JPH11126311A - Substrate for thin film magnetic head - Google Patents

Substrate for thin film magnetic head

Info

Publication number
JPH11126311A
JPH11126311A JP28969997A JP28969997A JPH11126311A JP H11126311 A JPH11126311 A JP H11126311A JP 28969997 A JP28969997 A JP 28969997A JP 28969997 A JP28969997 A JP 28969997A JP H11126311 A JPH11126311 A JP H11126311A
Authority
JP
Japan
Prior art keywords
substrate
marking
etching
head
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28969997A
Other languages
Japanese (ja)
Inventor
Takaki Ootsubo
隆城 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28969997A priority Critical patent/JPH11126311A/en
Publication of JPH11126311A publication Critical patent/JPH11126311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease burrs produced near markings to a specified dimension or smaller, to avoid deformation of a substrate when the substrate is fixed with a jig, and to prevent production of head crush by using an etching method selected from among ion milling, reactive ion etching and chemical etching to form markings for head tractability having depth of <= a specified value. SOLUTION: A substrate for a thin film magnetic head comprising Al2 O3 -TiC ceramic material is produced by hot-press and calcination, and the substrate is ground and polished to obtain surface roughness Ra of <=50 Å to be used as a substrate. The obtd. substrate is subjected to marking with <=0.3 μm depth by a method selected from among ion milling, reactive ion etching and chemical etching. Thereby, characters can be formed with extremely uniform depth and stably formed to be shallow. By this method, strong thermal shock like a YAG laser is not given to the substrate, so that the change rate in the flatness of the substrate before and after the process is small as <=0.05 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンピューターの記
録装置であるハードディスクドライブやテープドライブ
等に用いられる薄膜磁気ヘッド用基板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for a thin-film magnetic head used for a hard disk drive or a tape drive as a recording device of a computer.

【0002】[0002]

【従来の技術】たとえば1枚のウェファー(φ3”ディ
スク形状の基板)から約2000個の薄膜磁気ヘッド用
基板を製造している。そして、そのウェファーに対し行
列番号でもって個々のヘッドの位置がトレーサビリティ
できるようマーキングしている。
2. Description of the Related Art For example, about 2000 thin-film magnetic head substrates are manufactured from one wafer (φ3 ″ disk-shaped substrate), and the position of each head is determined by the matrix number for the wafer. Marked for traceability.

【0003】このマーキングは基板裏面(素子を形成す
る面とは反対の面)にウェファーNo、列方向、行方向
の基板内のヘッドの位置Noが記載されたものであっ
て、イットリウムアルミナガーネット(YAG)レーザ
ー発振管からのレーザーでもって素子の形成前もしくは
形成後に設けている。これによってハードディスクに組
み込まれた後のヘッドからでも基板のどの位置で作製さ
れたヘッドか、そのマーキングNoを確認することでト
レースできる。
[0003] This marking is a description of the wafer number, the position number of the head in the substrate in the column direction and the row direction on the back surface of the substrate (the surface opposite to the surface on which the elements are formed). YAG) It is provided before or after the element is formed by a laser from a laser oscillation tube. Thus, the head can be traced by confirming the marking No. of the head manufactured at any position on the substrate even after the head is incorporated in the hard disk.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、上記
のようにYAGレーザーを用いたマーキングにおいて
は、基板面を局所的に加熱溶融させるので、マーキング
部周辺に溶融体が付着し、「ばり」が形成され、この
「ばり」は素子形成工程において基板を治具に固定した
際に、変形する要因となっていた。
However, in the marking using the YAG laser as described above, since the substrate surface is locally heated and melted, a molten material adheres around the marking portion, and "burrs" are generated. This “burr” is a factor that deforms when the substrate is fixed to a jig in the element forming process.

【0005】また、レーザー加工面を走査型電子顕微鏡
(1500倍)で見ると熱衝撃に起因したマイクロクラ
ックが多数確認され、ヘッドとして使用した際に粒子脱
落を発生させる要因となっていた。また、ばりがヘッド
クラッシュを引き起こすという問題点もある。
When the laser-processed surface is viewed with a scanning electron microscope (1500 times), a large number of microcracks due to thermal shock were confirmed, which caused particles to drop off when used as a head. There is also a problem that burrs cause a head crash.

