JP2006344381A - Method of manufacturing thin film magnetic head - Google Patents

Method of manufacturing thin film magnetic head Download PDF

Info

Publication number
JP2006344381A
JP2006344381A JP2006266340A JP2006266340A JP2006344381A JP 2006344381 A JP2006344381 A JP 2006344381A JP 2006266340 A JP2006266340 A JP 2006266340A JP 2006266340 A JP2006266340 A JP 2006266340A JP 2006344381 A JP2006344381 A JP 2006344381A
Authority
JP
Japan
Prior art keywords
polishing
magnetoresistive
slider
magnetic head
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006266340A
Other languages
Japanese (ja)
Inventor
Takateru Seki
高輝 関
Hideo Yamakura
英雄 山倉
Toshio Tamura
利夫 田村
Akio Takakura
昭雄 高倉
Koji Tanaka
幸治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Inc
Original Assignee
HGST Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HGST Inc filed Critical HGST Inc
Priority to JP2006266340A priority Critical patent/JP2006344381A/en
Publication of JP2006344381A publication Critical patent/JP2006344381A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a MR head which is mounted on a magnetic disk apparatus of surface recording density 100 Gbit/in<SP>2</SP>and in which such accuracy is requested that accuracy of MR element height is ±0.02 mm or less and shape accuracy of floating plane is ±2 nm or less. <P>SOLUTION: The above problems can be solved by the following means. Finish polishing process is performed by slider shape, a resistance value of a resistance detecting element formed in the slider is detected in in-process, and when the detected resistance value or measure of MR element height converted from the detected resistance value reaches the prescribed value, polishing is stopped. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気抵抗効果素子を形成した薄膜磁気ヘッドに係わり、特に磁気抵抗効果素子の素子高さ及び浮上面形状を高精度に制御した薄膜磁気ヘッドの構造および製造方法に関する。   The present invention relates to a thin film magnetic head in which a magnetoresistive element is formed, and more particularly to a structure and manufacturing method of a thin film magnetic head in which the element height and the air bearing surface shape of the magnetoresistive element are controlled with high accuracy.

近年,磁気ディスク装置においては、小型・大容量化が進んでおり,現在3.5インチと2.5インチサイズのディスクを用いた小型磁気ディスク装置が主流になっている。この小型磁気ディスク装置に使用されている磁気ヘッドのうち、再生出力がディスクの回転速度に依存する磁気誘導型ヘッドでは,ディスクの回転数が小さいために十分な再生出力を得ることが出来ない。一方、磁界の変化によって抵抗値が変化する磁気抵抗効果素子を用いた磁気抵抗効果型ヘッドでは,再生出力がディスク回転速度に依存しないため,大きな再生出力を得ることができる。また,磁気抵抗効果型ヘッドは,高密度化に伴う狭トラック化に対しても磁気誘導型磁気ヘッドと比べて高い再生出力を得られ、小型化・大容量化に適した磁気ヘッドであると考えられている。   In recent years, the size and capacity of magnetic disk devices have been increasing, and small magnetic disk devices using 3.5-inch and 2.5-inch disks have become mainstream. Of the magnetic heads used in this small magnetic disk drive, a magnetic induction head whose reproduction output depends on the rotation speed of the disk cannot obtain a sufficient reproduction output because the number of rotations of the disk is small. On the other hand, in a magnetoresistive head using a magnetoresistive effect element whose resistance value changes according to the change of the magnetic field, a large reproduction output can be obtained because the reproduction output does not depend on the disk rotation speed. In addition, the magnetoresistive head is a magnetic head suitable for miniaturization and large capacity because it can obtain a higher reproduction output than the magnetic induction type magnetic head even for narrowing of the track due to higher density. It is considered.

磁気抵抗効果型ヘッドには、MR(Magneto Resistive)素子を用いたMRヘッドとGMR(Giant Magneto Resistive)素子を用いたGMRヘッド及びTMR(Tunneling Magneto Resistive)素子を用いたTMRヘッドがある。ここでは、上記の3種類の構造を有する磁気ヘッドを総称してMRヘッドと呼ぶ。   The magnetoresistive head includes an MR head using an MR (Magneto Resistive) element, a GMR head using a GMR (Giant Magneto Resistive) element, and a TMR head using a TMR (Tunneling Magneto Resistive) element. Here, the magnetic heads having the above three types of structures are collectively referred to as an MR head.

ところでMRヘッドにおいて、磁界の変化に対応させて磁気抵抗効果素子の抵抗値変化を検出するため,MRヘッドを搭載させたスライダのディスクに対向する面(以下,浮上面と呼ぶ)に磁気抵抗効果素子を露出させて使用する構造が最もディスクに記録された情報信号の再生効率が高い。浮上面に磁気抵抗効果素子を露出させた露出型MRヘッドでは,浮上面加工時に磁気抵抗効果素子の一部を研磨加工することにより浮上面に磁気抵抗効果素子の端部を露出させている。   By the way, in the MR head, in order to detect a change in the resistance value of the magnetoresistive element corresponding to the change in the magnetic field, the magnetoresistive effect is formed on the surface (hereinafter referred to as the air bearing surface) of the slider on which the MR head is mounted. The structure in which the element is exposed and used has the highest reproduction efficiency of the information signal recorded on the disc. In an exposed type MR head in which the magnetoresistive effect element is exposed on the air bearing surface, the end of the magnetoresistive effect element is exposed on the air bearing surface by polishing a part of the magnetoresistive effect element when processing the air bearing surface.

