is provided with the oxygen gas impermeable film 2.
, Oxygen gas generated at the time of charging and dispersed in the electrode plate group 1 can be held by the oxygen gas impermeable film 2, and the oxygen gas impinges on the oxygen gas impermeable film 2. Convection can be caused, and oxygen gas can be sufficiently dispersed and dissolved in the electrode plate group 1. In this case, the positive electrode plate is sandwiched between the negative electrode plates,
Oxygen gas generated from the positive electrode plate rises through the space between the positive electrode plate and the adjacent negative electrode plate, but in the present invention, the oxygen gas impermeable film 2 prevents the gas from going out of the electrode plate group 1, and the above-described phenomenon occurs. Will occur.

【0026】酸素ガス不透過膜2としては、硫酸に対す
る耐食性及び対高温性がある絶縁物であるのが好まし
く、各種の合成樹脂が適している。例えば、ポリエチレ
ン,ポリプロピレン,ポリスチレン,ポリ塩化ビニル,
ポリエステル等の合成樹脂を用いることができる。これ
らの合成樹脂で形成された酸素ガス不透過膜2は、いず
れも酸素ガスを透過しないため酸素ガスの分散状態は同
じであり、酸素ガスを極板群1内に分散,溶解させて負
極板表面に吸収させる効果は同じである。
The oxygen gas impermeable membrane 2 is preferably an insulator having corrosion resistance to sulfuric acid and high temperature resistance, and various synthetic resins are suitable. For example, polyethylene, polypropylene, polystyrene, polyvinyl chloride,
A synthetic resin such as polyester can be used. Since the oxygen gas impermeable membrane 2 formed of these synthetic resins does not transmit oxygen gas, the dispersion state of oxygen gas is the same, and oxygen gas is dispersed and dissolved in the electrode plate group 1 to form a negative electrode plate. The effect of absorption on the surface is the same.

【0027】[0027]

【実施例】本発明に係る鉛蓄電池の効果を確認するため
に行った、本発明に係る鉛蓄電池による実施例1,2
と、比較例1〜4の鉛蓄電池との比較実験結果を以下に
説明する。
EXAMPLES Examples 1 and 2 of a lead storage battery according to the present invention were performed to confirm the effects of the lead storage battery according to the present invention.
And the results of comparative experiments with the lead storage batteries of Comparative Examples 1 to 4 will be described below.

【0028】実施例1,2及び比較例1〜4の各鉛蓄電
池は、次のようにして製造した。
The lead storage batteries of Examples 1 and 2 and Comparative Examples 1 to 4 were manufactured as follows.

【0029】(比較例1)Pb−Ca合金格子を用い、
袋状のポリエチレン製セパレータを被せた未化成負極板
6枚とPb−Sb合金格子を用いた未化成正極板5枚を
積層して極板群を作った。
(Comparative Example 1) Using a Pb-Ca alloy lattice,
An electrode group was formed by laminating six unformed negative electrode plates covered with a bag-shaped polyethylene separator and five unformed positive electrode plates using a Pb-Sb alloy lattice.

【0030】この極板群を電槽内に配置してから、該電
槽内に電解液を注液して未化成電池を作った。
After the electrode group was placed in a battery case, an electrolytic solution was injected into the battery case to produce an unformed battery.

【0031】次に、この未化成電池を化成電流18Aで
18時間化成して、比較例1の鉛蓄電池を完成した。
Next, this unformed battery was formed at a formation current of 18 A for 18 hours to complete the lead storage battery of Comparative Example 1.

【0032】(比較例2)Pb−Ca合金格子を用い、
袋状のポリエチレン製セパレータを被せた未化成負極板
6枚とPb−Ca合金格子を用いた未化成正極板5枚を
積層して極板群を作った。
Comparative Example 2 Using a Pb—Ca alloy lattice,
An electrode group was formed by laminating six unformed negative electrode plates covered with a bag-shaped polyethylene separator and five unformed positive electrode plates using a Pb-Ca alloy lattice.

【0033】この極板群を電槽内に配置してから、該電
槽に電解液を注液して未化成電池を作った。
After disposing the electrode group in a battery case, an electrolytic solution was injected into the battery case to produce an unformed battery.