【0006】さらにマーキング文字のサイズはヘッドの
ダウンサイジングに伴って小さくなる傾向にあるが、そ
のため、YAGレーザーによってマーキングをおこなう
と、0.1mm以下の文字高さである場合に文字の表示
品位が劣化し、たとえば「8」と「B」のようなきわめ
て近似した文字形状の間で識別がむずかしくなってい
た。
[0006] Furthermore, the size of the marking characters tends to decrease with downsizing of the head. Therefore, when marking is performed with a YAG laser, the display quality of the characters is reduced when the character height is 0.1 mm or less. It deteriorated, and it became difficult to discriminate between very similar character shapes such as "8" and "B".

【0007】さらにまた、YAGレーザーの発信器にお
いては、温度変化や周辺温度変化等の影響により深さや
位置精度がばらつくので、深さを少なくとも0.4μm
以上にしなければならない。そのような深さを設けるこ
とで、マーキング面の加工部が高温度に加熱され、ま
た、微細なマイクロクラックが生じ、その結果、かかる
熱応力や材料の変質、ならびにクラックの発生に起因し
て、マーキングの前後で基板の平面度が変化するという
問題点もあった。
[0007] Further, in the transmitter of the YAG laser, the depth and position accuracy vary due to the influence of temperature change and ambient temperature change.
You have to do more. By providing such a depth, the processed portion of the marking surface is heated to a high temperature, and fine micro cracks are generated.As a result, due to such thermal stress and deterioration of the material, and due to the generation of cracks, Also, there is a problem that the flatness of the substrate changes before and after the marking.

【0008】したがって、本発明は上記事情に鑑みて完
成されたものであり、その目的はばりをできるだけ小さ
くするか、もしくは無くし、これによって基板の治具固
定時の変形を解消したり、さらにヘッドクラッシュが生
じないようにした薄膜磁気ヘッド用基板を提供すること
にある。
Accordingly, the present invention has been completed in view of the above circumstances, and an object thereof is to reduce or eliminate burrs as much as possible, thereby eliminating deformation of a substrate when a jig is fixed, and further reducing the head. An object of the present invention is to provide a substrate for a thin film magnetic head in which a crash does not occur.

【0009】また、本発明の他の目的はレーザー熱によ
る加工面のマイクロクラックをなくし、粒子脱落が発生
しないようにして、さらにマーキングの前後で基板の平
面度が変化しないようにした薄膜磁気ヘッド用基板を提
供することにある。
Another object of the present invention is to provide a thin film magnetic head which eliminates microcracks on a processing surface due to laser heat, prevents particles from falling off, and prevents the flatness of a substrate from changing before and after marking. To provide a substrate for use.

【0010】さらにまた、本発明の他の目的はマーキン
グした文字の表示品位を高めた薄膜磁気ヘッド用基板を
提供することにある。
Still another object of the present invention is to provide a thin-film magnetic head substrate having improved display quality of marked characters.

【0011】[0011]

【問題点を解決するための手段】本発明の薄膜磁気ヘッ
ド用基板は、イオンミリング、反応性イオンエッチング
もしくはケミカルエッチングから選ばれるエッチング法
により、深さ0.3μm以下のヘッドトレーサビリティ
用マーキングを施して、マーキング周辺に生じるばりを
0.1μm以下にしたことを特徴とする。
Means for Solving the Problems The thin film magnetic head substrate of the present invention is provided with a head traceability marking having a depth of 0.3 μm or less by an etching method selected from ion milling, reactive ion etching and chemical etching. The burrs around the markings are set to 0.1 μm or less.