そして,磁気抵抗効果素子の浮上面に対して直交する方向の寸法を磁気抵抗効果素子の高さ(MR素子高さ)と呼び,このMR素子高さの寸法が研磨加工によって制御されている。この磁気抵抗効果ヘッドでは,このMR素子高さによって再生出力が変化するため,MR素子高さのばらつきがそのまま磁気ヘッドの再生出力変動という形で現れる。   The dimension of the magnetoresistive element in the direction orthogonal to the air bearing surface is called the magnetoresistive element height (MR element height), and the MR element height dimension is controlled by polishing. In this magnetoresistive head, since the reproduction output varies depending on the MR element height, variations in the MR element height appear in the form of fluctuations in the reproduction output of the magnetic head as they are.

一方、再生出力変動の別の要因として、MRヘッドの浮上量の変動がある。MRヘッドは、磁気ディスクの回転により発生する動圧により、十数nmと非常に小さい間隙で浮上しており、この浮上量が変動すると再生出力が変動するという問題が生じる。浮上量を安定にするには、研磨加工において発生するMRヘッドの浮上面形状のばらつきを抑制し、常に一定な動圧を作用させることが必須となる。従って、磁気ヘッドの再生出力変動を抑制するためには,研磨加工工程においてMR素子高さを高精度に制御し、かつ浮上面形状を高精度に形成することが必要となる。   On the other hand, another factor of fluctuation in reproduction output is fluctuation in the flying height of the MR head. The MR head flies at a gap as small as a few tens of nanometers due to the dynamic pressure generated by the rotation of the magnetic disk, and there arises a problem that the reproduction output fluctuates when the flying height fluctuates. In order to stabilize the flying height, it is essential to suppress variation in the flying surface shape of the MR head that occurs in the polishing process and to always apply a constant dynamic pressure. Therefore, in order to suppress the reproduction output fluctuation of the magnetic head, it is necessary to control the height of the MR element with high accuracy and to form the air bearing surface with high accuracy in the polishing process.

このMR素子高さの寸法が小さいほど磁気ヘッドの性能が向上する、すなわちディスクの記録情報を高感度に検出することが出来るので、年々MR素子高さが小さくなっている。現在、一般のMR素子高さは0.2〜0.6μmであり、面記録密度100Gbit/in以上の磁気ディスク装置では、0.1μm以下と言われている。従って、これらに対応してMR素子高さの加工精度は、±0.02μm(面記録密度100Gbit/in以上の場合)が要求されると考えられる。 As the MR element height is smaller, the performance of the magnetic head is improved, that is, the recorded information on the disk can be detected with high sensitivity. Therefore, the MR element height decreases year by year. At present, the general MR element height is 0.2 to 0.6 μm, and it is said that the magnetic disk device having a surface recording density of 100 Gbit / in 2 or more is 0.1 μm or less. Accordingly, it is considered that the processing accuracy of the MR element height corresponding to these is required to be ± 0.02 μm (when the surface recording density is 100 Gbit / in 2 or more).

また、面記録密度を向上するには、磁気ディスク上の1ビットの面積を小さくする必要があり、そのためには、磁気ヘッドの浮上量を小さくすることが有効である。面記録密度100Gbit/in以上の磁気ディスク装置では、磁気ヘッドの浮上量は5nm以下になる可能性があり、それを実現するには、磁気ヘッドの浮上面形状の加工精度は±2nm以下が要求されると考えられる。 In order to improve the surface recording density, it is necessary to reduce the area of one bit on the magnetic disk. For this purpose, it is effective to reduce the flying height of the magnetic head. In a magnetic disk device having a surface recording density of 100 Gbit / in 2 or more, the flying height of the magnetic head may be 5 nm or less. To achieve this, the processing accuracy of the flying surface shape of the magnetic head must be ± 2 nm or less. It is considered to be required.

MR素子高さを高精度に研磨する方法として、特許文献1〜3に記載されているように,素子の形成工程においてMR素子とは別に形成した測定用のパターン(抵抗検知素子と呼ぶ)を用い、この測定した抵抗値をMR素子高さに換算する方法が一般的である。そしてその制御方法は、ロウバー内に形成した数10点の抵抗検知素子の抵抗値から換算したMR素子高さを2次曲線もしくは4次曲線で近似し、この近似曲線の傾き成分、2次曲がり成分、うねり成分が小さくなるように研磨加工中にロウバーに加える荷重を制御する方法が用いられている。   As a method for polishing the MR element height with high accuracy, as described in Patent Documents 1 to 3, a measurement pattern (referred to as a resistance detection element) formed separately from the MR element in the element forming process is used. A method of converting the measured resistance value into the MR element height is generally used. The control method approximates the MR element height converted from the resistance values of several tens of resistance detection elements formed in the row bar by a quadratic curve or a quartic curve, and the slope component of this approximate curve and the quadratic curve. A method is used in which the load applied to the row bar during polishing is controlled so that the component and the swell component become small.

一方、浮上面形状の高精度化に関しては、例えば特許文献4に記載されているように、MR素子高さの制御研磨加工をしたのちに、ウレタン等の弾性体を介してロウバーを研磨治具に貼り付け、その状態でMRヘッドの浮上面を研磨定盤に押し当て、研磨定盤の形状を高精度に浮上面に転写する仕上げ研磨方法が公開されている。   On the other hand, with respect to increasing the accuracy of the air bearing surface shape, for example, as described in Patent Document 4, after the MR element height is controlled and polished, the row bar is polished via an elastic body such as urethane. In this state, a final polishing method is disclosed in which the air bearing surface of the MR head is pressed against a polishing surface plate, and the shape of the polishing surface plate is transferred to the air bearing surface with high accuracy.