【0034】次に、この未化成電池を化成電流18Aで
18時間化成して、比較例2の鉛蓄電池を完成した。
Next, this unformed battery was formed at a formation current of 18 A for 18 hours to complete the lead storage battery of Comparative Example 2.

【0035】(比較例3)比較例1と同様の方法で鉛蓄
電池を完成した。完成した電池の電解液に直径3mmの
ポリプロピレン製の球体1100個を電解液全体を覆う
ように浮かべ、比較例3の鉛蓄電池を完成した。
Comparative Example 3 A lead-acid battery was completed in the same manner as in Comparative Example 1. 1100 polypropylene spheres having a diameter of 3 mm were floated over the electrolytic solution of the completed battery so as to cover the entire electrolytic solution, whereby a lead-acid battery of Comparative Example 3 was completed.

【0036】(比較例4)比較例1と同様の方法で極板
群を完成した。電槽内壁にリブを水平に配置した電槽内
にこの極板群を入れ、その他は比較例1と同様の方法で
比較例4の鉛蓄電池を完成した。
Comparative Example 4 An electrode group was completed in the same manner as in Comparative Example 1. The electrode group was placed in a battery case in which ribs were horizontally arranged on the inner wall of the battery case, and the lead storage battery of Comparative Example 4 was completed in the same manner as in Comparative Example 1 except for the above.

【0037】(実施例1)比較例1と同様の方法で極板
群を作製した。図1のように極板群1の下端を除いたほ
ぼ全体を上部から覆うようにポリエチレン製の酸素ガス
不透過膜2を配置した。この例では、隣接する耳部3の
間は酸素ガス不透過膜2で覆っていない。その他は、比
較例1と同様の方法で実施例1の鉛蓄電池を完成した。
Example 1 An electrode group was produced in the same manner as in Comparative Example 1. As shown in FIG. 1, an oxygen gas impermeable membrane 2 made of polyethylene was disposed so as to cover almost the entire electrode plate group 1 except for the lower end from above. In this example, the space between the adjacent ear portions 3 is not covered with the oxygen gas impermeable film 2. Otherwise, the lead-acid battery of Example 1 was completed in the same manner as in Comparative Example 1.

【0038】(実施例2)比較例2と同様の方法で極板
群を作製した。図2のように極板群1の上側となる部分
を覆うようにポリエチレン製の酸素ガス不透過膜2を配
置した。この例でも、隣接する耳部3の間は酸素ガス不
透過膜2で覆っていない。その他は、比較例2と同様の
方法で実施例2の鉛蓄電池を完成した。
Example 2 An electrode group was produced in the same manner as in Comparative Example 2. As shown in FIG. 2, an oxygen gas impermeable membrane 2 made of polyethylene was arranged so as to cover the upper part of the electrode plate group 1. Also in this example, the space between the adjacent ear portions 3 is not covered with the oxygen gas impermeable film 2. Otherwise, the lead storage battery of Example 2 was completed in the same manner as in Comparative Example 2.

【0039】完成した電池は、すべてJISD5301
に記載の形式55D23の容量48Ahとした。次に、
各電池を満充電にした後、75℃の周囲温度で0.5A
の定電流充電を行い、電解液の減液量を調べた。
The completed batteries were all JISD5301
And a capacity of 48 Ah of the format 55D23 described in (1). next,
After each battery is fully charged, 0.5 A at 75 ° C ambient temperature
Was charged at a constant current, and the amount of the electrolyte solution reduced was examined.