【0012】[0012]

【発明の実施の形態】以下、本発明をAl2 3 −Ti
C系セラミックスからなる薄膜磁気ヘッド用基板でもっ
て詳述する。ホットプレス法で焼成して、平均結晶粒径
1μmのAl2 3 −TiC系基板を作製し、ついでこ
の基板を研削加工し、しかる後、素子形成面およびマー
キング面(素子形成とは反対面)となる双方を両面研磨
機でポリッシュ加工して、表面粗度Raを50Å以下と
なし、これによってφ5”×厚み1.25mmのディス
ク状の基板を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described below with reference to Al 2 O 3 —Ti
This will be described in detail with a substrate for a thin film magnetic head made of C-based ceramics. It is baked by a hot press method to produce an Al 2 O 3 —TiC-based substrate having an average crystal grain size of 1 μm, and then grinding the substrate. ) Was polished by a double-side polishing machine to make the surface roughness Ra 50 ° or less, thereby obtaining a disk-shaped substrate having a diameter of 5 ″ and a thickness of 1.25 mm.

【0013】この基板に対しイオンミリング、反応性イ
オンエッチングもしくはケミカルエッチングから選ばれ
るエッチング法によって、図1に示すようなマーキング
をおこなった。同図においては「0987156」、
「0987157」、「0988156」、「0988
157」の4種類の文字を同一面上にマーキングした場
合である。
The substrate was marked as shown in FIG. 1 by an etching method selected from ion milling, reactive ion etching and chemical etching. In the figure, "0987156",
"0987157", "0988156", "0988"
157 "is marked on the same surface.

【0014】そして、このマーキング済ディスク状基板
から、表1に示すような業界にて規格化された各種薄膜
磁気ヘッド用基板を作製した。同表は薄膜磁気ヘッド用
基板のサイズを表しており、「100%(Full Slider)
」、「70%(Mini Slider)」、「50%(Nano Slide
r) 」、「30%(Pico Slider) 」、「<25%(FemtoS
lider)」に対応して、それぞれヘッドの概略寸法および
体積比を示す。
Then, various thin-film magnetic head substrates standardized in the industry as shown in Table 1 were produced from the marked disk-shaped substrates. The table shows the size of the substrate for the thin-film magnetic head.
”,“ 70% (Mini Slider) ”,“ 50% (Nano Slider)
r) "," 30% (Pico Slider) ","<25% (FemtoS
lider), the approximate dimensions and volume ratio of the head are shown.

【0015】[0015]

【表1】 [Table 1]

【0016】つぎに各種マーキングの仕様を説明する。
まず、YAGレーザーを使用した従来のマーキングを述
べ、つぎに本発明のイオンミリング、反応性イオンエッ
チング、ケミカルエッチングでもって同様のマーキング
をおこなった。
Next, the specifications of various markings will be described.
First, conventional marking using a YAG laser was described, and then similar marking was performed by ion milling, reactive ion etching, and chemical etching of the present invention.

【0017】YAGレーザー(比較例) ヘッド1ブロック当たり7文字からなるマークを文字高
さ0.1mmでマーキングした。そして、このマークを
上記ディスク状基板の全面に各ブロック間の縦ピッチを
0.5mmに、横ピッチを1.2mmにして、1200
0個のブロックに対しそれぞれマーキングした。
YAG Laser (Comparative Example) A mark consisting of 7 characters per head block was marked at a character height of 0.1 mm. Then, the mark is formed on the entire surface of the disk-shaped substrate by setting the vertical pitch between the blocks to 0.5 mm and the horizontal pitch to 1.2 mm, and
Each of the 0 blocks was marked.

【0018】イオンミリング 上記ディスク状の基板にレジスト膜を塗布形成し、つい
でフォトリソグラフ工程でレジスト膜にパターン形成
し、その後にイオンミリングにおいてArイオンを用い
て、加速電圧600Vで、ミリングレート200Å/分
で10分間加工した。
Ion milling A resist film is applied on the disc-shaped substrate, and a pattern is formed on the resist film by a photolithographic process. Thereafter, Ar ions are used in ion milling at an accelerating voltage of 600 V and a milling rate of 200 ° / And processed for 10 minutes.

【0019】反応性イオンエッチング 上記ディスク状の基板にレジスト膜を塗布形成し、つい
でフォトリソグラフ工程でレジスト膜にパターン形成
し、その後に反応性イオンエッチングにおいてArイオ
ンとともに反応性ガスとしてCF4 を用いて、さらに加
速電圧300Vで、エッチングレート800Å/分で3
分間加工した。
Reactive Ion Etching A resist film is applied on the disk-shaped substrate, and a pattern is formed on the resist film by a photolithographic process. Then, CF 4 is used as a reactive gas together with Ar ions in reactive ion etching. At an accelerating voltage of 300 V and an etching rate of 800 ° / min.
Processed for a minute.