特開昭63−191570号公報JP-A-63-191570 特開平10−49828号公報Japanese Patent Laid-Open No. 10-49828 特開平10−208214号公報JP-A-10-208214 特開2000−155921公報JP 2000-155921 A

上記で説明した従来技術では、下記の原因によりMR素子高さの加工精度に誤差が生じるという欠点を有していた。即ち、
(1)基板上に磁気抵抗効果素子と抵抗検知素子を形成する際に使用する露光マスクの形成誤差及びその露光工程における露光誤差。
(2)形成される磁気抵抗効果素子と抵抗検知素子との位置が離れていることによる研磨量の違いに起因する誤差。
(3)浮上面研磨工程において補正しきれないロウバー内のMR素子高さの分布における傾き成分、2次曲がり成分、うねり成分等によって生じる誤差。
(4)抵抗検知素子の抵抗値をMR素子高さに換算する際の誤差。
(5)抵抗検知素子の抵抗値または抵抗値換算MR素子高さが所定の値に達した時に加工を終了する際に生じる停止寸法誤差。
(6)MR素子高さを制御して研磨した後にロウバーの形態で実施される浮上面の仕上げ研磨加工を行う際に生じる加工量のばらつき。
The prior art described above has a drawback that an error occurs in the processing accuracy of the MR element height due to the following reasons. That is,
(1) An exposure mask formation error used when forming a magnetoresistive effect element and a resistance detection element on a substrate, and an exposure error in the exposure process.
(2) An error caused by a difference in polishing amount due to the position of the formed magnetoresistive effect element and the resistance detection element being separated.
(3) An error caused by an inclination component, a quadratic bending component, a waviness component, etc. in the MR element height distribution in the row bar that cannot be corrected in the air bearing surface polishing step.
(4) An error in converting the resistance value of the resistance detection element into the MR element height.
(5) Stop dimension error that occurs when the machining is terminated when the resistance value of the resistance detection element or the resistance value-converted MR element height reaches a predetermined value.
(6) Variation in processing amount that occurs when finishing polishing of the air bearing surface performed in the form of a row bar after polishing by controlling the MR element height.

上記した誤差要因によって、従来技術を使って磁気抵抗効果素子の高さを±0.02μm以下の精度で行なうことは、小型・大容量の磁気ディスク装置の実現という大きなニーズがあるにも係らず、極めて困難であった。即ち、特許文献2や特許文献3に記載されるように、磁気抵抗効果素子に隣接して研磨量モニター用の抵抗検知素子が設けられているが、研磨はロウバーの状態で行なわれるため、個々の抵抗検知素子で得られた情報を独立して制御し、個別に磁気抵抗効果素子の研磨量にフィードバックすることが困難であった。そのため、実際に得られる磁気抵抗効果素子の素子高さは大きなばらつきを有し、±0.02μm以下という精度を実現することは到底不可能と言わざるを得なかった。   Due to the error factors described above, the height of the magnetoresistive element with the accuracy of ± 0.02 μm or less using the conventional technology is in spite of the great need to realize a small and large capacity magnetic disk device. It was extremely difficult. That is, as described in Patent Document 2 and Patent Document 3, a resistance detecting element for monitoring the polishing amount is provided adjacent to the magnetoresistive effect element. However, since polishing is performed in a row bar state, It was difficult to independently control the information obtained by the resistance detecting element and feed back to the polishing amount of the magnetoresistive effect element individually. Therefore, the element height of the magnetoresistive effect element actually obtained has a large variation, and it must be said that it is impossible to achieve an accuracy of ± 0.02 μm or less.

一方、浮上面形状に関しては、ロウバーの状態で浮上面の仕上げ研磨加工を行うために、ロウバーの長手方向のうねりやねじれ等の影響により、部分的に研磨圧力が異なり、その結果、浮上面形状のばらつきが大きくなり、形状精度±2nm以下を実現するのは困難である。   On the other hand, with respect to the air bearing surface shape, the polishing pressure varies partially due to the influence of waviness and twist in the longitudinal direction of the row bar in order to perform finish polishing of the air bearing surface in the state of the row bar. It is difficult to achieve a shape accuracy of ± 2 nm or less.

本発明の目的は、従来技術の欠点を解決し、MR素子高さ及び浮上面形状を高精度に加工可能な磁気ヘッドの構造とその製造方法を提供すること、及び面記録密度100Gbit/in以上に対応したMR素子高さ精度と浮上面形状精度を両立させた磁気ヘッドを提供することである。 An object of the present invention is to solve the drawbacks of the prior art, to provide a structure of a magnetic head capable of processing the MR element height and the air bearing surface shape with high accuracy, and a manufacturing method thereof, and to achieve a surface recording density of 100 Gbit / in 2. An object of the present invention is to provide a magnetic head that satisfies both the above-described MR element height accuracy and air bearing surface shape accuracy.

本発明では、絶縁膜を形成した基板の上方に第1の磁気抵抗効果素子と第2の磁気抵抗効果素子とを近接させて形成し、この第1の磁気抵抗効果素子と第2の磁気抵抗効果素子とが形成された面に対して直交する上記基板の一面を磁気記録媒体に対して対向するスライダ面として、薄膜磁気ヘッドを構成した。   In the present invention, the first magnetoresistive effect element and the second magnetoresistive effect element are formed close to each other above the substrate on which the insulating film is formed, and the first magnetoresistive effect element and the second magnetoresistive effect element are formed. A thin film magnetic head was configured with one surface of the substrate orthogonal to the surface on which the effect element was formed as a slider surface facing the magnetic recording medium.

