JP2006331562A - Manufacturing method of thin film magnetic head, and thin film magnetic head - Google Patents

Manufacturing method of thin film magnetic head, and thin film magnetic head Download PDF

Info

Publication number
JP2006331562A
JP2006331562A JP2005155013A JP2005155013A JP2006331562A JP 2006331562 A JP2006331562 A JP 2006331562A JP 2005155013 A JP2005155013 A JP 2005155013A JP 2005155013 A JP2005155013 A JP 2005155013A JP 2006331562 A JP2006331562 A JP 2006331562A
Authority
JP
Japan
Prior art keywords
height
recording
slider
reproducing
recording element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005155013A
Other languages
Japanese (ja)
Inventor
Toshio Takahashi
俊雄 高橋
Shinji Sasaki
新治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2005155013A priority Critical patent/JP2006331562A/en
Publication of JP2006331562A publication Critical patent/JP2006331562A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that correcting of a size by inclination work becomes difficult depending on the case since the height of an element can be measured precisely only when the height of the element becomes close to a design size sufficiently in a polishing work process though a method of inclining a slider in the case of floating surface polishing in order to reduce variance of a throat height of a main magnetic pole. <P>SOLUTION: The floating surface polishing work is carried out by the following procedure. (1) The slider is inclined so as to make an element side a little deeper, and the element is worked to a height where the element can be measured with sufficient sensitivity. (2) The height of a reproduction element and a recording element at the time are measured, and a slider inclination for correcting misregistration is calculated from an error from sizes on design of each. (3) In order that both of the reproduction element and the recording element may have sizes of a final design, the elements are polished while varying the inclination gradually. (4)When bothe of the reproduction element and the recording element come to have the proper height, the working is completed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気ディスク装置等の磁気記録装置に搭載される薄膜磁気ヘッドの製造方法及び薄膜磁気ヘッドに係り、特に垂直磁気記録ヘッドの製造方法及び垂直磁気記録ヘッドに関する。   The present invention relates to a method for manufacturing a thin film magnetic head and a thin film magnetic head mounted on a magnetic recording apparatus such as a magnetic disk device, and more particularly to a method for manufacturing a perpendicular magnetic recording head and a perpendicular magnetic recording head.

近年、磁気ディスク装置の記録密度は、年率数十%という伸びを示しているが、従来の面内記録方式では、磁気データをディスク面に対して水平に配置するため、磁極が反発し合い高密度化が困難である。例え記録媒体の膜厚を薄くし、磁極の反発を抑え高密度化が可能になったとしても、室温の熱エネルギーで記録磁化が不安定化する熱擾乱の問題が避けられない。そのため、面内記録技術では15.5Gbit/平方センチ(100Gbit/平方インチ)程度を超える記録密度を実現するのは困難と考えられている。   In recent years, the recording density of magnetic disk devices has been growing at an annual rate of several tens of percent. However, in the conventional in-plane recording method, magnetic data is arranged horizontally with respect to the disk surface, so the magnetic poles repel each other. Densification is difficult. Even if the film thickness of the recording medium is reduced and the magnetic poles are prevented from being repelled and the density can be increased, the problem of thermal disturbance in which the recording magnetization becomes unstable due to thermal energy at room temperature is inevitable. Therefore, it is considered difficult to achieve a recording density exceeding about 15.5 Gbit / square centimeter (100 Gbit / square inch) with the in-plane recording technology.

一方、垂直記録方式は面内記録方式と異なり、線記録密度を上げるほど隣接ビット間に働く反磁界が減少し、記録磁化が安定に保たれる特性を持つため、高密度化するほど記録磁化が安定化するという特徴を有し、超高密度記録を実現する技術として有効である。垂直磁気記録は、二層記録メディアの裏打ち軟磁性層と単磁極ヘッドで挟まれた記録層に磁界を印加して、記録層の磁性体をディスク面に垂直な方向に磁化することで情報を記録する磁気記録方式である。大きな記録磁界を得るためには、垂直磁気記録用ヘッドの主磁極のスロートハイトをできるだけ短くする必要がある。しかし、この高さが短すぎると記録の書きにじみが生じ、長すぎると、残留磁化による記録後消去が発生してしまう。   On the other hand, the perpendicular recording method differs from the in-plane recording method in that the demagnetizing field acting between adjacent bits decreases as the linear recording density increases, and the recording magnetization is kept stable. Is effective as a technique for realizing ultra high density recording. Perpendicular magnetic recording applies information to a magnetic layer in a direction perpendicular to the disk surface by applying a magnetic field to the recording layer sandwiched between the backing soft magnetic layer of a double-layer recording medium and a single pole head. This is a magnetic recording method for recording. In order to obtain a large recording magnetic field, it is necessary to make the throat height of the main pole of the perpendicular magnetic recording head as short as possible. However, if the height is too short, the writing of the recording is blurred. If the height is too long, erasure after recording due to residual magnetization occurs.

面内記録方式では、記録素子の磁極の高さの精度は、それほど厳しく求められないが、垂直記録方式では、上記の理由で、スロートハイトに対して非常に高い精度が求められる。一方で、再生素子の高さは、垂直記録方式においても、面内記録方式と変わらず、高い寸法精度が求められ、こちらの精度も同時に満足させなければならない。   In the in-plane recording method, the accuracy of the magnetic pole height of the recording element is not so strict, but in the perpendicular recording method, a very high accuracy with respect to the throat height is required for the above reason. On the other hand, the height of the reproducing element is not different from that in the in-plane recording method even in the perpendicular recording method, and high dimensional accuracy is required, and this accuracy must be satisfied at the same time.

特許文献1には、磁気ヘッドスライダの磁気抵抗効果(MR)素子の高さを±0.020μm以下の精度で加工するために、2枚の板バネにて垂直変位する複数の上下軸と、アダプタを介して上下軸に個別に研磨荷重を与える複数の荷重付加機構の組を、研磨ヘッド位置決め機構に所定のピッチで配列固定し、個々の上下軸の下端部に粘着性弾性体を介して磁気ヘッドスライダを個別に保持させて研磨定盤に押圧し、研磨加工中にインプロセスで各磁気ヘッドスライダのMR素子の抵抗値を抵抗検知用回路基板にて検知しながら個別に研磨荷重を制御する方法が開示されている。   In Patent Document 1, in order to process the height of the magnetoresistive effect (MR) element of the magnetic head slider with an accuracy of ± 0.020 μm or less, a plurality of vertical axes that are vertically displaced by two leaf springs, A set of a plurality of load application mechanisms that individually apply a polishing load to the vertical axis via an adapter is arranged and fixed at a predetermined pitch on the polishing head positioning mechanism, and an adhesive elastic body is provided at the lower end of each vertical axis The magnetic head slider is individually held and pressed against the polishing platen, and the polishing load is individually controlled while detecting the resistance value of the MR element of each magnetic head slider with the resistance detection circuit board in-process during polishing. A method is disclosed.

特開2004−71016号公報JP 2004-71016 A

薄膜磁気ヘッドの記録素子の主磁極の高さ及び再生素子の高さは、最終的に、磁気ヘッドスライダの浮上面の研磨加工工程において形作られるが、記録素子の主磁極のスロートハイトの寸法については、(1)膜の形成方向に数μm離れた記録素子と再生素子、両素子の形成時の露光の合わせ精度、(2)スライダプロセスにおけるロウバー切り出しおよび浮上面ラップ時の膜面に対する浮上面の直角度、(3)再生素子高さ基準で浮上面加工を行う際の再生素子高さ加工寸法のばらつきなどの要因から、スロートハイトは大きくばらついてしまう。   The height of the main pole of the recording element of the thin film magnetic head and the height of the reproducing element are finally formed in the polishing process of the air bearing surface of the magnetic head slider, but the throat height dimension of the main pole of the recording element (1) Recording element and reproducing element separated by several μm in the film formation direction, exposure accuracy when forming both elements, and (2) air bearing surface with respect to the film surface during row bar cutting and air bearing surface lapping in the slider process (3) The throat height varies greatly due to factors such as variations in the processing height of the reproducing element when the air bearing surface is processed on the basis of the reproducing element height.

ウェハ上に再生素子と記録素子を形成する際に生じる露光の合わせずれは、浮上研磨加工の際にスライダを傾斜させて、再生素子と記録素子それぞれが適切な寸法になるように余分な材料を除去することによって補正することができる。ただし、再生素子と記録素子が相対的にどちら側にずれているかによって、研磨時にスライダを傾斜させる方向を変えなければならない。   The misalignment of exposure that occurs when the reproducing element and the recording element are formed on the wafer is caused by tilting the slider during the floating polishing process, and adding extra materials so that the reproducing element and the recording element have appropriate dimensions. It can correct | amend by removing. However, the direction in which the slider is inclined during polishing must be changed depending on which side the reproducing element and the recording element are relatively displaced.

一般に、記録素子は、再生素子よりも、素子面の表面に近い側に形成されるため、記録素子が、再生素子よりも浮上面に相対的に近くなるように形成されていれば、スライダの流入端側を素子面側より多く除去するように傾斜させ、逆に、再生素子が、記録素子よりも浮上面に相対的に近くなるように形成されていれば、スライダの素子面側を流入端側より多く除去するように傾斜させて研磨加工することにより、合わせずれを補正する。   In general, since the recording element is formed closer to the surface of the element surface than the reproducing element, if the recording element is formed relatively closer to the air bearing surface than the reproducing element, the slider element If the reproducing element is formed so as to be relatively closer to the air bearing surface than the recording element, the inflow end side is inclined to remove more than the element surface side. The misalignment is corrected by inclining and polishing so as to remove more from the end side.

しかしながら、実際には、研磨加工工程の最終局面で、素子の高さが設計寸法に十分に近づかなければ、記録素子も再生素子も正確な素子の高さが十分な精度で測定できないため、再生素子が、記録素子よりも浮上面に相対的に近くなるように形成されている場合、両方の素子高さが正確に測定できる程度まで加工が進んだ時点で、改めて、スライダの素子面側を流入端側より多く除去するように傾斜させると、流入端側をすでに除去しすぎた形状になっている可能性があり、スライダ浮上面が正常に形成されない。   However, in reality, at the final stage of the polishing process, if the element height does not sufficiently approach the design dimensions, neither the recording element nor the reproducing element can accurately measure the element height. When the element is formed so as to be relatively closer to the air bearing surface than the recording element, once the processing has proceeded to such an extent that the height of both elements can be measured accurately, the element surface side of the slider is changed again. If it is inclined to remove more than the inflow end side, there is a possibility that the inflow end side has already been removed too much, and the slider air bearing surface is not normally formed.

本発明は、このような、薄膜磁気ヘッドの製造上の課題を解決し、再生素子と記録素子のウェハ製造時のずれの方向が相対的にどちらの方向になっていても、両方の素子高さを適切な寸法にそろえ、かつスライダの浮上面を単一の平面として形成することを目的とするものである。   The present invention solves such a problem in the manufacture of a thin film magnetic head, and the element height of both the read element and the write element can be increased regardless of the relative direction of deviation during wafer production. The object of the present invention is to adjust the height to an appropriate dimension and form the air bearing surface of the slider as a single plane.