【0020】ケミカルエッチング このエッチング法においては、上記反応性イオンエッチ
ングにてArイオンとCF4 とを用いたことに代えて、
BCl3 ガスを用いて、他は同様におこなった。
Chemical etching In this etching method, instead of using Ar ions and CF 4 in the reactive ion etching,
Others were performed similarly using BCl 3 gas.

【0021】つぎに各種マーキング済基板に対しマーキ
ング精度、線幅、文字高さ、文字深さ、スラグ高さ、マ
イクロクラックの有無ならびに平面度変化量を測定した
ところ、表2に示すような結果が得られた。
Next, the marking accuracy, line width, character height, character depth, slag height, presence / absence of microcracks, and change in flatness of various marked substrates were measured. The results shown in Table 2 were obtained. was gotten.

【0022】マーキング精度(縦ピッチ精度と横ピッチ
精度)は工具顕微鏡を用いて測定し、線幅と文字高さ
は、マーキング部を走査型電子顕微鏡1500倍で写真
撮影し、その写真から算出した。また、文字深さおよび
マーキング周辺の溶融部高さ(スラグ高さ)については
接触式表面粗さ計で段差測定をおこなった。さらにマイ
クロクラックの有無については上記の走査型電子顕微鏡
で目視観察をおこない、さらにマーキング前後の基板変
形量はマーキング面のマーキング前後の基板平面度を光
干渉式の平面度測定器で測定し、その差で算出した。
The marking accuracy (vertical pitch accuracy and horizontal pitch accuracy) was measured using a tool microscope, and the line width and character height were calculated from a photograph of the marking portion taken with a scanning electron microscope at 1500 times magnification and from the photograph. . In addition, a step difference was measured with a contact-type surface roughness meter for the character depth and the height of the molten portion around the marking (slag height). Further, the presence or absence of microcracks is visually observed with the above-mentioned scanning electron microscope, and the amount of substrate deformation before and after marking is measured by a light interference type flatness measuring device for the substrate flatness before and after marking on the marking surface. The difference was calculated.

【0023】[0023]

【表2】 [Table 2]

【0024】この表から明らかなとおり、YAGレーザ
ーを用いてマーキングすると、文字の深さが基板全面で
0.4〜1.6μmの範囲内でばらつき、また、マーキ
ング部周辺に0.5μmの高さの溶融部(スラグ)が発
生していた。さらにSEM(走査型電子顕微鏡)観察で
マーキング溝部にマイクロクラックが確認され、このよ
うな熱衝撃等により基板平面度が加工の前後で平均して
0.27μm程度変化していた。
As is clear from this table, when the marking is performed using the YAG laser, the depth of the characters varies within the range of 0.4 to 1.6 μm over the entire surface of the substrate, and the height of the mark is 0.5 μm around the marking portion. A molten portion (slag) was generated. Further, microcracks were confirmed in the marking grooves by SEM (scanning electron microscope) observation, and the flatness of the substrate was changed by an average of about 0.27 μm before and after processing due to such thermal shock and the like.

【0025】これに対して、本発明のイオンミリングや
反応性イオンエッチング、ケミカルエッチングでもって
マーキングすると、文字深さが非常に均一になってお
り、しかも、非常に浅く安定して加工されていた。ま
た、スラグはまったく存在しなくなり、マーキング溝底
面にマイクロクラックも確認されなかった。そして、Y
AGレーザーのように強い熱衝撃を受けなくなり、マー
キング深さも非常に浅くなり、基板平面度の加工前後で
の変化量が0.05μm以下と非常に小さくなってい
た。
On the other hand, when the marking is performed by the ion milling, the reactive ion etching, and the chemical etching of the present invention, the character depth is very uniform, and furthermore, it is very shallow and stably processed. . In addition, no slag was present at all, and no microcracks were found on the bottom of the marking groove. And Y
No strong thermal shock as in the case of the AG laser was applied, the marking depth became very shallow, and the change in the flatness of the substrate before and after processing was extremely small at 0.05 μm or less.