また、上記した第1の磁気抵抗効果素子と第2の磁気抵抗効果素子とが、各々電極に挟まれて形成された第1の磁気抵抗効果膜と第2の磁気抵抗効果膜を有し、更には各々の磁気抵抗効果膜の端部が上記したスライダ面に露出するように形成されている。そして、2組の電極と磁気抵抗効果膜とが各々幾何学的に同一形状であるように形成した。   In addition, the first magnetoresistive effect element and the second magnetoresistive effect element described above each include a first magnetoresistive effect film and a second magnetoresistive effect film formed by being sandwiched between electrodes, Further, the end portion of each magnetoresistive film is formed so as to be exposed on the slider surface. The two sets of electrodes and the magnetoresistive film were formed so as to have the same geometric shape.

また本発明では、第1の磁気抵抗効果素子が下部シールド膜と上部シールド膜とに挟まれて形成された第1の磁気抵抗効果膜を備えて基板の上方に積層形成され、かつこの第1の磁気抵抗効果膜が形成された平面内に第2の磁気抵抗効果素子を構成する第2の磁気抵抗効果膜を形成するようにした。   According to the present invention, the first magnetoresistive effect element includes the first magnetoresistive effect film formed by being sandwiched between the lower shield film and the upper shield film, and is laminated on the substrate. The second magnetoresistive film constituting the second magnetoresistive element is formed in the plane on which the magnetoresistive film is formed.

本発明では、絶縁膜を形成した基板の上方に、第1の磁気抵抗効果素子と第2の磁気抵抗効果素子とを形成する工程と、前記第1の磁気抵抗効果素子と第2の磁気抵抗効果素子とを含むようにしてスライダに切断する工程と、該スライダを研磨装置に装着して、前記第1の磁気抵抗効果素子と第2の磁気抵抗効果素子に直交する面を研磨する工程とを備えており、上記したスライダ毎に研磨を行なうようにした。   In the present invention, a step of forming a first magnetoresistive element and a second magnetoresistive element above the substrate on which the insulating film is formed, the first magnetoresistive element and the second magnetoresistive element. A step of cutting the slider so as to include an effect element, and a step of polishing the surface perpendicular to the first magnetoresistive effect element and the second magnetoresistive effect element by mounting the slider on a polishing apparatus. Therefore, polishing was performed for each slider described above.

このとき、第1の磁気抵抗効果素子を磁気記録媒体からの磁気信号を再生する手段として用い、かつ第2の磁気抵抗効果素子をスライダ面の研磨加工量を計測する手段として用いるようにしてスライダ面の研磨を行ない、この第2の磁気抵抗効果素子の抵抗値を検出して、その抵抗値または抵抗値から換算した第2の磁気抵抗効果素子の高さ寸法が所定の値に達したとき、研磨工程を終了させて薄膜磁気ヘッドを製造した。   At this time, the slider uses the first magnetoresistive element as a means for reproducing a magnetic signal from the magnetic recording medium and the second magnetoresistive element as a means for measuring the polishing amount of the slider surface. When the surface is polished, the resistance value of the second magnetoresistance effect element is detected, and the height value of the second magnetoresistance effect element converted from the resistance value or the resistance value reaches a predetermined value Then, the polishing process was finished to manufacture a thin film magnetic head.

また、研磨装置に少なくともひとつ以上のスライダを装着し、スライダ毎に形成された第2の磁気抵抗効果素子の抵抗値を検出して、その抵抗値または抵抗値から換算した第2の磁気抵抗効果素子の高さ寸法が所定の値に達したとき、当該のスライダの研磨が終了するようにした。   In addition, at least one slider is attached to the polishing apparatus, the resistance value of the second magnetoresistance effect element formed for each slider is detected, and the resistance value or the second magnetoresistance effect converted from the resistance value is detected. When the height dimension of the element reaches a predetermined value, the polishing of the slider is finished.

さらに、研磨装置にスライダを弾性体を介して装着し、スライダ単位で浮上面の仕上げ研磨加工をすることにより、ロウバーのうねりやねじれ等が浮上面の研磨精度に与える影響を排除し、高精度に定盤形状を個々のスライダの浮上面に転写するようにした。   Furthermore, by attaching a slider to the polishing device via an elastic body and finishing polishing the air bearing surface in units of sliders, the influence of wobbling and twisting on the air bearing surface on the polishing accuracy of the air bearing surface is eliminated. The platen shape was transferred to the air bearing surface of each slider.

以上で説明したように、スライダ毎に設けた2つの磁気抵抗効果素子の一方をスライダの研磨量計測用に用い、その抵抗値または抵抗値から換算した磁気抵抗効果素子の高さに達したときに当該のスライダの研磨を終了させることによって、高精度に制御された磁気抵抗効果素子の高さを有する薄膜磁気ヘッドを実現することが可能である。それと同時に、スライダを弾性体を介して研磨装置に装着し、スライダ単位で浮上面の仕上げ研磨加工をすることにより、高精度に形成した浮上面形状を有する薄膜磁気ヘッドを実現することが可能である。   As described above, when one of the two magnetoresistive elements provided for each slider is used for measuring the amount of polishing of the slider, the resistance value or the height of the magnetoresistive element converted from the resistance value is reached. In addition, by finishing the polishing of the slider, it is possible to realize a thin film magnetic head having the height of the magnetoresistive element controlled with high accuracy. At the same time, it is possible to realize a thin-film magnetic head having a flying surface shape formed with high precision by mounting the slider on the polishing device via an elastic body and finishing polishing the flying surface in units of sliders. is there.