上記目的を達成するために、本発明の薄膜磁気ヘッドの製造方法においては、再生素子の上部に記録素子が積層された磁気ヘッド素子が複数形成されたウェハをスライダ毎に切り離す工程と、前記スライダの浮上面を流入端側に対し前記磁気ヘッド素子側を相対的に多く除去するように傾け、前記記録素子を目標値(設計値)よりわずかに多く残すところまで研磨する工程と、前記再生素子と記録素子のそれぞれの高さを測定し、設計値からの偏差から位置ずれ補正のためのスライダ傾斜角度を算出する工程と、算出した傾斜角度に基づいて、前記再生素子と記録素子の両者が所望の高さとなるように、前記傾斜角度を変化させながら研磨する工程と、を含むことを特徴とする。   In order to achieve the above object, in the method of manufacturing a thin film magnetic head according to the present invention, a step of separating, for each slider, a wafer on which a plurality of magnetic head elements each having a recording element laminated thereon is formed, and the slider. The air bearing surface of the magnetic head is inclined so as to remove a relatively large amount of the magnetic head element side with respect to the inflow end side, and the recording element is polished to leave a slightly larger amount than a target value (design value); Measuring the respective heights of the recording element and calculating the slider tilt angle for correcting the positional deviation from the deviation from the design value, and based on the calculated tilt angle, both the reproducing element and the recording element are And a step of polishing while changing the tilt angle so as to obtain a desired height.

前記スライダ傾斜角度の算出は、前記スライダ内に前記記録素子のスロートハイト測定用に設けた抵抗素子の抵抗測定値を用いて前記記録素子のスロートハイトを測定し、前記再生素子の抵抗測定値を用いて前記再生素子の高さを測定することにより行う。   The slider inclination angle is calculated by measuring the throat height of the recording element using the resistance measurement value of the resistance element provided for measuring the throat height of the recording element in the slider, and calculating the resistance measurement value of the reproducing element. And measuring the height of the reproducing element.

前記傾斜加工の後、さらに、前記スライダの浮上面を、前記再生素子の高さをモニタリングしながら、傾斜加工後の加工面に平行に数十nm研磨加工する工程を含む。   After the tilt processing, the method further includes a step of polishing the air bearing surface of the slider by several tens of nanometers in parallel with the processed surface after the tilt processing while monitoring the height of the reproducing element.

前記傾斜加工の後の研磨加工は、前記記録素子のスロートハイト測定用の抵抗素子の上部に重ねて設けた前記再生素子の高さ測定用の抵抗素子の抵抗測定値を用いて、前記再生素子の高さをモニタリングしながら行う。   The polishing process after the tilting process is performed by using the resistance measurement value of the resistance element for measuring the height of the reproducing element provided over the resistance element for measuring the throat height of the recording element. This is done while monitoring the height.

また、上記目的を達成するために、もう一つの方法として、本発明の薄膜磁気ヘッドの製造方法においては、再生素子の上部に記録素子が積層された磁気ヘッド素子が複数形成されたウェハをロウバー毎に切り出す工程と、前記ロウバーをスライダ流入端側に対し前記磁気ヘッド素子側を相対的に多く除去するように傾け、前記記録素子を目標値(設計値)よりわずかに多く残すところまで研磨する工程と、前記再生素子と記録素子のそれぞれの高さを測定し、設計値からの偏差の平均値から位置ずれ補正のためのロウバー傾斜角度を算出する工程と、算出した傾斜角度に基づいて、前記再生素子と記録素子の両者が所望の高さとなるように、前記傾斜角度を変化させながら研磨する工程と、前記ロウバーをスライダ毎に切り離す工程と、を含むことを特徴とする。   In order to achieve the above object, as another method, in the method of manufacturing a thin film magnetic head of the present invention, a wafer on which a plurality of magnetic head elements each having a recording element stacked on a reproducing element is formed on a row bar. A step of cutting each time, and tilting the row bar so as to remove a relatively large amount of the magnetic head element side with respect to the slider inflow end side, and polishing the recording element until a slightly larger amount than a target value (design value) is left. Measuring the height of each of the reproducing element and the recording element, calculating a row bar inclination angle for positional deviation correction from an average value of deviation from a design value, and based on the calculated inclination angle, Polishing while changing the tilt angle so that both the reproducing element and the recording element have a desired height, and separating the row bar for each slider. And wherein the Mukoto.

前記ロウバー傾斜角度の算出は、前記スライダ内に前記記録素子のスロートハイト測定用に設けた抵抗素子の抵抗測定値を用いて前記記録素子のスロートハイトを測定し、前記再生素子の抵抗測定値を用いて前記再生素子の高さを測定することにより行う。   The row bar inclination angle is calculated by measuring the throat height of the recording element using the resistance measurement value of the resistance element provided for measuring the throat height of the recording element in the slider, and calculating the resistance measurement value of the reproducing element. And measuring the height of the reproducing element.

前記ロウバー傾斜角度の算出は、前記スライダ間に前記記録素子のスロートハイト測定用に設けた抵抗素子の抵抗測定値用いて前記記録素子のスロートハイトを測定し、前記再生素子の抵抗測定値を用いて前記再生素子の高さを測定することにより行う。   The row bar inclination angle is calculated by measuring the throat height of the recording element using a resistance measurement value of a resistance element provided for measuring the throat height of the recording element between the sliders, and using the resistance measurement value of the reproducing element. Then, the height of the reproducing element is measured.

前記傾斜加工の後、さらに、前記ロウバー内の各スライダの浮上面を、前記再生素子の高さを個別にモニタリングしながら、傾斜加工後の加工面に平行に数十nm研磨加工する工程を含む。   After the tilt processing, the method further includes a step of polishing the air bearing surface of each slider in the row bar in parallel with the processed surface after the tilt processing while monitoring the height of the reproducing element individually. .

前記傾斜加工の後の研磨加工は、前記記録素子のスロートハイト測定用の抵抗素子の上部に重ねて設けた前記再生素子の高さ測定用の抵抗素子の抵抗測定値を用いて、前記再生素子の高さをモニタリングしながら行う。   The polishing process after the tilting process is performed by using the resistance measurement value of the resistance element for measuring the height of the reproducing element provided over the resistance element for measuring the throat height of the recording element. This is done while monitoring the height.

前記ウェハをロウバー毎に切り出す工程は、前記ウェハの同一のステッパフィールド内に形成されたエリア毎に行うことが望ましい。   The step of cutting the wafer for each row bar is preferably performed for each area formed in the same stepper field of the wafer.

前記ロウバー傾斜角度を算出する工程は、前記再生素子と前記記録素子の高さのそれぞれの設計値からの偏差のロウバー内分布の直線近似から、位置ずれ補正のためのロウバー傾斜角度をロウバーの端から端まで直線的に変化する最適値として算出する工程を含み、前記傾斜加工工程は、算出した傾斜角度に基づいて、前記再生素子と前記記録素子の両者が所望の高さとなるように、ロウバーの端から端まで直線的に変化する傾斜角度を徐々に変化させながら研磨する工程を含むものであっても良い。   The step of calculating the row bar inclination angle is obtained by calculating a row bar inclination angle for correcting a positional deviation from a linear approximation of a distribution within the row bar of a deviation from a design value of the height of each of the reproducing element and the recording element. Including a step of calculating as an optimum value that linearly changes from end to end, and the tilting step includes a row bar so that both the reproducing element and the recording element have a desired height based on the calculated tilt angle. It may include a step of polishing while gradually changing the inclination angle that linearly changes from end to end.

上記目的を達成するために、本発明の薄膜磁気ヘッドにおいては、スライダと、該スライダの素子面に設けられた再生素子を有する再生ヘッドと、該再生ヘッドに隣接して設けられた記録素子を有する記録ヘッドとを有し、与えられた磁気記録密度から規定される前記再生素子および記録素子のトラック幅に対し、該トラック幅から規定される前記再生素子の高さおよび前記記録素子の高さの統計的分布の標準偏差が、それぞれの高さ寸法の平均値の10%以内であり、かつ浮上面研磨加工後の浮上面と素子面のなす角の90度からの偏差の統計的分布の標準偏差が0.15度以上であることを特徴とする。   In order to achieve the above object, in the thin film magnetic head of the present invention, a slider, a reproducing head having a reproducing element provided on the element surface of the slider, and a recording element provided adjacent to the reproducing head are provided. The reproducing element and the recording element defined by a given magnetic recording density, and the recording element height and the recording element height defined by the track width. The standard deviation of the statistical distribution is within 10% of the average value of each height dimension, and the statistical distribution of the deviation from 90 degrees of the angle between the air bearing surface and the element surface after the air bearing surface polishing is The standard deviation is 0.15 degrees or more.

本発明によれば、再生素子と記録素子のウェハ製造時のずれの方向が相対的にどちらの方向になっていても、両方の素子高さを適切な寸法に揃えることができる。   According to the present invention, the height of both elements can be adjusted to an appropriate dimension regardless of the relative direction of deviation between the reproducing element and the recording element during wafer manufacturing.

まず、図2を参照して、薄膜磁気ヘッド(垂直磁気記録ヘッド)30の構成と動作概念を説明する。垂直磁気記録ヘッド30はスライダ3(図1参照)の素子形成面に再生ヘッド31と記録ヘッド35が積層された磁気ヘッド素子部を有する。再生ヘッド31はGMR素子等の再生素子32を下部磁気シールド33と上部磁気シールド34で挟んで構成される。記録ヘッド35は記録素子(主磁極)36と、戻り磁極37と、後部磁極38と、導体コイル39で構成される。垂直磁気記録は、二層記録メディア40の軟磁性裏打層42と主磁極36で挟まれた記録層41に磁界を印加して、記録層41の磁性体をディスク面に垂直な方向に磁化44することで情報を記録する磁気記録方式である。図3に、垂直磁気記録ヘッド素子部の概略構成を示す。主磁極36先端の、書き込みトラック幅と同等まで細く絞り込まれた部分の高さHをスロートハイトと称するが、図4の、記録磁界強度とスロートハイトHの関係図に示すように、大きな記録磁界を得るためには、スロートハイトHをできるだけ短くする必要がある。しかし、この高さが短すぎると記録の書きにじみが生じ、長すぎると、残留磁化による記録後消去が発生してしまうので、非常に高い精度が要求される。勿論、再生素子32の高さLも高い精度が要求される。   First, the configuration and operation concept of the thin film magnetic head (perpendicular magnetic recording head) 30 will be described with reference to FIG. The perpendicular magnetic recording head 30 has a magnetic head element portion in which a reproducing head 31 and a recording head 35 are laminated on the element forming surface of the slider 3 (see FIG. 1). The reproducing head 31 is configured by sandwiching a reproducing element 32 such as a GMR element between a lower magnetic shield 33 and an upper magnetic shield 34. The recording head 35 includes a recording element (main magnetic pole) 36, a return magnetic pole 37, a rear magnetic pole 38, and a conductor coil 39. In perpendicular magnetic recording, a magnetic field is applied to the recording layer 41 sandwiched between the soft magnetic backing layer 42 and the main magnetic pole 36 of the double-layer recording medium 40, and the magnetic material of the recording layer 41 is magnetized 44 in a direction perpendicular to the disk surface. This is a magnetic recording method for recording information. FIG. 3 shows a schematic configuration of the perpendicular magnetic recording head element portion. The height H of the portion narrowed down to the same width as the write track width at the tip of the main magnetic pole 36 is referred to as a throat height. As shown in the relationship diagram of the recording magnetic field strength and the throat height H in FIG. In order to obtain the above, it is necessary to make the throat height H as short as possible. However, if this height is too short, recording writing blurs, and if it is too long, post-recording erasure occurs due to residual magnetization, so that very high accuracy is required. Of course, high accuracy is also required for the height L of the reproducing element 32.