【0026】なお、本発明は上記の実施形態例に限定さ
れるものではなく、本発明の要旨を逸脱しない範囲内で
種々の変更や改善等は何ら差し支えない。たとえば、こ
の実施形態例ではAl2 3 −TiC系セラミックスか
らなる薄膜磁気ヘッド用基板で説明しているが、これに
代えてサファイア、炭化シリコン、Cr238 、B
4C、Fe2 B、VB2 などからなるセラミックスや単
結晶材からなる薄膜磁気ヘッド用基板にも適用できる。
It should be noted that the present invention is not limited to the above-described embodiment, and various changes and improvements may be made without departing from the scope of the present invention. For example, although described in thin-film magnetic head substrate made of Al 2 O 3 -TiC based ceramic in the present embodiment, sapphire Alternatively, silicon carbide, Cr 23 O 8, B
The present invention is also applicable to a thin-film magnetic head substrate made of ceramics or a single crystal material made of 4 C, Fe 2 B, VB 2 or the like.

【0027】[0027]

【発明の効果】以上のとおり、本発明の薄膜磁気ヘッド
用基板によれば、イオンミリング、反応性イオンエッチ
ングもしくはケミカルエッチングから選ばれるエッチン
グ法により、深さ0.3μm以下のヘッドトレーサビリ
ティ用マーキングを施して、マーキング周辺に生じるば
りを0.1μm以下に、もしくは無くし、これによって
基板の治具固定時の変形を解消したり、さらにヘッドク
ラッシュが生じないようにして、しかも、加工面のマイ
クロクラックをなくし、粒子脱落が発生しないようにし
て、さらにマーキングの前後で基板の平面度が変化しな
いようにし、その結果、マーキング精度に優れ、マーキ
ングした文字の表示品位を高めた高信頼性かつ高品質の
薄膜磁気ヘッド用基板が提供される。
As described above, according to the substrate for a thin film magnetic head of the present invention, a mark for head traceability having a depth of 0.3 μm or less can be formed by an etching method selected from ion milling, reactive ion etching and chemical etching. To reduce or eliminate burrs generated around the marking to 0.1 μm or less, thereby eliminating deformation of the substrate when the jig is fixed and preventing head crashes. To prevent particles from falling off, and to prevent the flatness of the substrate from changing before and after marking, resulting in excellent marking accuracy and high display quality of the marked characters. And a substrate for a thin film magnetic head.

【図面の簡単な説明】[Brief description of the drawings]

【図1】マーキングの状態説明図である。FIG. 1 is an explanatory diagram of a marking state.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イオンミリング、反応性イオンエッチング
もしくはケミカルエッチングから選ばれるエッチング法
により、深さ0.3μm以下のヘッドトレーサビリティ
用マーキングを施して、マーキング周辺に生じるばりを
0.1μm以下にせしめた薄膜磁気ヘッド用基板。
1. A head traceability marking having a depth of 0.3 μm or less is performed by an etching method selected from ion milling, reactive ion etching and chemical etching to reduce burrs around the marking to 0.1 μm or less. Substrate for thin film magnetic head.
JP28969997A 1997-10-22 1997-10-22 Substrate for thin film magnetic head Pending JPH11126311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28969997A JPH11126311A (en) 1997-10-22 1997-10-22 Substrate for thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28969997A JPH11126311A (en) 1997-10-22 1997-10-22 Substrate for thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH11126311A true JPH11126311A (en) 1999-05-11