先ず、磁気ディスク装置の概要について説明する。図1は磁気ヘッド1とディスク2との配置を説明するための図である。磁気ヘッド1はスライダ3とこのスライダ面4に直交するスライダ3の上に形成された磁気抵抗効果素子5から構成されている。CSS(Contact Start Stop)方式の磁気ディスク装置では、磁気記録媒体であるディスク2の回転による動圧を利用して磁気ヘッド1、正確には磁気抵抗効果素子5の端部をディスク2の表面から微小量だけ浮上させ、ディスク2に対して情報の記録または再生を行う。このとき、ディスク2の表面と磁気抵抗効果素子5との間隔を浮上量hと定義する。この浮上量hが小さいほど記録または再生の効率を高めることが出来る。   First, an outline of the magnetic disk device will be described. FIG. 1 is a diagram for explaining the arrangement of the magnetic head 1 and the disk 2. The magnetic head 1 includes a slider 3 and a magnetoresistive element 5 formed on the slider 3 orthogonal to the slider surface 4. In a CSS (Contact Start Stop) type magnetic disk device, the end of the magnetic head 1, more precisely the magnetoresistive element 5, is moved from the surface of the disk 2 by utilizing the dynamic pressure generated by the rotation of the disk 2 that is a magnetic recording medium. A small amount is levitated and information is recorded on or reproduced from the disk 2. At this time, the distance between the surface of the disk 2 and the magnetoresistive element 5 is defined as the flying height h. The smaller the flying height h, the higher the recording or reproducing efficiency.

次に、磁気ヘッド1について、図2の構造図を用いて説明する。同図において、例えばAl−TiCまたはSiCなどの非磁性体である基板6の表面に誘導型磁気変換素子10と磁気抵抗効果素子5を、良く知られたスパッタ法等の薄膜形成工程、ホトリソ工程、エッチング加工工程等を用いて形成される。これを短冊状に切断加工を施し、複数個の磁気ヘッドを有するロウバー7を形成する。 Next, the magnetic head 1 will be described with reference to the structural diagram of FIG. In this figure, for example, a well-known thin film formation process such as sputtering is performed on the surface of a substrate 6 made of a non-magnetic material such as Al 2 O 3 —TiC or SiC, on the surface of an inductive magnetic transducer 10 and a magnetoresistive element 5. , A photolithographic process, an etching process, or the like. This is cut into strips to form a row bar 7 having a plurality of magnetic heads.

さらにこのロウバー7を切断加工することにより、磁気ヘッド1が完成する。このとき、誘導型磁気変換素子10と磁気抵抗効果素子5とを含むように切断された基板6の一部分がスライダ3であって、誘導型磁気変換素子10と磁気抵抗効果素子5とが形成された面に対して直交するスライダ3の一面が浮上面4として機能する。   Furthermore, the magnetic head 1 is completed by cutting the row bar 7. At this time, a part of the substrate 6 cut so as to include the inductive magnetic transducer 10 and the magnetoresistive element 5 is the slider 3, and the inductive magnetic transducer 10 and the magnetoresistive element 5 are formed. One surface of the slider 3 that is orthogonal to the curved surface functions as the air bearing surface 4.

図3は磁気ヘッド1の素子部(誘導型磁気変換素子10と磁気低効果素子5)の構造を表わす斜視図である。誘導型磁気記録素子10はコイル8、上部磁性膜9、上部シールド膜11により構成されており、上部磁性膜9の端部は、スライダ3の浮上面4とほぼ同一面に露出するように配置され、この露出した部分を用いてディスク2に情報の記録を行う。   FIG. 3 is a perspective view showing the structure of the element portion of the magnetic head 1 (inductive magnetic transducer 10 and magnetic low-efficiency element 5). The inductive magnetic recording element 10 includes a coil 8, an upper magnetic film 9, and an upper shield film 11, and the end of the upper magnetic film 9 is disposed so as to be substantially flush with the air bearing surface 4 of the slider 3. Then, information is recorded on the disk 2 using the exposed portion.

また、誘導型磁気記録素子10の近傍には磁気抵抗効果素子5が配置されており、磁気抵抗効果膜12を挟むように電極13が形成されている。そして、磁気抵抗効果素子5を用いてディスク2に記録された情報を再生するときのノイズを低減するため、磁気抵抗効果膜12と電極13とが上部シールド膜11と下部シールド膜14とに挟まれる構造となっている。   A magnetoresistive element 5 is disposed in the vicinity of the inductive magnetic recording element 10, and an electrode 13 is formed so as to sandwich the magnetoresistive film 12. The magnetoresistive effect film 12 and the electrode 13 are sandwiched between the upper shield film 11 and the lower shield film 14 in order to reduce noise when reproducing information recorded on the disk 2 using the magnetoresistive effect element 5. It has a structure.

ここでは、スライダ3の浮上面4とほぼ直角方向の磁気抵抗効果膜12の端部から浮上面までの高さ、即ち磁気抵抗効果膜12の高さをMR素子高さと呼ぶ。このMR素子高さと浮上面4の形状は、研磨加工により形成され、その研磨加工精度がMR素子高さ精度及び浮上面の形状精度を支配する。   Here, the height from the end of the magnetoresistive film 12 to the air bearing surface in a direction substantially perpendicular to the air bearing surface 4 of the slider 3, that is, the height of the magnetoresistive film 12 is called the MR element height. The MR element height and the shape of the air bearing surface 4 are formed by polishing, and the polishing accuracy dominates the MR element height accuracy and the air bearing surface shape accuracy.