次に、垂直磁気記録ヘッドの製造工程におけるスライダ浮上面の研磨について、まず基本的な工程を説明する。浮上面研磨加工前に、磁気ヘッドスライダを単品ごとに切り離す工程、次に再生素子の高さLおよび記録素子のスロートハイトHを検知しながら単品スライダごとに浮上面を研磨する工程、次に前記浮上面研磨工程において、再生素子と記録素子の不要部分が徐々に除去され、前記両素子の高さが設計値に近づいた際、両素子の高さの検出値から再生素子と記録素子の位置ずれ補正のための傾斜加工の傾斜角を各スライダについて算出する工程、次に、算出した傾斜角に基づき、各スライダに傾斜をかけながら浮上面をさらに研磨し再生素子の高さLと記録素子のスロートハイトHを同時に設計通りの寸法に仕上げる工程を経ることで、ウェハ工程での再生素子と記録素子の形成位置ずれを補正する。   Next, basic steps for polishing the slider air bearing surface in the manufacturing process of the perpendicular magnetic recording head will be described first. Before the air bearing surface polishing process, the step of separating the magnetic head slider for each single product, the step of polishing the air bearing surface for each single product slider while detecting the height L of the reproducing element and the throat height H of the recording element, In the air bearing surface polishing step, unnecessary portions of the reproducing element and the recording element are gradually removed, and when the height of both the elements approaches the design value, the position of the reproducing element and the recording element is determined from the detected value of the height of both elements. A step of calculating the inclination angle of the inclination processing for deviation correction for each slider, and then, based on the calculated inclination angle, the air bearing surface is further polished while inclining each slider, and the height L of the reproducing element and the recording element The throat height H is simultaneously finished to the designed dimensions, thereby correcting the formation position deviation between the reproducing element and the recording element in the wafer process.

この際、浮上面研磨工程の初期に、スライダ流入端側に対し磁気ヘッド素子側を相対的に多く除去するようにスライダを傾け、記録素子を目標値(設計値)よりわずかに多く残すところまで研磨する工程、その時点での再生素子と記録素子のそれぞれの高さを測定し、それぞれの設計値からの偏差から、位置ずれ補正のためのスライダ傾斜角度を算出する工程、算出した傾斜角度に基づいて、再生素子と記録素子の両者が最終的な設計値の高さとなるように、徐々に傾斜角度を変化させながら研磨してゆく工程を経ることで、再生素子と記録素子のウェハ製造時のずれの方向が相対的にどちらの方向になっていても、両方の素子高さを適切な寸法にそろえ、かつスライダの浮上面を単一の平面として形成することができる。   At this time, in the initial stage of the air bearing surface polishing process, the slider is tilted so that the magnetic head element side is relatively removed from the slider inflow end side, and the recording element is left slightly more than the target value (design value). The step of polishing, the step of measuring the respective heights of the reproducing element and the recording element at that time, the step of calculating the slider inclination angle for misalignment correction from the deviation from the respective design value, the calculated inclination angle Based on this, a process of polishing while gradually changing the tilt angle so that both the reproducing element and the recording element are at the final design value height is achieved. Regardless of which direction of displacement is relatively, both element heights can be adjusted to appropriate dimensions, and the air bearing surface of the slider can be formed as a single plane.

これにより、従来技術のように、傾斜研磨加工を行わず、素子面に対して垂直に浮上面を形成するように浮上面研磨加工を行い、再生素子高さLのみを基準に加工の終点を決定した場合に生ずる記録素子のスロートハイトHの寸法ばらつきに起因する記録素子オーバーライト特性不良に比較して、不良率が大幅に低減され、歩留まりが向上する。   Thus, unlike the conventional technique, the air bearing surface is polished so as to form the air bearing surface perpendicular to the element surface without performing the slant polishing process, and the processing end point is determined based only on the reproducing element height L. Compared with the recording element overwrite characteristic defect caused by the dimensional variation of the throat height H of the recording element that occurs when it is determined, the defect rate is greatly reduced and the yield is improved.

傾斜角度については、スライダ内に記録素子のスロートハイト測定用に設計された抵抗体を配置してその抵抗測定値を用いて記録素子のスロートハイトHを測定し、また再生素子の抵抗測定値から再生素子高さLを測定し、その両者の値の比較から、必要な傾斜角度を算出する。   Regarding the tilt angle, a resistor designed for measuring the throat height of the recording element is arranged in the slider, and the throat height H of the recording element is measured using the resistance measurement value. The reproducing element height L is measured, and a necessary inclination angle is calculated from a comparison of both values.

傾斜加工の後、各スライダの浮上面を、個別に再生素子高さをモニタリングしながら、傾斜加工後の加工面に平行に数十nm研磨加工することで、再生素子の高さLと記録素子のスロートハイトHを同時に適切な寸法に仕上げる。以下、実施例について詳細に説明する。
<実施例1>
図5に、垂直磁気記録ヘッド30の浮上面と素子面のなす角と記録素子と再生素子のずれ量の幾何学的関係を示す。ウェハ製造プロセス段階で、再生素子32と記録素子36の露光位置にδyだけずれがある場合、スライダ浮上面研磨で素子面と浮上面のなす角を90度からδθだけ傾斜させて加工することで、その位置ずれを補正し、両方の素子の高さを適切な寸法に仕上げることができる。その傾斜角の大きさは、記録素子36と再生素子32の間の面間隔をdとして、δθ=tan-1(d/δy)≒d/δyである。図6には、記録素子36と再生素子32の面間隔を8.5μmとしたときの、浮上面と素子面のなす角の90度からの偏差δθと記録素子36と再生素子32の位置ずれ補正量δyの数値的関係の一例を示す。
After the tilting process, the height L of the reproducing element and the recording element are obtained by polishing the flying surface of each slider individually by monitoring the height of the reproducing element and paralleling the processed surface after the tilting process by several tens of nm. The throat height H is finished to an appropriate size at the same time. Hereinafter, examples will be described in detail.
<Example 1>
FIG. 5 shows the geometric relationship between the angle formed by the air bearing surface of the perpendicular magnetic recording head 30 and the element surface, and the amount of deviation between the recording element and the reproducing element. When the exposure position of the reproducing element 32 and the recording element 36 is shifted by δy at the wafer manufacturing process stage, the angle between the element surface and the air bearing surface is inclined by 90 ° to δθ by polishing the slider air bearing surface. The position shift can be corrected, and the heights of both elements can be finished to appropriate dimensions. The magnitude of the inclination angle is δθ = tan −1 (d / δy) ≈d / δy, where d is the surface interval between the recording element 36 and the reproducing element 32. FIG. 6 shows the deviation δθ of the angle formed by the air bearing surface and the element surface from 90 ° and the positional deviation between the recording element 36 and the reproducing element 32 when the surface distance between the recording element 36 and the reproducing element 32 is 8.5 μm. An example of a numerical relationship of the correction amount δy is shown.

スライダ3を傾斜させる研磨工程を含むスライダプロセスには複数の方法があるが、記録素子36と再生素子32の位置ずれの補正精度の観点から最良の実施の形態は、図1に示すように、粗加工の前に、スライダを単品ごとに切り離して(工程102)、個別に粗加工(工程103)、仕上げ加工(工程104)を行う単品スライダプロセスである。一般に、粗加工での加工量は十数μm、仕上げ加工での加工量は数十nmであるため、位置ずれ補正のための傾斜加工は粗加工でのみ行い、仕上げ加工では研磨面に対し平行に加工を行う。図1を参照してスライダ完成までのプロセスを説明する。まずウェハ1を切断して複数個の磁気ヘッド素子を含むロウバー2を切り出す(工程101)。続いて、ロウバー2をチップ切断して個々のスライダ3に切り離す(工程102)。次に、スライダ3をスライダ傾斜機構4に取り付け、研磨面を回転する研磨定盤(図示せず)に押し当て浮上面の粗加工(傾斜加工)を行う(工程103)。続いて、研磨面に対して平行に単品仕上げ加工(傾斜なし)を行う(工程104)。次に、スライダ3を浮上面溝加工治具5に搭載し(工程105)、浮上面溝加工及び保護膜形成を行い(工程106)、スライダ3が完成する(工程107)。なお、工程103および104における研磨加工は、例えば特許文献1に開示されている研磨装置を使用することができる。   Although there are a plurality of slider processes including a polishing step for inclining the slider 3, the best embodiment from the viewpoint of the correction accuracy of the positional deviation between the recording element 36 and the reproducing element 32 is as shown in FIG. This is a single-slider process in which the slider is separated into individual products (step 102), and roughing (step 103) and finishing (step 104) are performed individually before roughing. In general, the amount of processing in rough machining is several tens of μm, and the amount of processing in finishing processing is several tens of nm. Therefore, tilt processing for correcting misalignment is performed only in rough processing, and parallel to the polished surface in finishing processing. To process. The process up to the completion of the slider will be described with reference to FIG. First, the wafer 1 is cut to cut out the row bar 2 including a plurality of magnetic head elements (step 101). Subsequently, the row bar 2 is cut into chips and separated into individual sliders 3 (step 102). Next, the slider 3 is attached to the slider tilting mechanism 4 and pressed against a polishing surface plate (not shown) that rotates the polishing surface, and roughing (tilting) of the air bearing surface is performed (step 103). Subsequently, a single product finishing process (no inclination) is performed in parallel with the polished surface (step 104). Next, the slider 3 is mounted on the air bearing surface groove processing jig 5 (process 105), air bearing surface groove processing and protective film formation are performed (process 106), and the slider 3 is completed (process 107). In addition, the grinding | polishing apparatus currently disclosed by patent document 1 can be used for the grinding | polishing process in process 103 and 104, for example.

しかしながら、実際の記録素子36と再生素子32のウェハ製造プロセスでの位置ずれ量は、図7のウェハ上での分布の一例を示す図に見られるように、スライダ3ごとに異なっているため、図8(a)のように、記録素子36が再生素子32よりも浮上面に相対的に近い側に形成されるものと、逆に、図8(b)のように再生素子32が記録素子36よりも浮上面に相対的に近い側に形成されるものとが両方存在する。一般に、記録素子36は、再生素子32よりも、素子面の表面に近い側に形成されるため、記録素子36が、再生素子32よりも浮上面に相対的に近くなるように形成されていれば、図8(a)のように、スライダの流入端側を素子面側より多く除去するように傾斜させ、逆に、再生素子32が、記録素子36よりも浮上面に相対的に近くなるように形成されていれば、図8(b)のように、スライダ3の素子面側を流入端側より多く除去するように傾斜させて研磨加工することにより、合わせずれを補正する。   However, since the amount of positional deviation in the wafer manufacturing process of the actual recording element 36 and reproducing element 32 differs for each slider 3 as shown in the example of the distribution on the wafer in FIG. As shown in FIG. 8A, the recording element 36 is formed on the side relatively closer to the air bearing surface than the reproducing element 32. Conversely, as shown in FIG. Both are formed closer to the air bearing surface than 36. In general, since the recording element 36 is formed closer to the surface of the element surface than the reproducing element 32, the recording element 36 is formed so as to be relatively closer to the air bearing surface than the reproducing element 32. For example, as shown in FIG. 8A, the inflow end side of the slider is inclined so as to be removed more than the element surface side, and conversely, the reproducing element 32 is relatively closer to the air bearing surface than the recording element 36. If formed in this way, as shown in FIG. 8B, the misalignment is corrected by inclining and polishing so that the element surface side of the slider 3 is removed more than the inflow end side.