Family

ID=17746611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28969997A Pending JPH11126311A (en) 1997-10-22 1997-10-22 Substrate for thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH11126311A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449123B1 (en) 1999-08-16 2002-09-10 Sumitomo Special Metals Co., Ltd. Methods for marking a sintered product and for fabricating magnetic head substrate
US6897010B2 (en) 2001-09-05 2005-05-24 Neomax Co., Ltd. Method of recording identifier and set of photomasks
US6906895B2 (en) 2002-09-20 2005-06-14 Neomax Co., Ltd. Method of marking sintered body and method for manufacturing magnetic head wafer
US6924090B2 (en) 2001-08-09 2005-08-02 Neomax Co., Ltd. Method of recording identifier and set of photomasks
US7114239B2 (en) 2002-10-04 2006-10-03 Neomax Co., Ltd. Method for manufacturing a thin-film magnetic head wafer
US7354699B2 (en) 2001-11-06 2008-04-08 Hitachi Metals, Ltd. Method for producing alignment mark
CN106531627A (en) * 2016-11-25 2017-03-22 中国科学院长春光学精密机械与物理研究所 Nd:YAG crystal and surface polishing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449123B1 (en) 1999-08-16 2002-09-10 Sumitomo Special Metals Co., Ltd. Methods for marking a sintered product and for fabricating magnetic head substrate
US6532132B2 (en) 1999-08-16 2003-03-11 Sumitomo Special Metals Co., Ltd. Methods for marking a sintered product and for fabricating magnetic head substrate
US6924090B2 (en) 2001-08-09 2005-08-02 Neomax Co., Ltd. Method of recording identifier and set of photomasks
US6897010B2 (en) 2001-09-05 2005-05-24 Neomax Co., Ltd. Method of recording identifier and set of photomasks
US7354699B2 (en) 2001-11-06 2008-04-08 Hitachi Metals, Ltd. Method for producing alignment mark
US6906895B2 (en) 2002-09-20 2005-06-14 Neomax Co., Ltd. Method of marking sintered body and method for manufacturing magnetic head wafer
US7187523B2 (en) 2002-09-20 2007-03-06 Neomax Co., Ltd. Method of marking sintered body and method for manufacturing magnetic head wafer
US7114239B2 (en) 2002-10-04 2006-10-03 Neomax Co., Ltd. Method for manufacturing a thin-film magnetic head wafer
US7474503B2 (en) 2002-10-04 2009-01-06 Hitachi Metals, Ltd. Thin film magnetic head wafer with identification information
CN106531627A (en) * 2016-11-25 2017-03-22 中国科学院长春光学精密机械与物理研究所 Nd:YAG crystal and surface polishing method thereof

Similar Documents

Publication Publication Date Title
WO2002076675A1 (en) Substrate for information recording medium and production method thereof, information recording medium, and glass blank sheet
US6449123B1 (en) Methods for marking a sintered product and for fabricating magnetic head substrate
JPH10256106A (en) Manufacturing method of notchless wafer
US5877064A (en) Method for marking a wafer
JPH11126311A (en) Substrate for thin film magnetic head
CN112695273A (en) Sputtering target
JP2008084520A (en) Substrate for magnetic head, magnetic head, and recording medium-drive
JP2005071542A (en) Manufacturing method of magnetic recording medium
JP2003342058A (en) Ceramic substrate material for thin film magnetic head
US7474503B2 (en) Thin film magnetic head wafer with identification information
US6150023A (en) Dummy wafer
KR20210031806A (en) Diamond polycrystal and tools equipped with it
JP2004063883A (en) Method for manufacturing semiconductor wafer
US4357202A (en) Refractory oxide fabrication
JP5038553B2 (en) Manufacturing method of sputtering target
US6906895B2 (en) Method of marking sintered body and method for manufacturing magnetic head wafer
JP2006331562A (en) Manufacturing method of thin film magnetic head, and thin film magnetic head
JPH08102014A (en) Forming method for magnetic core of thin film magnetic head
US6888701B2 (en) Enhanced twist adjust range with scribed lines for slider curvature adjust
JP4061468B2 (en) Single crystal for laser oscillator and laser oscillator using this as laser medium
JP7567396B2 (en) Piezoelectric single crystal substrate and manufacturing method thereof
JP2523908B2 (en) Magnetic disk device, thin film magnetic head, and wafer for manufacturing thin film magnetic head
JP3325483B2 (en) Method of manufacturing glaze substrate for thermal head
JP2001334753A (en) Method for marking sinter body and production method for board for magnetic head
JP2022181230A (en) Piezoelectric single crystal substrate and method for manufacturing the same