ところで、磁気ヘッド1を用いた磁気ディスク装置の記録再生は次のように行われる。
(1)コイル8と上部磁性膜9を用いてディスク2の表面を磁化することにより、必要な情報がディスク2に記録される。
(2)磁化されたディスク2の表面と磁気ヘッド1とを相対的に移動させたとき、ディスク2に書き込まれた磁極S、Nの極性によって、磁気抵抗効果膜12の抵抗値が変化する。この抵抗値変化を検出することにより、ディスク2の表面に書き込まれた情報が再生される。
By the way, recording / reproducing of the magnetic disk apparatus using the magnetic head 1 is performed as follows.
(1) Necessary information is recorded on the disk 2 by magnetizing the surface of the disk 2 using the coil 8 and the upper magnetic film 9.
(2) When the surface of the magnetized disk 2 and the magnetic head 1 are relatively moved, the resistance value of the magnetoresistive effect film 12 changes depending on the polarities of the magnetic poles S and N written on the disk 2. By detecting this change in resistance value, the information written on the surface of the disk 2 is reproduced.

以上で述べたように、磁気抵抗効果素子5を有する磁気ヘッド1を用いる場合、MR素子高さ、即ちスライダ3の浮上面4とほぼ同一面に位置する磁気抵抗効果膜12の端部から、浮上面4に対してほぼ直角方向の高さ寸法を高精度に研磨加工することが極めて重要である。そこで、以下にMR素子高さを制御しながら高精度に研磨する方法について説明する。   As described above, when the magnetic head 1 having the magnetoresistive effect element 5 is used, the MR element height, that is, from the end of the magnetoresistive effect film 12 positioned substantially flush with the flying surface 4 of the slider 3, It is extremely important to polish the height dimension in a direction substantially perpendicular to the air bearing surface 4 with high accuracy. Therefore, a method for polishing with high precision while controlling the height of the MR element will be described below.

図4は一般に良く知られたロウバー7の外観図である。ひとつの例としてロウバー7は磁気ヘッド1が数10個連なった形状を有し、個々の磁気ヘッド1に切り離したときに図1に示したスライダ3となる浮上面4と図3に示した磁気抵抗効果素子5がこのロウバー7の状態で研磨加工される。このとき、図5に例示するように、一般的にはロウバー7における個々の磁気ヘッド1の間に設けられた切断部には研磨加工時のMR素子高さを検出するための抵抗検知素子15が設けられている。   FIG. 4 is an external view of a generally well-known row bar 7. As an example, the row bar 7 has a shape in which several tens of magnetic heads 1 are connected, and when separated into individual magnetic heads 1, the floating surface 4 that becomes the slider 3 shown in FIG. The resistance effect element 5 is polished in the state of the row bar 7. At this time, as illustrated in FIG. 5, a resistance detecting element 15 for detecting the MR element height at the time of polishing is generally provided at a cutting portion provided between the individual magnetic heads 1 in the row bar 7. Is provided.

そして、この抵抗検知素子15の一部が浮上面4の研磨加工によって除去される際にその抵抗値の変化を検出し、検出したこの抵抗値をMR素子高さに換算することにより、ロウバー7内におけるMR素子高さの分布をモニタリングする。このとき、MR素子高さの分布が均一になるように上記した複数の抵抗検知素子15で検出された抵抗値を用いてロウバー7に印加する研磨荷重を調節する。   Then, when a part of the resistance detection element 15 is removed by polishing of the air bearing surface 4, a change in the resistance value is detected, and the detected resistance value is converted into the MR element height, whereby the row bar 7. The MR element height distribution in the inside is monitored. At this time, the polishing load applied to the row bar 7 is adjusted using the resistance values detected by the plurality of resistance detecting elements 15 so that the MR element height distribution is uniform.

現在主流の磁気ヘッド1の大きさはピコスライダと呼ばれ、磁気ヘッド1の外形寸法は幅1.2mm、長さ1.0mm、高さ0.3mmであり、図4に例示したロウバー7の状態では、幅(b)1.2mm、長さ(L)40〜80mm、高さ(t)0.30〜0.33mmである。ロウバー7の長さが他の寸法と比較して非常に長い理由としては、ロウバー7の長さを長くすることにより1本のロウバー7に含まれる磁気ヘッド1の数を大きくすることが出来、それによって磁気ヘッド1の生産性を向上させることが可能になるためである。   The size of the current mainstream magnetic head 1 is called a pico slider, and the outer dimensions of the magnetic head 1 are a width of 1.2 mm, a length of 1.0 mm, and a height of 0.3 mm. The state of the row bar 7 illustrated in FIG. Then, the width (b) is 1.2 mm, the length (L) is 40 to 80 mm, and the height (t) is 0.30 to 0.33 mm. The reason why the length of the row bar 7 is very long compared to other dimensions is that by increasing the length of the row bar 7, the number of magnetic heads 1 included in one row bar 7 can be increased. This is because the productivity of the magnetic head 1 can be improved.

しかしながら、従来技術であるロウバー7の状態で研磨加工を行なう場合、この長さが長くなるに従ってロウバー7の剛性が低下し、ロウバー7内に2次曲り成分と3次曲線以上の高次曲線成分(うねり成分と呼ぶ)が生じ易くなる。上記した2次曲り成分はロウバー7内に設けた抵抗検知素子15の抵抗値を検出し、その値に基いてロウバー7に印加する荷重を適宜調整することによって、比較的容易に補正することが可能であるが、うねり成分に関しては補正するのが困難である。   However, when polishing is performed in the state of the row bar 7 as a conventional technique, the rigidity of the row bar 7 decreases as the length increases, and a second-order bending component and a higher-order curve component higher than the cubic curve are contained in the row bar 7. (Called a swell component) is likely to occur. The secondary bending component described above can be corrected relatively easily by detecting the resistance value of the resistance detecting element 15 provided in the row bar 7 and appropriately adjusting the load applied to the row bar 7 based on the detected value. Although it is possible, it is difficult to correct the waviness component.