【0040】図3は、その測定結果である充電時間と減
液量との関係を示している。各電池は、満充電になって
いるため流した電流はすべて水の電気分解に使われ、そ
れぞれ一定の割合で電解液が減少している。電気分解に
よって減少する水の理論減液量は、図に示した通りであ
る。比較例1は、電気分解による減液量に加え、蒸発量
及び自己放電による減液があり、理論減液量より減液量
が多い。比較例2は、アンチモンを使用していないため
自己放電が少なく、比較例1よりも減液量が少なくなっ
ている。実施例1及び実施例2は、極板群1に酸素ガス
不透過膜2を被せているため過充電時に発生した酸素ガ
スが極板群1内に十分に分散,溶解して負極板に吸収さ
れ、見かけ上のガス発生量が減り、理論減液量よりも減
液量が少ない。さらに実施例1では、アンチモンを使用
しているため自己放電による減液量が多いが、極板群1
内に十分分散,溶解した酸素ガスの負極板への吸収によ
り自己放電が抑えられているため実施例2に比べ大幅に
減液量を減らしている。
FIG. 3 shows the relationship between the charging time, which is the measurement result, and the liquid reduction amount. Since each battery is fully charged, all of the current flowing is used for electrolysis of water, and the electrolyte is reduced at a constant rate. The theoretical amount of water reduced by electrolysis is as shown in the figure. In Comparative Example 1, in addition to the reduced amount due to electrolysis, there was a reduced amount due to evaporation and self-discharge, and the reduced amount was larger than the theoretical reduced amount. Comparative Example 2 did not use antimony and thus had less self-discharge, and the amount of liquid reduction was smaller than that of Comparative Example 1. In Example 1 and Example 2, the oxygen gas impermeable film 2 is covered on the electrode group 1, so that the oxygen gas generated during overcharge is sufficiently dispersed and dissolved in the electrode group 1 and absorbed by the negative electrode plate. As a result, the apparent gas generation amount is reduced, and the amount of liquid reduction is smaller than the theoretical amount of liquid reduction. Furthermore, in Example 1, although antimony was used, the amount of liquid reduction due to self-discharge was large.
The self-discharge is suppressed by the absorption of the oxygen gas sufficiently dispersed and dissolved in the negative electrode plate, so that the amount of liquid reduction is greatly reduced as compared with the second embodiment.

【0041】次に、各電池を満充電の状態で75℃に放
置し、そのときの電解液の減液量を調べた。
Next, each battery was allowed to stand at 75 ° C. in a fully charged state, and the amount of electrolyte reduction at that time was examined.

【0042】図4は、その測定結果である放置時間と減
液量との関係を示している。比較例1は、アンチモンが
負極板に析出し、局部的に鉛とアンチモンとの電位差が
発生し、自己放電が促進し、自己放電により負極板から
水素が発生するため電解液の減少が多い。比較例2は、
アンチモンが電池内に存在しないため、自己放電が少な
く減液量が少ない。実施例1から2では、極板群1ある
いは電解液中に酸素ガスが十分に分散,溶解しているた
め、負極板でその酸素ガスの吸収反応が起こり、自己放
電を抑え、減液量を減らしている。
FIG. 4 shows the relationship between the standing time, which is the measurement result, and the amount of liquid reduction. In Comparative Example 1, antimony is deposited on the negative electrode plate, a potential difference between lead and antimony is locally generated, self-discharge is promoted, and hydrogen is generated from the negative electrode plate by self-discharge, so that the amount of the electrolytic solution is largely reduced. Comparative Example 2
Since antimony does not exist in the battery, self-discharge is small and the amount of liquid reduction is small. In Examples 1 and 2, the oxygen gas is sufficiently dispersed and dissolved in the electrode plate group 1 or the electrolytic solution. Therefore, an absorption reaction of the oxygen gas occurs in the negative electrode plate to suppress self-discharge and reduce the amount of liquid reduction. Reducing.

【0043】次に、各電池を75℃の周囲温度で25A
で4分放電した後に、14.8Vで10分充電する充放
電を1サイクルとして、これを繰り返し、サイクル毎の
電解液の減液量を調べた。
Next, each battery was subjected to 25 A at an ambient temperature of 75 ° C.
After charging for 4 minutes, charging and discharging at 14.8 V for 10 minutes were defined as one cycle, and this was repeated, and the amount of electrolyte reduction in each cycle was examined.