しかしながら、実際には、研磨加工工程の最終局面で、素子の高さが設計寸法に十分に近づかなければ、記録素子36も再生素子32も正確な素子の高さが十分な精度で測定できないため、図8(b)のように、再生素子32が、記録素子36よりも浮上面に相対的に近くなるように形成されている場合、両方の素子高さが正確に測定できる程度まで加工が進んだ時点で、改めて、スライダ3の素子面側を流入端側より多く除去するように傾斜させると、流入端側をすでに除去しすぎた形状になっている可能性があり、スライダ浮上面が正常に形成されない。   However, in reality, in the final phase of the polishing process, if the height of the element does not sufficiently approach the design dimension, neither the recording element 36 nor the reproducing element 32 can measure the accurate element height with sufficient accuracy. When the reproducing element 32 is formed so as to be relatively closer to the air bearing surface than the recording element 36 as shown in FIG. 8B, the processing is performed to such an extent that both element heights can be accurately measured. If the element surface side of the slider 3 is tilted so as to be removed more than the inflow end side when it advances, there is a possibility that the inflow end side has already been removed excessively, and the slider floating surface It does not form normally.

そこで、本発明では、そのような問題を解決して、記録素子36と再生素子32の位置のずれが相対的にどちら方向になっていても、適切に傾斜加工による補正をするために、以下のような手順を経ることを特徴とする浮上面研磨加工を行う。図9に、本発明による詳細な浮上面研磨傾斜加工手順を示す。図中の点線は、(a)記録素子36が再生素子32よりも浮上面に相対的に近い側に形成されている場合、また逆に(b)再生素子32が記録素子36よりも浮上面に相対的に近い側に形成されている場合、それぞれの加工中の各瞬間における研磨面である。   Therefore, in the present invention, in order to solve such a problem and appropriately correct by tilting processing regardless of which direction the positional deviation between the recording element 36 and the reproducing element 32 is relative, The air bearing surface polishing process is performed, which is characterized by the following procedure. FIG. 9 shows a detailed air bearing surface polishing tilt processing procedure according to the present invention. The dotted line in the figure indicates that (a) the recording element 36 is formed closer to the air bearing surface than the reproducing element 32, and conversely (b) the reproducing element 32 is more air bearing than the recording element 36. When it is formed on the side relatively close to the surface, it is a polished surface at each moment during each processing.

すなわち、磁気ヘッド素子側を深めに取るようにスライダ3を傾け、磁気ヘッド素子が浮上面に露出し、さらに最終的な設計上の高さ寸法にある程度近づいて、高さ寸法が十分な感度で測定されるまで加工する(第1ステップ)。続いて、再生素子32と記録素子36のそれぞれのその時点での高さ寸法を測定し、それぞれの設計上の高さ寸法からの誤差から、位置ずれ補正のためのスライダ傾斜角度を算出する(第2ステップ)。次に、再生素子32と記録素子36の両者が最終的な設計上の高さ寸法となるように、徐々に傾斜角度を変化させながら研磨してゆく(第3ステップ)。再生素子32と記録素子36の両者が同時に適切な高さ寸法となったところで加工を終了する(第4ステップ)。続いて、浮上面表面の平滑度と再生素子高さ基準の素子寸法を向上させる目的で、さらに数十nm程度の除去量をともなう仕上げ加工を行う(第5ステップ:この際、傾斜加工は行わず、記録素子と再生素子は、等量ずつ研磨される)。   That is, the slider 3 is tilted so that the magnetic head element side is deep, the magnetic head element is exposed to the air bearing surface, and approaches the final design height dimension to some extent, so that the height dimension is sufficiently sensitive. Process until measured (first step). Subsequently, the height dimension of each of the reproducing element 32 and the recording element 36 at that time is measured, and the slider tilt angle for correcting the positional deviation is calculated from the error from the respective designed height dimension ( Second step). Next, polishing is performed while gradually changing the inclination angle so that both the reproducing element 32 and the recording element 36 have the final designed height dimension (third step). When both the reproducing element 32 and the recording element 36 have the appropriate height at the same time, the processing is finished (fourth step). Subsequently, for the purpose of improving the smoothness of the air bearing surface and the element dimensions based on the reproducing element height, a finishing process with a removal amount of about several tens of nanometers is performed (fifth step: tilting is performed at this time). First, the recording element and the reproducing element are polished in equal amounts).

このように、位置ずれ補正のための傾斜加工の時点から、スライダ単品を個別に加工するのが、記録素子36、再生素子32、それぞれの寸法精度の観点から、最良の実施の形態である。   In this way, it is the best embodiment from the viewpoint of the dimensional accuracy of each of the recording element 36 and the reproducing element 32 to individually process the slider individually from the time of the inclination processing for the positional deviation correction.

傾斜角度については、図10に示すようにスライダ内に記録素子36のスロートハイト測定用に抵抗体50を配置し、その抵抗測定値を用いて記録素子36のスロートハイトHを測定し、また再生素子32の抵抗測定値から再生素子高さLを測定し、その両者の値の比較から、必要な傾斜角度を算出する。   With respect to the inclination angle, as shown in FIG. 10, a resistor 50 is disposed in the slider for measuring the throat height of the recording element 36, the measured throat height H of the recording element 36 is measured using the measured resistance value, and reproduction is performed. The reproducing element height L is measured from the resistance measurement value of the element 32, and a necessary inclination angle is calculated from a comparison between the two values.

傾斜角度の算出は具体的には次のようにして行う。図11に記録素子36のスロートハイト、再生素子32の高さ、スライダの傾斜角の関係を示すが、H0:記録素子スロートハイトの設計値、L0:再生素子高さの設計値、H1:傾斜角算出時点での記録素子スロートハイト、L1:傾斜角算出時点での再生素子高さ、d:記録素子と再生素子の面間隔とすると、傾斜角算出時点から、最終的な研磨終了時までの必要な傾斜角は、δθ=tan-1(d/((H1-H0) -(L1-L0)))≒d/((H1-H0) -(L1-L0))となる。 Specifically, the tilt angle is calculated as follows. FIG. 11 shows the relationship between the throat height of the recording element 36, the height of the reproducing element 32, and the tilt angle of the slider. H 0 : Design value of the recording element throat height, L 0 : Design value of the reproducing element height, H 1 : Recording element throat height at the time of calculating the tilt angle, L 1 : Reproducing element height at the time of calculating the tilt angle, and d: Surface spacing between the recording element and the reproducing element. The required tilt angle until the end is δθ = tan -1 (d / ((H 1 -H 0 )-(L 1 -L 0 ))) ≒ d / ((H 1 -H 0 )-(L 1 -L 0 )).

図12は、記録素子のスロートハイトH、再生素子の高さLと、スロートハイト測定用抵抗体50及び再生素子の抵抗値との関係の一例を示す図である。図に示されるように、抵抗値と素子の寸法は、逆比例の関係にあるため、素子寸法がある程度まで設計値に近づかなければ、十分な精度で寸法を算出することができない。例えば、図12の例のような特性を持つ抵抗素子の場合、設計値100nm近辺での抵抗変化率の1/10の変化率を示すようになるまで、300nmのところまで近づかなければならない。したがって、例えば、H0:150nm、L0:100nmの目標値に対して、加工途上でL1が300nm に達したとき、H1の測定値が380nmであったとすると、補正に必要な傾斜角は上記の式からδθ=0.2度となる。 FIG. 12 is a diagram illustrating an example of the relationship among the throat height H of the recording element, the height L of the reproducing element, and the resistance values of the throat height measuring resistor 50 and the reproducing element. As shown in the figure, since the resistance value and the element size are in an inversely proportional relationship, the dimension cannot be calculated with sufficient accuracy unless the element size approaches the design value to some extent. For example, in the case of a resistance element having the characteristics as in the example of FIG. 12, it has to approach 300 nm until it shows a change rate of 1/10 of the resistance change rate in the vicinity of the design value of 100 nm. Therefore, for example, assuming that the measured value of H 1 is 380 nm when L 1 reaches 300 nm during processing with respect to the target values of H 0 : 150 nm and L 0 : 100 nm, the tilt angle necessary for correction Is δθ = 0.2 degrees from the above equation.

また、一般に、補正に必要な傾斜角は微小であるため、傾斜角算出時点での研磨面が、すでに素子面に対して90度から若干(たとえばプラスマイナス5度程度以内)傾斜していても、上記計算による補正傾斜角の算出にはほとんど支障なく、その時点での傾斜角に、補正角を単純に加算すればよい。   In general, since the tilt angle required for correction is very small, even if the polished surface at the time of tilt angle calculation has already tilted slightly from 90 degrees to the element surface (for example, within plus or minus 5 degrees). The calculation of the corrected inclination angle by the above calculation has almost no problem, and the correction angle may be simply added to the inclination angle at that time.

図10に示すように、記録素子36のスロートハイト測定用の抵抗体50に重ねて配置された再生素子高さ測定用抵抗体(粗加工用)70は、粗加工開始時(再生素子の最終寸法の十数μm手前)から、再生素子の寸法が約1μm程度になるまでの加工量のモニタリングに使用するものであり、上記の傾斜角算出は、その後、再生素子高さの算出を、再生素子自身の抵抗値測定に引き継いだ後に行う。なお、再生素子高さ測定用抵抗体(粗加工用)70は、記録素子スロートハイト測定用抵抗体50の下に配置しても良い。   As shown in FIG. 10, a reproducing element height measuring resistor (for rough machining) 70 arranged so as to overlap the throat height measuring resistor 50 of the recording element 36 is used at the time of starting roughing (final of the reproducing element). This is used for monitoring the processing amount from the size of a few tens of μm before the size of the regenerative element to about 1 μm. The above calculation of the tilt angle is followed by the calculation of the height of the regenerative element. This is done after taking over the resistance value of the device itself. Note that the reproducing element height measuring resistor (for roughing) 70 may be disposed under the recording element throat height measuring resistor 50.

傾斜加工後の単品仕上げ加工は、各スライダ3の浮上面を、個別に再生素子32自身の抵抗値をモニタリングしながら、傾斜加工後の加工面に平行に数十nm研磨加工することで、再生素子32の高さLと記録素子35のスロートハイトHを同時に適切な寸法に仕上げる。   Single product finishing after tilting is performed by polishing the air bearing surface of each slider 3 by tens of nanometers in parallel with the processed surface after tilting while monitoring the resistance value of the reproducing element 32 individually. The height L of the element 32 and the throat height H of the recording element 35 are simultaneously finished to appropriate dimensions.

上記実施例1によれば、再生素子と記録素子のウェハ製造時のずれの方向が相対的にどちらの方向になっていても、両方の素子高さを適切な寸法にそろえ、かつスライダの浮上面を単一の平面として形成することができる。また、記録素子のスロートハイトの寸法ばらつきに起因する記録素子オーバーライト特性不良が大幅に低減され、歩留まりが向上する。
<実施例2>
図13は、位置ずれ補正のための傾斜加工を、ロウバーの状態で行う場合の加工工程の一例を示す図である。この実施例では、粗加工となる傾斜加工(工程202)までは、ロウバー2の状態で行い、そのあと、個別のスライダに分割するためのチップ切断を行い(工程203)、スライダ単品の状態で浮上面表面の平滑度と再生素子高さ基準の素子寸法を向上させるための仕上げ加工を行う(工程204)。
According to the first embodiment, the height of both elements is adjusted to an appropriate dimension and the slider is lifted regardless of the relative direction of deviation between the reproducing element and the recording element during wafer manufacture. The surface can be formed as a single plane. Further, the recording element overwrite characteristic defect due to the dimensional variation in the throat height of the recording element is greatly reduced, and the yield is improved.
<Example 2>
FIG. 13 is a diagram illustrating an example of a machining process in the case where the tilt machining for correcting the misalignment is performed in a row bar state. In this embodiment, until the rough machining (step 202), which is rough machining, is performed in the state of the row bar 2, then chip cutting for dividing into individual sliders is performed (step 203). Finishing is performed to improve the smoothness of the air bearing surface and the element dimensions based on the reproducing element height (step 204).