図6に面記録密度とトラック幅、MR素子高さ及びその加工公差の関係を示す。なおトラック幅は、図3に示すMR素子の幅方向の寸法である。図6に示すようにトラック幅及び素子高さは、面記録密度の向上にともない、その寸法は小さくなっている。トラック幅は、リソグラフィ−の露光精度に依存しているのに対して、素子高さはトラック幅の0.8倍で、素子高さの加工公差は素子高さの1/4が一般に求められる。同図に示すように、面記録密度100Gbit/inを実現するには、素子高さの加工公差は±0.024μm以下にする必要がある。 FIG. 6 shows the relationship between the areal recording density, track width, MR element height, and processing tolerance. The track width is the dimension in the width direction of the MR element shown in FIG. As shown in FIG. 6, the track width and the element height are reduced in size as the surface recording density is improved. While the track width depends on the lithography exposure accuracy, the element height is 0.8 times the track width, and the processing tolerance of the element height is generally required to be 1/4 of the element height. . As shown in the figure, in order to realize the surface recording density of 100 Gbit / in 2 , the processing tolerance of the element height needs to be ± 0.024 μm or less.

しかしながら、従来の加工方法では、完成した個々の磁気ヘッド1のMR素子高さがばらつく要因は前述した発明における課題の欄で述べたが、特に要因(1)〜(3)、(6)はロウバー7の状態で浮上面を研磨加工する際に生じるものであって、ロウバー7内のうねり成分を十分に補正することが出来ないため、素子高さの加工公差±0.024μmを達成するのは困難である。   However, in the conventional processing method, the factors that cause variations in the MR element height of each completed magnetic head 1 have been described in the section of the problem in the above-described invention, but the factors (1) to (3) and (6) are particularly important. This occurs when the air bearing surface is polished in the state of the row bar 7, and since the undulation component in the row bar 7 cannot be corrected sufficiently, a processing tolerance of element height of ± 0.024 μm is achieved. It is difficult.

次に、浮上面形状の形成方法について、以下に説明する。図7に浮上面形状の概念図を示す。同図に示すように、磁気ヘッドの長手方向の反りをクラウンと称し、磁気ヘッドの短手方向の反りをキャンバーと称する。これらのパラメータの測定は、ZYGO社のNEW VIEW200に代表される光干渉型形状測定器を用いる。クラウンは、磁気ヘッド浮上面の長手方向の形状を円筒近似し、その反り量とする。それに対して、キャンバーは、ヘッド浮上面の短手方向の形状を円筒近似し、その反り量とする。凸形状に反るのが正クラウン、正キャンバーである。   Next, a method for forming the air bearing surface shape will be described below. FIG. 7 shows a conceptual diagram of the air bearing surface shape. As shown in the figure, the warp in the longitudinal direction of the magnetic head is called a crown, and the warp in the short direction of the magnetic head is called a camber. The measurement of these parameters uses an optical interference type shape measuring instrument represented by NEW VIEW 200 of ZYGO. The crown approximates the shape of the magnetic head air bearing surface in the longitudinal direction as a cylinder and uses the amount of warpage. On the other hand, the camber approximates the shape of the head air bearing surface in the short direction as a cylinder and sets the amount of warpage. It is the positive crown and the positive camber that warp the convex shape.

従来の浮上面形状の形成方法は、前述した素子高さの制御研磨加工工程の後に、ウレタン等の弾性体を介してロウバーを研磨治具に貼り付け、その状態で浮上面を研磨定盤に押し当て、研磨定盤の形状を浮上面に転写する仕上げ研磨法により形成される。弾性体を用いることにより、ワックス等でロウバーを固定した場合と比較して、接着歪みによる形状精度の劣化が無いこと、及びロウバーの長手方向のうねりを矯正でき、精度良く定盤形状を転写することが可能となる。しかしながら、素子高さの制御研磨加工と同様に、ロウバーの長手方向における高次のうねりを弾性体により矯正することは困難であり、またうねりの影響により、ロウバー内で研磨圧力に分布が生じ、その結果、浮上面の形状精度を高精度に形成することは困難である。   In the conventional method of forming the air bearing surface shape, after the above-described element height control polishing process, a row bar is attached to a polishing jig via an elastic body such as urethane, and the air bearing surface is used as a polishing surface plate in that state. It is formed by a finish polishing method that presses and transfers the shape of the polishing surface plate to the air bearing surface. By using an elastic body, compared to the case where the row bar is fixed with wax or the like, there is no deterioration in shape accuracy due to adhesive distortion, and the waviness in the longitudinal direction of the row bar can be corrected, and the surface plate shape is accurately transferred. It becomes possible. However, as with the control polishing of the element height, it is difficult to correct higher-order waviness in the longitudinal direction of the row bar with the elastic body, and distribution of the polishing pressure occurs in the row bar due to the influence of the waviness. As a result, it is difficult to form the air bearing surface with high accuracy.