【0044】図5はその測定結果であるサイクル数と減
液量との関係を示している。比較例1は、水素過電圧の
低いアンチモンの負極板への析出により減液量が多い。
比較例2は、アンチモンが存在しないため減液量は比較
例1よりも少ない。実施例1から2では、極板群1ある
いは電解液中に酸素ガスが分散,溶解しているため、負
極板でその酸素ガスの吸収反応が起こり、ガス発生を減
少させている。さらに自己放電を抑え、負極板からの水
素発生を減らしている。
FIG. 5 shows the relationship between the number of cycles, which is the measurement result, and the amount of liquid reduction. In Comparative Example 1, the amount of liquid reduction was large due to the deposition of antimony having a low hydrogen overvoltage on the negative electrode plate.
In Comparative Example 2, the amount of liquid reduction was smaller than in Comparative Example 1 because no antimony was present. In Examples 1 and 2, since oxygen gas is dispersed and dissolved in the electrode plate group 1 or the electrolytic solution, an absorption reaction of the oxygen gas occurs in the negative electrode plate to reduce gas generation. Furthermore, self-discharge is suppressed, and hydrogen generation from the negative electrode plate is reduced.

【0045】[0045]

【発明の効果】本発明に係る鉛蓄電池では、極板群を酸
素ガス不透過膜で覆っているので、充電時に発生して極
板群内に分散させる酸素ガスをこの酸素ガス不透過膜で
保持させることができ、またこの酸素ガスがこの酸素ガ
ス不透過膜にぶつかることで対流を起こさせることがで
き、このため極板群内に酸素ガスを十分に分散,溶解さ
せることができる。この酸素ガスが負極板表面に移動
し、これを吸収させることで電解液の減液量を抑えるこ
とができる。またその酸素ガスの負極板への吸収によ
り、自己放電による負極板での水素発生を抑制すること
ができ、電解液の減少を大幅に抑えることができる。
In the lead storage battery according to the present invention, the electrode group is covered with the oxygen gas impermeable film, so that the oxygen gas generated at the time of charging and dispersed in the electrode group is covered by the oxygen gas impermeable film. The oxygen gas can be held, and convection can be caused by the oxygen gas impinging on the oxygen gas impermeable membrane. Therefore, the oxygen gas can be sufficiently dispersed and dissolved in the electrode plate group. This oxygen gas moves to the surface of the negative electrode plate, and by absorbing this, the amount of reduction of the electrolytic solution can be suppressed. In addition, the absorption of the oxygen gas into the negative electrode plate can suppress the generation of hydrogen on the negative electrode plate due to self-discharge, and can significantly suppress the decrease in the electrolyte.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る鉛蓄電池における実施の形態の第
1例で極板群の全体に酸素ガス不透過膜を被せる過程を
示した斜視図である。
FIG. 1 is a perspective view showing a process of covering an entire electrode group with an oxygen gas impermeable film in a first example of an embodiment of a lead storage battery according to the present invention.

【図2】本発明に係る鉛蓄電池における実施の形態の第
2例で極板群の一部に酸素ガス不透過膜を被せる過程を
示した斜視図である。
FIG. 2 is a perspective view illustrating a process of covering a part of an electrode plate group with an oxygen gas impermeable film in a second example of the embodiment of the lead storage battery according to the present invention.

【図3】試験に用いた実施例1,2と比較例1〜4の各
鉛蓄電池の定電流で過充電したときの減液量の経時変化
を示す比較図である。
FIG. 3 is a comparison diagram showing the change over time in the amount of liquid reduction when the lead storage batteries of Examples 1 and 2 used in the test and Comparative Examples 1 to 4 are overcharged at a constant current.

【図4】試験に用いた実施例1,2と比較例1〜4の各
鉛蓄電池の放電中における減液量の経時変化を示す比較
図である。
FIG. 4 is a comparison diagram showing the change over time in the amount of liquid reduction during discharging of the lead storage batteries of Examples 1 and 2 and Comparative Examples 1 to 4 used in the test.

【図5】試験に用いた実施例1,2と比較例1〜4の各
鉛蓄電池の充放電サイクルと減液量との関係を示す比較
図である。
FIG. 5 is a comparison diagram showing the relationship between the charge / discharge cycle of each lead storage battery of Examples 1 and 2 and Comparative Examples 1 to 4 used in the test and the amount of liquid reduction.