図7に示されているずれ量の分布は、ウェハ上スライダのごく一部を抽出したものであり、テータ点をとられていないそのほかのスライダ3は、そのずれ量を滑らかに変化させている。したがって、ロウバー1本分の中でも、ずれ量の平均値成分がある程度存在し、ロウバー単位での傾き補正によっても、ある程度、寸法精度を向上させることができる。   The deviation distribution shown in FIG. 7 is obtained by extracting a small portion of the slider on the wafer, and the other sliders 3 that have not taken the data points smoothly change the deviation. . Therefore, there is a certain amount of average deviation component in one row bar, and the dimensional accuracy can be improved to some extent by correcting the inclination in units of row bars.

傾斜加工は、ロウバー単位で行うため、図14に示すように記録素子のスロートハイト測定用に設計された抵抗体50は、スライダ内、またはスライダ間に配置する。スライダ間に配置する場合は、再生素子の高さ測定用に設計された抵抗体60も必要なため、スライダ間、ひとつ置きに、再生素子用、記録素子用を交互に配置する。また、図15に示すように各スライダ間の再生素子用抵抗体60、記録素子用抵抗体50の両者を重ね合わせに配置する。寸法精度の観点からは、合計の抵抗体の数を多く配置できる重ね合わせ配置方式の方が、より適した形態である。   Since the tilting process is performed in units of row bars, the resistor 50 designed for measuring the throat height of the recording element as shown in FIG. 14 is arranged in the slider or between the sliders. Since the resistor 60 designed for measuring the height of the reproducing element is also required when arranged between the sliders, the reproducing element and the recording element are alternately arranged every other slider. Further, as shown in FIG. 15, both the reproducing element resistor 60 and the recording element resistor 50 between the sliders are arranged in an overlapping manner. From the viewpoint of dimensional accuracy, the overlapping arrangement method that can arrange a large number of total resistors is a more suitable form.

図14、図15に示すように、ロウバーで研磨加工するために、スライダ間に配置する素子高さ測定用抵抗体には、粗加工用70、仕上げ加工用、加工終端リファレンス用80があり、このうち、仕上げ加工用について、記録素子スロートハイト測定用50と再生素子高さ測定用60の二種類用意し、それぞれ交互に、または重ね合わせて配置する。これらの抵抗体の測定値により、ロウバー傾斜角を算出することで、再生素子と記録素子の位置ずれを補正する。   As shown in FIG. 14 and FIG. 15, the element height measuring resistors disposed between the sliders for polishing with a row bar include rough machining 70, finishing machining, and machining termination reference 80. Among these, for finishing processing, two types of recording element throat height measurement 50 and reproducing element height measurement 60 are prepared, and they are arranged alternately or overlapping each other. The positional deviation between the reproducing element and the recording element is corrected by calculating the row bar inclination angle based on the measured values of these resistors.

記録素子の寸法精度の観点からは、実施例1が最良の形態であるが、より製品の量産に適したプロセスとするためには、上記実施例2のようにロウバープロセスを傾斜加工に適用してもよい。
<実施例3>
図16は、位置ずれ補正のための傾斜加工、およびそのあとの浮上面表面の平滑度と再生素子高さ基準の素子寸法を向上させるための仕上げ加工をロウバーの状態で行う場合の加工工程の一例を示す図である。この実施例では、粗加工となる傾斜加工(工程302)と、そのあとの仕上げ加工(工程303)までロウバー2の状態で行い、そのあと、個別のスライダに分割するためのチップ切断(工程306)を行い、スライダ完成とする。
Example 1 is the best mode from the viewpoint of the dimensional accuracy of the recording element, but in order to make the process more suitable for mass production of the product, the row bar process is applied to the inclined machining as in Example 2 above. May be.
<Example 3>
FIG. 16 shows a machining process in the case of performing a tilting process for positional deviation correction and a finishing process in the state of a row bar to improve the smoothness of the air bearing surface and the element size based on the reproducing element height. It is a figure which shows an example. In this embodiment, a slanting process (step 302), which is a roughing process, and a subsequent finishing process (step 303) are performed in the state of the row bar 2, and then a chip is cut to be divided into individual sliders (step 306). ) To complete the slider.

傾斜加工は、上記実施例2と同じであり、スライダ内、またはスライダ間に配置した各抵抗体の測定値により、ロウバー傾斜角を算出することで、再生素子と記録素子の位置ずれを補正する。   The tilt processing is the same as in the second embodiment, and the positional deviation between the reproducing element and the recording element is corrected by calculating the row bar tilt angle based on the measured value of each resistor disposed in the slider or between the sliders. .

実施例2に比較して、仕上げ加工までロウバーで行うため、寸法精度の観点からはやや劣るが、装置やプロセスは、さらに単純かつ容易であり、より製品の量産に適している。
<実施例4>
図7の点線で囲われたひとつひとつの四角形は、素子形成時の露光のステッパフィールドのひとつであり、一般に、ロウバーは、これらのステッパフィールドを、2つ乃至3つ跨いだものとなる。ステッパの原理から、ステッパフィールドとステッパフィールドの継ぎ目のところでは、記録素子と再生素子のずれ量の変化が不連続になる傾向があり、実施例2,3のような、ロウバーに依存したプロセスでは、このステッパフィールドの継ぎ目のところでロウバーを分割したほうが、ロウバー内のずれ量の分布がより均一である。ロウバーの長さが1/2から1/3になることを除き、プロセスの流れは、図13および図16とまったく同様である。このように、ステッパフィールドの継ぎ目で分割したロウバー単位で傾斜加工を行ってもよい。それにより、再生素子、記録素子の高さ寸法精度は、実施例2,3より向上する。
<実施例5>
ロウバー内のずれ量の分布は、決して均一ではないが、まったくのランダムでもない。したがって、実施例2,3,4のように、ロウバー単位で、傾斜加工を行う際に、ロウバー内全スライダに均等に傾斜を掛ける代わりに、ロウバー内の各スライダの補正傾斜角δθの分布の直線近似から算出される、ロウバーの端から端まで直線的に変化する傾斜をかけて加工してもよい。
Compared to the second embodiment, since the finishing process is performed with a row bar, the apparatus and process are simpler and easier and more suitable for mass production of products, although it is slightly inferior from the viewpoint of dimensional accuracy.
<Example 4>
Each quadrangle surrounded by a dotted line in FIG. 7 is one of the stepper fields for exposure at the time of element formation. In general, a row bar extends over two or three of these stepper fields. From the stepper principle, at the joint between the stepper field and the stepper field, the change in the amount of deviation between the recording element and the reproducing element tends to be discontinuous. In the process depending on the row bar as in the second and third embodiments, If the row bar is divided at the seam of the stepper field, the distribution of the deviation amount in the row bar is more uniform. The process flow is exactly the same as in FIGS. 13 and 16, except that the length of the row bar is reduced from 1/2 to 1/3. In this way, the tilting process may be performed in units of row bars divided at the joint of the stepper field. Thereby, the height dimensional accuracy of the reproducing element and the recording element is improved as compared with the second and third embodiments.
<Example 5>
The distribution of the shift amount in the row bar is not uniform at all, but is not completely random. Therefore, as in the second, third, and fourth embodiments, when performing tilt machining in units of row bars, instead of uniformly tilting all the sliders in the row bar, the distribution of the corrected tilt angle δθ of each slider in the row bar is changed. Processing may be performed with an inclination that is linearly changed from end to end of the row bar calculated from linear approximation.

図17に、各スライダの素子ずれ量から算出される補正傾斜角δθのロウバー内分布の一例を示す。この例では、ロウバー内のスライダ数は45個である。図のデータ点に多少の誤差を伴いつつも、おおむね直線的に分布している。図中の直線は、データ点の直線近似であり、この図の例ではy=0.0023x+0.2448で表される直線となっている。したがって、浮上面研磨加工第2ステップの傾斜角算出工程の後、ロウバーのスライダ番号1の側の端を0.247度、スライダ番号45の側の端を0.348度となるように傾斜角が直線的に変化するようにロウバー傾斜機構6をセットすれば、実施例2,3,4のように、全体の平均値である0.298度の傾斜を全体に均等にかけるよりも、さらに素子寸法精度が向上する。   FIG. 17 shows an example of the distribution in the row bar of the corrected tilt angle δθ calculated from the element shift amount of each slider. In this example, the number of sliders in the row bar is 45. The data points in the figure are distributed almost linearly with some errors. The straight line in the figure is a linear approximation of data points, and in the example of this figure, it is a straight line represented by y = 0.0023x + 0.2448. Therefore, after the step of calculating the inclination angle in the second step of polishing the air bearing surface, the inclination angle is linearly so that the end of the row bar on the slider number 1 side is 0.247 degrees and the end on the slider number 45 side is 0.348 degrees. If the row bar tilt mechanism 6 is set so as to change, the element dimensional accuracy can be further improved as compared with the case where the entire average value of 0.298 degrees is applied to the whole as in the second, third, and fourth embodiments. .

次に、上記各実施例の傾斜加工による歩留まり向上効果について以下に説明する。図18は、傾斜加工を行わない場合の記録素子スロートハイト仕様に対する歩留まりを示す。ウェハプロセスでの記録素子と再生素子の位置ずればらつきは、3σで100nmである。一方、スライダ加工プロセスにおいては、再生素子の高さを基準に加工を行うが、その再生素子高さのばらつきは、ロウバーで仕上げ加工を行った場合、50nm、単品スライダで仕上げ加工を行った場合は、10nmである。ここで、再生素子高さの要求仕様も50nmと考えているので、再生素子高さの観点からの歩留まりロスはここでは考慮しない(実際には、3σで考えているので、99.7%である)。これに対し、記録素子のスロートハイトは、スライダ浮上面と素子面の直角(90度)からの偏差によって規定されるが、直角を前提に研磨していても、その角度はある程度ばらついてしまう。そのばらつきの大きさは、角度のばらつきを記録素子のスロートハイトのばらつきに換算して、20nm相当である。   Next, the yield improvement effect by the inclination machining of each of the above embodiments will be described below. FIG. 18 shows the yield with respect to the recording element throat height specification when the tilting process is not performed. The positional deviation variation between the recording element and the reproducing element in the wafer process is 100 nm at 3σ. On the other hand, in the slider processing process, processing is performed based on the height of the reproducing element, but the variation in the reproducing element height is the case when finishing with a row bar, when finishing with a single slider, 50 nm. Is 10 nm. Here, since the required specification of the reproducing element height is also considered to be 50 nm, the yield loss from the viewpoint of the reproducing element height is not considered here (actually, it is 99.7% because 3σ is considered) . On the other hand, the throat height of the recording element is defined by a deviation from the right angle (90 degrees) between the slider floating surface and the element surface. However, even if polishing is performed assuming a right angle, the angle varies to some extent. The magnitude of the variation is equivalent to 20 nm when the angle variation is converted into the throat height variation of the recording element.

したがって、ロウバー粗加工(傾斜なし)の後、ロウバー仕上げ加工(傾斜なし)を行う場合の、記録素子のスロートハイトのばらつき精度は3σで、100nm、50nm、20nmの二乗和の平方根から、113.6nmとなる。これに対し、記録素子スロートハイトの要求仕様50nmは、このようなばらつきを持つ分布の標準偏差σの1.321倍に相当するので、この範囲に収まる分布は全体の母数の81.3%であり、これが、この場合の歩留まりとなる。   Accordingly, when the row bar finish processing (no tilt) is performed after the row bar rough processing (no tilt), the variation accuracy of the throat height of the recording element is 3σ, which is 113.6 nm from the square root of the square sum of 100 nm, 50 nm, and 20 nm. It becomes. On the other hand, the required specification of the recording element throat height of 50 nm is equivalent to 1.321 times the standard deviation σ of the distribution having such a variation, so the distribution falling within this range is 81.3% of the entire population, which is This is the yield in this case.

また、同様に、ロウバー粗加工(傾斜なし)の後、単品スライダ仕上げ加工(傾斜なし)を行う場合の、記録素子のスロートハイトのばらつき精度は3σで、100nm、10nm、20nmの二乗和の平方根から、102.5nmとなる。同様の計算から、要求仕様50nmは、同分布の標準偏差σの1.464倍に相当するので、この範囲に収まる分布は全体の母数の85.7%であり、これが、この場合の歩留まりとなる。   Similarly, when a single slider finishing process (without tilting) is performed after row bar roughing (without tilting), the throat height variation accuracy of the recording element is 3σ, and the square root of the square sum of 100 nm, 10 nm, and 20 nm. To 102.5 nm. From the same calculation, the required specification 50 nm corresponds to 1.464 times the standard deviation σ of the same distribution, so the distribution that falls within this range is 85.7% of the entire population, and this is the yield in this case.

なお、傾斜加工を行わない場合には、粗加工を単品スライダで行う利点はないので、そのようなプロセスは検討してない。   In the case where the tilting process is not performed, there is no advantage of performing the roughing process with a single slider, so such a process is not considered.

一方、傾斜加工を行う場合の記録素子スロートハイト仕様に対する歩留まりを図19に示す。粗加工での傾斜加工による位置ずれ補正をロウバーで行う場合は(実施例2,3)、ロウバー内の各スライダの位置ずれ補正傾斜角の平均値をロウバー全体に均等に掛けるため、ロウバー内の各スライダの位置ずれをすべては補正しきれない。ロウバー単位での位置ずれ補正傾斜加工による精度改善効果は、記録素子のスロートハイトの寸法ばらつきに換算して、ウェハ上での記録素子と再生素子の位置ずればらつきの60%程度である。すなわち、ウェハプロセスでの位置ずればらつきが100nmであれば、記録素子のスロートハイトの寸法のばらつきに換算して60nmとなるということである。   On the other hand, FIG. 19 shows the yield with respect to the recording element throat height specification in the case of performing tilting. When the positional deviation correction by the tilting process in the roughing is performed by the row bar (Examples 2 and 3), the average value of the positional deviation correction inclination angles of the sliders in the row bar is uniformly applied to the entire row bar. It is not possible to correct all the displacements of each slider. The accuracy improvement effect by the positional deviation correction tilt processing in units of row bars is about 60% of the positional deviation variation between the recording element and the reproducing element on the wafer in terms of the dimensional variation in the throat height of the recording element. That is, if the positional deviation variation in the wafer process is 100 nm, it is converted to the variation in the throat height dimension of the recording element to be 60 nm.

これに対し、スライダ加工プロセスにおいては、上記と同様、基本的に、再生素子の高さを基準に加工を行うが、その再生素子高さのばらつきは、ロウバーで仕上げ加工を行った場合(実施例3)は50nm、単品スライダで仕上げ加工を行った場合は(実施例2)、10nmである。ここで、上記と同様、再生素子高さの要求仕様も50nmと考えているので、再生素子高さの観点からの歩留まりロスはここでは考慮しない。   On the other hand, in the slider processing process, basically, the processing is basically performed based on the height of the reproducing element as described above. However, the variation in the reproducing element height is caused by finishing with a row bar (implemented). Example 3) is 50 nm, and when finished with a single slider (Example 2), it is 10 nm. Here, similarly to the above, since the required specification of the reproducing element height is considered to be 50 nm, the yield loss from the viewpoint of the reproducing element height is not considered here.

一方、傾斜加工そのものも、完全に、狙った角度のとおりに仕上がるものではなく、その角度はある程度ばらついてしまう。そのばらつきの大きさは、角度のばらつきを記録素子のスロートハイトのばらつきに換算して、20nm相当である。したがって、ロウバーによる傾斜粗加工の後、ロウバー仕上げ加工(傾斜なし)を行う場合の(実施例3)、記録素子のスロートハイトのばらつき精度は、3σで、60nm、50nm、20nmの二乗和の平方根から、80.6nmとなる。これに対し、記録素子スロートハイトの要求仕様50nmは、この分布の標準偏差σの1.861倍に相当するので、この範囲に収まる分布は全体の母数の93.7%であり、これが、この場合の歩留まりとなる。   On the other hand, the tilting process itself is not completely finished at the target angle, and the angle varies to some extent. The magnitude of the variation is equivalent to 20 nm when the angle variation is converted into the throat height variation of the recording element. Therefore, in the case of performing the row bar finishing process (without inclination) after the inclined roughing process by the row bar (Example 3), the throat height variation accuracy of the recording element is 3σ, and the square root of the square sum of 60 nm, 50 nm, and 20 nm. To 80.6 nm. On the other hand, the required specification 50 nm for the recording element throat height corresponds to 1.861 times the standard deviation σ of this distribution, so the distribution that falls within this range is 93.7% of the total population, which is the yield in this case It becomes.

ロウバーによる傾斜粗加工のあと、単品スライダによる仕上げ加工を行った場合の(実施例2)記録素子のスロートハイトのばらつき精度は、3σで、60nm、10nm、20nmの二乗和の平方根から、64.0nmとなる。これに対し、記録素子スロートハイトの要求仕様50nmは、この分布の標準偏差σの2.343倍に相当するので、この範囲に収まる分布は全体の母数の98.1%であり、これが、この場合の歩留まりとなる。   (Example 2) The throat height variation accuracy of the recording element is 6σ from the square root of the sum of squares of 60 nm, 10 nm, and 20 nm when the finishing process is performed with a single slider after the rough roughing with the row bar. It becomes. On the other hand, the required specification of the recording element throat height of 50 nm corresponds to 2.343 times the standard deviation σ of this distribution, so the distribution falling within this range is 98.1% of the entire population, which is the yield in this case It becomes.

また、さらに傾斜粗加工も仕上げ加工も、どちらも単品スライダで行う場合は(実施例1)、傾斜加工による位置ずれ改善効果で、ウェハ上のばらつきは0nmになるが、実際の傾斜加工そのものは、完全に、狙った角度のとおりに仕上がるものではなく、その角度はある程度ばらついてしまう。そのばらつきの大きさは、角度のばらつきを記録素子のスロートハイトのばらつきに換算して、20nm相当である。   In addition, when both tilt roughing and finishing are performed with a single slider (Embodiment 1), the effect of improving the misalignment by the tilting process results in 0 nm variation on the wafer, but the actual tilting process itself is It is not completely finished according to the target angle, and the angle varies to some extent. The magnitude of the variation is equivalent to 20 nm when the angle variation is converted into the throat height variation of the recording element.

したがって、この場合の記録素子のスロートハイトのばらつき精度は、3σで、10nm、20nmの二乗和の平方根から、22.4nmとなる。これに対し、記録素子スロートハイトの要求仕様50nmは、この分布の標準偏差σの6.708倍に相当するので、この範囲に収まる分布は、計算上、全体の母数の100.0%(有効数字、小数点下一桁)であり、これが、この場合の歩留まりとなる。   Accordingly, the variation accuracy of the throat height of the recording element in this case is 32.4, and is 22.4 nm from the square root of the square sum of 10 nm and 20 nm. On the other hand, the required specification 50nm for the recording element throat height is equivalent to 6.708 times the standard deviation σ of this distribution. Therefore, the distribution within this range is 100.0% of the total population (significant figures, decimal points). This is the yield in this case.

図18、図19にまとめられているように、上記のような寸法ばらつき、要求仕様の関係になっている場合は、いずれの場合においても、傾斜加工を行うことで、十分に有意な歩留まり改善効果があることがわかる。   As summarized in FIG. 18 and FIG. 19, when there is a relationship between the dimensional variations and the required specifications as described above, in any case, sufficiently significant yield improvement can be achieved by performing inclined machining. It turns out that there is an effect.

また、実施例4,5のように、ステッパフィールドごとに分割したロウバーや、ロウバーの中で傾斜角を直線的に変化させて傾斜加工する場合は、上記のロウバー単位での位置ずれ補正傾斜加工による精度改善効果が60%よりさらに良くなり(数字が低くなり)、それぞれに対応して、詳細は省略するが、同様の計算に従いさらなる歩留まり向上の効果がある。   In addition, as in the fourth and fifth embodiments, in the case of the row bar divided for each stepper field, or when the tilt process is performed by linearly changing the tilt angle in the row bar, the above-described misalignment correction tilt processing in units of row bars. The accuracy improvement effect by is further improved than 60% (the number is lower), and corresponding details are omitted, but there is a further yield improvement effect according to the same calculation.

本発明による傾斜加工プロセスの結果、製品スライダに現れる形状的特徴について以下に説明する。磁気ヘッド素子の寸法仕様は、すべて要求される記録密度から規定される。ある与えられた記録密度に対して、それを実現するのに必要なトラック幅Twr、Twwが規定され、そのトラック幅に対して、Twrの80-100%の寸法として、再生素子高さLが規定される。また同様に、Twrから、それに対応した記録素子スロートハイトHも規定される。   The geometrical features that appear on the product slider as a result of the tilting process according to the present invention are described below. The dimensional specifications of the magnetic head element are all defined from the required recording density. For a given recording density, the track widths Twr and Tww necessary to realize the recording density are defined. With respect to the track width, the reproducing element height L is set as a dimension of 80 to 100% of Twr. It is prescribed. Similarly, the recording element throat height H corresponding to Twr is also defined from Twr.

一般に、素子寸法のばらつき仕様は、ばらつきの3σ(標準偏差の3倍)その寸法の1/3とし、そのばらつき仕様に収まっているものを、製品として出荷する。したがって、製品として市場に出回る素子の寸法は、その平均値のおおむね10%以内に収まっている。   In general, the variation specification of element dimensions is 3σ of the variation (three times the standard deviation) and 1/3 of the size, and products that fall within the variation specification are shipped as products. Therefore, the dimensions of devices that are on the market as products are generally within 10% of the average value.

傾斜加工を行わないで、スライダ浮上面と素子面が直角になるように浮上面研磨加工を行った場合の角度のばらつきは、0.15度程度であり、これは、記録素子と再生素子の位置ずれに換算すると、20nmに相当する値である。   When tilting is performed and the air bearing surface is polished so that the slider air bearing surface and the element surface are at right angles, the angle variation is about 0.15 degrees. This is a misalignment between the recording element and the reproducing element. Is a value corresponding to 20 nm.