【符号の説明】[Explanation of symbols]

1 極板群 2 酸素ガス不透過膜 3 耳部 4 ストラップ DESCRIPTION OF SYMBOLS 1 Electrode group 2 Oxygen gas impermeable membrane 3 Ear part 4 Strap

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セパレータを介して負極板と正極板を交
互に積層してなる極板群を電槽内に収容した鉛蓄電池に
おいて、 前記極板群は気泡状態の酸素ガスが通過しない酸素ガス
不透過膜で覆われていることを特徴とする鉛蓄電池。
1. A lead-acid battery in which an electrode group formed by alternately stacking a negative electrode plate and a positive electrode plate via a separator is accommodated in a battery case, wherein the electrode group is formed of an oxygen gas through which oxygen gas in a bubble state does not pass. A lead storage battery characterized by being covered with an impermeable membrane.
【請求項2】 セパレータを介して負極板と正極板を交
互に積層してなる極板群を電槽内に収容した鉛蓄電池に
おいて、 前記極板群は設置状態で下端を除いたほぼ全体が気泡状
態の酸素ガスが通過しない酸素ガス不透過膜で覆われて
いることを特徴とする鉛蓄電池。
2. A lead-acid battery in which an electrode plate group in which a negative electrode plate and a positive electrode plate are alternately stacked via a separator is accommodated in a battery case. A lead-acid battery, wherein the lead-acid battery is covered with an oxygen-impermeable membrane through which oxygen gas in a bubble state does not pass.
【請求項3】 セパレータを介して負極板と正極板を交
互に積層してなる極板群を電槽内に収容した鉛蓄電池に
おいて、 前記極板群は設置状態で上側となる部分のみが気泡状態
の酸素ガスが通過しない酸素ガス不透過膜で覆われてい
ることを特徴とする鉛蓄電池。
3. A lead-acid battery in which an electrode group formed by alternately stacking a negative electrode plate and a positive electrode plate via a separator is accommodated in a battery case, wherein only the upper part of the electrode group in the installation state has bubbles. A lead-acid battery, wherein the lead-acid battery is covered with an oxygen gas impermeable membrane through which oxygen gas does not pass.
JP9292274A 1997-10-24 1997-10-24 Lead-acid battery Withdrawn JPH11126630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9292274A JPH11126630A (en) 1997-10-24 1997-10-24 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9292274A JPH11126630A (en) 1997-10-24 1997-10-24 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11126630A true JPH11126630A (en) 1999-05-11

Family

ID=17779639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9292274A Withdrawn JPH11126630A (en) 1997-10-24 1997-10-24 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11126630A (en)

Similar Documents

Publication Publication Date Title
US6492059B1 (en) Separator for sealed lead-acid battery
US6387567B1 (en) Secondary battery
KR101831423B1 (en) Battery, battery plate assembly, and method of assembly
CN201887121U (en) Inhomogeneous electrolyte lead-acid storage battery
US20050084762A1 (en) Hybrid gelled-electrolyte valve-regulated lead-acid battery
US7799466B2 (en) Lead acid battery having lightly gelled electrolyte
JP4771678B2 (en) Open-type lead-acid battery for automobiles
US3846175A (en) Storage battery
JP2006086039A (en) Lead-acid storage battery
JPH11126630A (en) Lead-acid battery
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JP6197426B2 (en) Lead acid battery
JP6651128B2 (en) Lead-acid battery for idling stop vehicle and idling stop vehicle
JP7152831B2 (en) lead acid battery
WO2020100213A1 (en) Electrode plate, lattice body, and lead storage cell
JPS60163380A (en) Lead-acid battery
JPH06187967A (en) Clad type sealed lead-acid battery
JP2737227B2 (en) Sealed lead-acid battery
JPS63152871A (en) Sealed lead-acid battery
JPH06104005A (en) Sealed-lead-acid battery
JP3567969B2 (en) Sealed lead-acid battery
JPWO2019216211A1 (en) Lead acid battery
JPS63187554A (en) Enclosed lead storage battery
Tuphorn Maintenance-Free Lead Batteries with Immobilized Electrolyte
JPS60198052A (en) Sealed lead storage battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104