しかしながら、ウェハプロセスでの記録素子と再生素子の位置ずればらつきは、100nm程度であり、将来、この位置ずれ精度が改善されても、30nm程度が限界とされているため、再生素子と記録素子の寸法を、両方とも上記仕様に収めるには、傾斜加工を行う必要があり、その場合、スライダ浮上面と素子面のなす角の分布は、0.15度よりも大きな値となる。   However, the positional deviation variation between the recording element and the reproducing element in the wafer process is about 100 nm, and even if this positional deviation accuracy is improved in the future, it is limited to about 30 nm. In order to keep both dimensions within the above specifications, it is necessary to perform tilting. In this case, the distribution of the angle formed by the slider air bearing surface and the element surface is greater than 0.15 degrees.

以上の説明の通り、本発明の各実施例によるスライダ浮上面の傾斜研磨工程を経ることによって、再生素子と記録素子のウェハ製造時のずれの方向が相対的にどちらの方向になっていても、両方の素子高さを適切な寸法にそろえ、かつスライダの浮上面を単一の平面として形成することができる。また、記録素子のスロートハイトの寸法ばらつきに起因する記録素子オーバーライト特性不良が大幅に低減され、歩留まりが向上する。   As described above, through the slant polishing process of the slider air bearing surface according to each embodiment of the present invention, the direction of deviation of the reproducing element and the recording element during wafer manufacturing is relatively either direction. Both the element heights can be adjusted to appropriate dimensions, and the air bearing surface of the slider can be formed as a single plane. Further, the recording element overwrite characteristic defect due to the dimensional variation in the throat height of the recording element is greatly reduced, and the yield is improved.

本発明の実施例1による単品浮上面傾斜加工を含むスライダ加工プロセスを示す図である。It is a figure which shows the slider processing process including the single-piece floating surface inclination process by Example 1 of this invention. 垂直磁気記録ヘッドの構成と動作概念を示す図である。It is a figure which shows the structure and operation | movement concept of a perpendicular magnetic recording head. 垂直磁気記録ヘッド素子部の構成図である。It is a block diagram of a perpendicular magnetic recording head element part. 垂直磁気記録ヘッドの記録磁界強度と記録素子のスロートハイトとの関係を示す図である。It is a figure which shows the relationship between the recording magnetic field strength of a perpendicular magnetic recording head, and the throat height of a recording element. 垂直磁気記録ヘッドの浮上面と素子面のなす角と記録素子と再生素子のずれ量の幾何学的関係を示す図である。FIG. 5 is a diagram showing a geometrical relationship between an angle formed by an air bearing surface of a perpendicular magnetic recording head and an element surface, and a shift amount of a recording element and a reproducing element. 垂直磁気記録ヘッドの浮上面と素子面のなす角と記録素子と再生素子のずれ量補正値の数値的関係の一例を示す図である。It is a figure which shows an example of the numerical relationship of the angle | corner which the air bearing surface of a perpendicular magnetic recording head and an element surface make, and the deviation | shift amount correction value of a recording element and a reproducing element. 垂直磁気記録ヘッドの記録素子と再生素子のウェハ製造プロセスでの位置ずれのウェハ上での分布の一例を示す図である。It is a figure which shows an example of distribution on the wafer of the position shift in the wafer manufacturing process of the recording element of a perpendicular magnetic recording head, and a reproducing element. 記録素子と再生素子の位置ずれの形態を示す図で、(a)は記録素子が再生素子よりも浮上面に近い側に形成される場合、(b)は再生素子が記録素子よりも浮上面に近い側に形成される場合を示す。FIGS. 4A and 4B are diagrams illustrating a positional deviation between a recording element and a reproducing element. FIG. 5A illustrates a case where the recording element is formed closer to the air bearing surface than the reproducing element, and FIG. The case where it forms in the side close | similar to is shown. 本発明による、記録素子と再生素子の位置ずれ補正のための浮上面研磨傾斜加工手順を示す図である。It is a figure which shows the floating surface grinding | polishing inclination process procedure for position shift correction of the recording element and reproducing | regenerating element by this invention. 素子寸法測定用抵抗体をスライダ内に配置する際に、記録素子スロートハイト測定用と再生素子高さ測定用を重ね合わせて配置する場合の一例を示す図である。FIG. 5 is a diagram illustrating an example of a case where a recording element throat height measurement unit and a reproducing element height measurement unit are arranged in an overlapping manner when an element dimension measurement resistor is arranged in a slider. 垂直磁気記録ヘッドの記録素子のスロートハイト、再生素子高さ、スライダの傾斜角の関係を示す図である。It is a figure which shows the relationship between the throat height of the recording element of a perpendicular magnetic recording head, reproducing element height, and the inclination-angle of a slider. 垂直磁気記録ヘッドの記録素子のスロートハイト、再生素子の高さと、高さ測定用抵抗素子の抵抗値の関係の一例を示す図である。It is a figure which shows an example of the relationship between the throat height of the recording element of a perpendicular magnetic recording head, the height of a reproducing element, and the resistance value of the resistance element for height measurement. 本発明の実施例2によるロウバー浮上面傾斜加工を含む単品スライダ加工プロセスを示す図である。It is a figure which shows the single-piece slider processing process including the row bar floating surface inclination process by Example 2 of this invention. 素子寸法測定用抵抗体をスライダ間に配置する際に、記録素子スロートハイト測定用と再生素子高さ測定用を交互に配置する場合の一例を示す図である。It is a figure which shows an example in the case of arrange | positioning alternately for recording element throat height measurement and for reproducing | regenerating element height measurement, when arrange | positioning the resistor for an element dimension between sliders. 素子寸法測定用抵抗体をスライダ間に配置する際に、記録素子スロートハイト測定用と再生素子高さ測定用を重ね合わせて配置する場合の一例を示す図である。FIG. 6 is a diagram illustrating an example of a case where a recording element throat height measurement unit and a reproducing element height measurement unit are arranged in an overlapping manner when the element dimension measuring resistor is arranged between sliders. 本発明の実施例3によるロウバー浮上面傾斜加工を含むロウバーに依存したスライダ加工プロセスを示す図である。It is a figure which shows the slider processing process depending on the row bar including the row bar floating surface inclination process by Example 3 of this invention. 各スライダの素子ずれ量から算出される補正傾斜角δθのロウバー内分布とその直線近似の一例を示す図である。It is a figure which shows an example in the distribution in a row bar of correction | amendment inclination | tilt angle (delta) theta calculated from the element shift | offset | difference amount of each slider, and its linear approximation. 傾斜加工を行わない場合の記録素子スロートハイト仕様に対する歩留まりを示す図である。It is a figure which shows the yield with respect to the printing element throat height specification when not performing an inclination process. 傾斜加工を行う場合の記録素子スロートハイト仕様に対する歩留まりを示す図である。It is a figure which shows the yield with respect to the printing element throat height specification in the case of performing an inclination process.

符号の説明Explanation of symbols

1…ウェハ、
2…ロウバー、
3…スライダ、
4…スライダ傾斜機構、
5…ロウバー傾斜機構、
6…浮上面溝加工治具、
30…垂直磁気記録ヘッド、
31…再生ヘッド、
32…再生素子、
33…下部磁気シールド、
34…上部磁気シールド、
35…記録ヘッド、
36…記録素子(主磁極)、
37…戻り磁極、
38…後部磁極、
39…導体コイル、
40…二層記録メディア、
41…記録層、
42…軟磁性裏打層、
44…垂直磁化、
50…記録素子スロートハイト測定用抵抗体、
60…再生素子高さ測定用抵抗体(仕上げ加工用)、
70…再生素子高さ測定用抵抗体(粗加工用)、
80…加工終端リファレンス抵抗体。
1 ... wafer,
2 ... Rowbar,
3 ... Slider,
4 ... slider tilt mechanism,
5 ... Row bar tilt mechanism,
6 ... Air bearing surface groove processing jig,
30: Perpendicular magnetic recording head,
31 ... reproducing head,
32 ... reproducing element,
33 ... Lower magnetic shield,
34 ... Upper magnetic shield,
35. Recording head,
36: Recording element (main magnetic pole),
37 ... Return pole,
38 ... rear magnetic pole,
39: Conductor coil,
40. Double-layer recording media,
41 ... Recording layer,
42 ... soft magnetic backing layer,
44 ... perpendicular magnetization,
50. Recording element throat height measuring resistor,
60: Resistor for measuring reproducing element height (for finishing),
70: Resistor for measuring reproducing element height (for roughing),
80: Reference resistor for processing termination.

Claims (12)

再生素子の上部に記録素子が積層された磁気ヘッド素子が複数形成されたウェハをスライダ毎に切り離す工程と、前記スライダの浮上面を流入端側に対し前記磁気ヘッド素子側を相対的に多く除去するように傾け、前記記録素子を目標値よりわずかに多く残すところまで研磨する工程と、前記再生素子と記録素子のそれぞれの高さを測定し、目標値からの偏差から位置ずれ補正のためのスライダ傾斜角度を算出する工程と、算出した傾斜角度に基づいて、前記再生素子と記録素子の両者が所望の高さとなるように、前記傾斜角度を変化させながら研磨する工程と、を含むことを特徴とする薄膜磁気ヘッドの製造方法。   A process of separating a wafer on which a plurality of magnetic head elements having recording elements stacked on the reproducing element are separated for each slider, and removing the air bearing surface of the slider from the inflow end side relatively to the magnetic head element side. And tilting the recording element to a position where the recording element is left slightly more than the target value, and measuring the respective heights of the reproducing element and the recording element, and correcting the positional deviation from the deviation from the target value. A step of calculating a slider tilt angle, and a step of polishing based on the calculated tilt angle while changing the tilt angle so that both the reproducing element and the recording element have a desired height. A method of manufacturing a thin film magnetic head. 前記スライダ傾斜角度の算出は、前記スライダ内に前記記録素子のスロートハイト測定用に設けた抵抗素子の抵抗測定値を用いて前記記録素子のスロートハイトを測定し、前記再生素子の抵抗測定値を用いて前記再生素子の高さを測定することにより行うことを特徴とする請求項1記載の薄膜磁気ヘッドの製造方法。   The slider inclination angle is calculated by measuring the throat height of the recording element using the resistance measurement value of the resistance element provided for measuring the throat height of the recording element in the slider, and calculating the resistance measurement value of the reproducing element. 2. The method of manufacturing a thin film magnetic head according to claim 1, wherein the reproducing element is used to measure the height of the reproducing element. 前記傾斜加工の後、さらに、前記スライダの浮上面を、前記再生素子の高さをモニタリングしながら、傾斜加工後の加工面に平行に数十nm研磨加工する工程を含むことを特徴とする請求項1記載の薄膜磁気ヘッドの製造方法。   After the tilting process, the method further comprises a step of polishing the air bearing surface of the slider by several tens of nanometers in parallel with the processed surface after the tilting process while monitoring the height of the reproducing element. A manufacturing method of a thin film magnetic head according to Item 1. 前記傾斜加工に先立つ浮上面研磨粗加工は、前記記録素子のスロートハイト測定用の抵抗素子の上部に重ねて前記スライダ内に設けた前記再生素子の高さ測定用の抵抗素子の抵抗測定値を用いて、前記再生素子の高さをモニタリングしながら行い、前記傾斜加工のあとの研磨加工は、前記再生素子の抵抗測定値を用いて前記再生素子の高さを測定しながら行うことを特徴とする請求項3記載の薄膜磁気ヘッドの製造方法。   Roughing of the air bearing surface prior to the tilting process is performed by measuring the resistance measurement value of the resistance element for measuring the height of the reproducing element provided in the slider so as to overlap the throat height measurement resistance element of the recording element. And performing the polishing process after the tilting process while measuring the height of the reproducing element by using a resistance measurement value of the reproducing element. A method of manufacturing a thin film magnetic head according to claim 3. 再生素子の上部に記録素子が積層された磁気ヘッド素子が複数形成されたウェハをロウバー毎に切り出す工程と、前記ロウバーをスライダ流入端側に対し前記磁気ヘッド素子側を相対的に多く除去するように傾け、前記記録素子を目標値よりわずかに多く残すところまで研磨する工程と、前記再生素子と記録素子のそれぞれの高さを測定し、目標値からの偏差の平均値から位置ずれ補正のためのロウバー傾斜角度を算出する工程と、算出した傾斜角度に基づいて、前記再生素子と記録素子の両者が所望の高さとなるように、前記傾斜角度を変化させながら研磨する工程と、前記ロウバーをスライダ毎に切り離す工程と、を含むことを特徴とする薄膜磁気ヘッドの製造方法。   A step of cutting a wafer on which a plurality of magnetic head elements each having a recording element laminated on the reproducing element are formed for each row bar, and removing the row bar on the magnetic head element side relatively more than the slider inflow end side. For the purpose of correcting the displacement from the average value of the deviation from the target value, measuring the height of each of the reproducing element and the recording element A step of calculating a row bar inclination angle, a step of polishing based on the calculated inclination angle while changing the inclination angle so that both the reproducing element and the recording element have a desired height, and the row bar A method of manufacturing a thin film magnetic head, comprising the step of separating each slider. 前記ロウバー傾斜角度の算出は、前記スライダ内に前記記録素子のスロートハイト測定用に設けた抵抗素子の抵抗測定値を用いて前記記録素子のスロートハイトを測定し、前記再生素子の抵抗測定値を用いて前記再生素子の高さを測定することにより行うことを特徴とする請求項5記載の薄膜磁気ヘッドの製造方法。   The row bar inclination angle is calculated by measuring the throat height of the recording element using the resistance measurement value of the resistance element provided for measuring the throat height of the recording element in the slider, and calculating the resistance measurement value of the reproducing element. 6. The method of manufacturing a thin film magnetic head according to claim 5, wherein the reproducing element is used to measure the height of the reproducing element. 前記ロウバー傾斜角度の算出は、前記スライダ間に前記記録素子のスロートハイト測定用に設けた抵抗素子の抵抗測定値用いて前記記録素子のスロートハイトを測定し、前記再生素子の抵抗測定値を用いて前記再生素子の高さを測定することにより行うことを特徴とする請求項5記載の薄膜磁気ヘッド製造方法。   The row bar inclination angle is calculated by measuring the throat height of the recording element using a resistance measurement value of a resistance element provided for measuring the throat height of the recording element between the sliders, and using the resistance measurement value of the reproducing element. 6. A method of manufacturing a thin film magnetic head according to claim 5, wherein the height of the reproducing element is measured. 前記傾斜加工の後、さらに前記ロウバー内の各スライダの浮上面を、個別スライダごとに切り離したうえで、前記再生素子の高さを個別にモニタリングしながら、傾斜加工後の加工面に平行に数十nm研磨加工する工程を含むことを特徴とする請求項5記載の薄膜磁気ヘッドの製造方法。   After the inclined machining, the floating surface of each slider in the row bar is separated for each individual slider, and the height of the reproducing element is individually monitored, and the number is parallel to the machined surface after the inclined machining. 6. The method of manufacturing a thin film magnetic head according to claim 5, further comprising a step of polishing to a thickness of 10 nm. 前記傾斜加工は、前記スライダ間に前記記録素子のスロートハイト測定用に設けた抵抗素子の抵抗測定値用いて前記記録素子のスロートハイトを測定し、前記記録素子のスロートハイト測定用の抵抗素子の上部に重ねて設けた前記再生素子の高さ測定用の抵抗素子の抵抗測定値を用いて、前記再生素子の高さをモニタリングしながら行い、前記傾斜加工の後の研磨加工は、前記再生素子の抵抗測定値を用いて前記再生素子の高さを測定しながら行うことを特徴とする請求項8記載の薄膜磁気ヘッドの製造方法。   In the tilting process, the throat height of the recording element is measured using a resistance measurement value of a resistance element provided for measuring the throat height of the recording element between the sliders, and the resistance element for measuring the throat height of the recording element is measured. Using the resistance measurement value of the resistance element for measuring the height of the reproducing element provided to overlap the upper part, the height of the reproducing element is monitored, and polishing after the tilting process is performed by the reproducing element. 9. A method of manufacturing a thin film magnetic head according to claim 8, wherein the height of the reproducing element is measured using the measured resistance value. 前記ウェハをロウバー毎に切り出す工程は、前記ウェハの同一のステッパフィールド内に形成されたエリア毎に行うことを特徴とする請求項5記載の薄膜磁気ヘッドの製造方法。   6. The method of manufacturing a thin film magnetic head according to claim 5, wherein the step of cutting the wafer for each row bar is performed for each area formed in the same stepper field of the wafer. 前記ロウバー傾斜角度を算出する工程は、前記再生素子と前記記録素子の高さのそれぞれの設計値からの偏差のロウバー内分布の直線近似から、位置ずれ補正のためのロウバー傾斜角度をロウバーの端から端まで直線的に変化する最適値として算出する工程を含み、前記傾斜加工工程は、算出した傾斜角度に基づいて、前記再生素子と前記記録素子の両者が所望の高さとなるように、ロウバーの端から端まで直線的に変化する傾斜角度を徐々に変化させながら研磨する工程を含むことを特徴とする請求項5記載の薄膜磁気ヘッドの製造方法。   The step of calculating the row bar inclination angle is obtained by calculating a row bar inclination angle for correcting a positional deviation from a linear approximation of a distribution within the row bar of a deviation from a design value of the height of each of the reproducing element and the recording element. Including a step of calculating as an optimum value that linearly changes from end to end, and the tilting step includes a row bar so that both the reproducing element and the recording element have a desired height based on the calculated tilt angle. 6. A method of manufacturing a thin film magnetic head according to claim 5, further comprising a step of polishing while gradually changing an inclination angle that linearly changes from end to end. スライダと、該スライダの素子面に設けられた再生素子を有する再生ヘッドと、該再生ヘッドに隣接して設けられた記録素子を有する記録ヘッドとを有し、与えられた磁気記録密度から規定される前記再生素子および記録素子のトラック幅に対し、該トラック幅から規定される前記再生素子の高さおよび前記記録素子の高さの統計的分布の標準偏差が、それぞれの高さ寸法の平均値の10%以内であり、かつ浮上面研磨加工後の浮上面と素子面のなす角の90度からの偏差の統計的分布の標準偏差が0.15度以上であることを特徴とする薄膜磁気ヘッド。   The slider has a reproducing head having a reproducing element provided on the element surface of the slider, and a recording head having a recording element provided adjacent to the reproducing head, and is defined from a given magnetic recording density. The standard deviation of the statistical distribution of the height of the reproducing element and the height of the recording element defined from the track width is the average value of the height dimension of the reproducing element and the recording element. The standard deviation of the statistical distribution of the deviation from 90 degrees of the angle formed by the air bearing surface after polishing the air bearing surface and the element surface is 0.15 degrees or more. head.
JP2005155013A 2005-05-27 2005-05-27 Manufacturing method of thin film magnetic head, and thin film magnetic head Withdrawn JP2006331562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155013A JP2006331562A (en) 2005-05-27 2005-05-27 Manufacturing method of thin film magnetic head, and thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155013A JP2006331562A (en) 2005-05-27 2005-05-27 Manufacturing method of thin film magnetic head, and thin film magnetic head

Publications (1)

Publication Number Publication Date
JP2006331562A true JP2006331562A (en) 2006-12-07

Family

ID=37553096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155013A Withdrawn JP2006331562A (en) 2005-05-27 2005-05-27 Manufacturing method of thin film magnetic head, and thin film magnetic head

Country Status (1)

Country Link
JP (1) JP2006331562A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028825A (en) * 2009-06-30 2011-02-10 Hitachi Global Storage Technologies Netherlands Bv Method for manufacturing magnetic head
US8166630B2 (en) 2007-11-02 2012-05-01 Sae Magnetics (H.K.) Ltd. Magnetic head slider manufacturing method
US8254057B1 (en) 2012-02-08 2012-08-28 Hitachi Global Storage Technologies Netherlands B.V. Detecting wedge angle with a third electric lapping guide (ELG) during manufacture of a magnetic head
JP2017503304A (en) * 2014-01-08 2017-01-26 ウエスタンデジタル(フレモント), エルエルシー Method and system for adjusting tilt using feedback of magnetic erase width

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8166630B2 (en) 2007-11-02 2012-05-01 Sae Magnetics (H.K.) Ltd. Magnetic head slider manufacturing method
JP2011028825A (en) * 2009-06-30 2011-02-10 Hitachi Global Storage Technologies Netherlands Bv Method for manufacturing magnetic head
US8254057B1 (en) 2012-02-08 2012-08-28 Hitachi Global Storage Technologies Netherlands B.V. Detecting wedge angle with a third electric lapping guide (ELG) during manufacture of a magnetic head
JP2017503304A (en) * 2014-01-08 2017-01-26 ウエスタンデジタル(フレモント), エルエルシー Method and system for adjusting tilt using feedback of magnetic erase width

Similar Documents

Publication Publication Date Title
US7712205B2 (en) Method of manufacturing a magnetic head
US8390962B2 (en) Lapping method and station to achieve tight dimension controls for both read and write elements of magnetic recording heads and magnetic storage device formed thereby
EP1626392A1 (en) Method of manufacturing magnetic heads with reference and monitoring lapping guides
EP1732064A2 (en) Magnetic recording heads with bearing surface protections and methods of manufacture
JP3990197B2 (en) Thin film magnetic head
JP2006331562A (en) Manufacturing method of thin film magnetic head, and thin film magnetic head
US7582218B2 (en) Method for merging sensor field-mill and electronic lapping guide material placement for a partial mill process and sensor formed according to the method
US7240418B2 (en) Method of manufacturing slider of thin-film magnetic head
US10290314B1 (en) Locating electrical contact pads on a slider body, and related row bars that include such slider bodies
US7995308B2 (en) Magnetic head for perpendicular magnetic recording and method of manufacturing same, the magnetic head incuding pole layer and two shields sandwiching the pole layer
US20160329071A1 (en) Variable Rough Lap Machining For Magnetic Recording Read-Write Heads
JP4405234B2 (en) Thin film magnetic head polishing method
JP2002251708A (en) Polishing method for magnetic head slider
US7392580B2 (en) Method for manufacturing a slider using electromagnetic wave
US20090165287A1 (en) Manufacturing method for magnetic head slider
CN111148598B (en) Lapping tool and assembly, magnetic read-write head slider and data storage device
US20030019095A1 (en) Simultaneous slider crown and camber adjust by scribe line control
US6888701B2 (en) Enhanced twist adjust range with scribed lines for slider curvature adjust
JP2006172691A (en) Magnetic head manufacturing method, magnetic head, angle setting device, and lapping device head
JP2006344381A (en) Method of manufacturing thin film magnetic head
JP2006059501A (en) Manufacturing method of slider
US20190311733A1 (en) Electonic test structres for one or more magnetoresistive elements, and related methods
US7832085B2 (en) Method of manufacturing magnetic head and method of manufacturing magnetic head substructure
JP2003115102A (en) Thin-film magnetic head and its manufacturing method
JP2011028825A (en) Method for manufacturing magnetic head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701