前述したように、クラウン及びキャンバーの加工精度は、磁気ヘッドの浮上量の変動に影響を与える。図8に示すように、面記録密度の向上に伴い磁気ヘッドの浮上量は小さくなり、低浮上を実現するには、クラウン及びキャンバーの加工精度の高精度化が必要となる。同図に示すように、面記録密度100Gbit/inを実現するには、浮上面形状であるクラウン及びキャンバーの形状精度は±2nm以下にする必要がある。 As described above, the processing accuracy of the crown and the camber affects the fluctuation of the flying height of the magnetic head. As shown in FIG. 8, the flying height of the magnetic head decreases with the improvement of the surface recording density, and in order to realize low flying height, it is necessary to increase the processing accuracy of the crown and the camber. As shown in the figure, in order to achieve a surface recording density of 100 Gbit / in 2 , the shape accuracy of the crown and camber, which are the air bearing surface shapes, must be ± 2 nm or less.

以下、本発明の実施例を図面を用いて具体的に説明する。
図4に示したロウバーの状態で浮上面4を研磨し、同時にMR素子の高さも制御する場合、上記したロウバーなる形状特有のばらつきが生じる。従って、本発明ではそのばらつき要因を排除することを目的に、スライダの状態で研磨するようにした。即ち、個々のスライダ毎に設けられた抵抗検知素子を用いてその抵抗値を検出し、その結果を逐次研磨条件にフィードバックしながら研磨を行なうようにすれば良い。
Embodiments of the present invention will be specifically described below with reference to the drawings.
When the air bearing surface 4 is polished in the state of the row bar shown in FIG. 4 and the height of the MR element is simultaneously controlled, the above-described variation specific to the shape of the row bar occurs. Therefore, in the present invention, the polishing is performed in the state of the slider in order to eliminate the variation factor. That is, the resistance value is detected using a resistance detection element provided for each slider, and polishing is performed while the result is sequentially fed back to the polishing conditions.

本発明の一実施例である磁気ヘッドの斜視図を図9に、また磁気抵抗効果素子の端部が浮上面に露出した状態で、浮上面から見た磁気ヘッドの概略断面図を図10に示す。上記した磁気ヘッドは、上記の図2〜図5に示した場合と同様の方法で形成されるが、従来の場合との違いは下記の点にある。即ち、ロウバーから切り離されたスライダ3には第1の磁気抵抗効果素子101と第2の磁気抵抗効果素子102とを近接させて形成した。第1の磁気抵抗効果素子101と第2の磁気抵抗効果素子201は、各々第1の磁気抵抗効果膜102と第2の磁気抵抗効果膜202の一部に接触させて、かつ挟みこむようにして形成した第1の電極103と第2の電極203とを、絶縁膜301を有する基板3(切断後のスライダ3)の上方に積層されている。   FIG. 9 is a perspective view of a magnetic head according to an embodiment of the present invention, and FIG. 10 is a schematic cross-sectional view of the magnetic head viewed from the air bearing surface with the end of the magnetoresistive element exposed to the air bearing surface. Show. The magnetic head described above is formed by the same method as that shown in FIGS. 2 to 5 above, but the difference from the conventional case is as follows. That is, the first magnetoresistive effect element 101 and the second magnetoresistive effect element 102 are formed close to the slider 3 separated from the row bar. The first magnetoresistive effect element 101 and the second magnetoresistive effect element 201 are formed so as to be in contact with and sandwiched by a part of the first magnetoresistive effect film 102 and the second magnetoresistive effect film 202, respectively. The first electrode 103 and the second electrode 203 are stacked above the substrate 3 (slider 3 after cutting) having the insulating film 301.

第1の磁気抵抗効果膜102と第2の磁気抵抗効果膜202及び第1の電極103と第2の電極203とは各々幾何学的に同一形状とし、また同一素材を用いて形成した。そして、第2の磁気抵抗効果膜202は第1の磁気抵抗効果膜102と同一平面内に形成されている。更に、第1の磁気抵抗効果素子101は、第1の磁気抵抗効果膜102及び第1の電極103とを挟むようにして形成した下部シールド膜104及び上部シールド膜105を備えている。第1の磁気抵抗効果素子101と第2の磁気抵抗効果素子201との間隔dはホトマスクの寸法公差やホト工程での誤差等を考慮して可能な限り小さくすることが望ましい。   The first magnetoresistive effect film 102 and the second magnetoresistive effect film 202 and the first electrode 103 and the second electrode 203 are geometrically identical in shape and formed using the same material. The second magnetoresistive film 202 is formed in the same plane as the first magnetoresistive film 102. Further, the first magnetoresistive element 101 includes a lower shield film 104 and an upper shield film 105 that are formed so as to sandwich the first magnetoresistive film 102 and the first electrode 103. It is desirable that the distance d between the first magnetoresistive element 101 and the second magnetoresistive element 201 be as small as possible in consideration of the dimensional tolerance of the photomask, errors in the photoprocess, and the like.

情報をディスク2に記録させるための誘導型磁気変換素子10は第1の磁気抵抗効果素子101の上方に上部シールド膜105を介して形成されるが、その構造及び形成方法は従来技術と同様であり、ここでは省略する。   The inductive magnetic transducer 10 for recording information on the disk 2 is formed above the first magnetoresistive element 101 via the upper shield film 105, and its structure and formation method are the same as in the prior art. Yes, omitted here.

次に、スライダの浮上面の研磨加工について説明する。図11は従来技術と比較して、本実施例における加工プロセスフローを表わす。即ち、
(1)第1の磁気抵抗効果素子101、第2の磁気抵抗効果素子201、誘導型磁気変換素子10を備えた基板6をロウバー7の形状に切断する。
(2)第1の磁気抵抗効果素子101や第2の磁気抵抗効果素子201の形成された面に対して直交する基板6の面を、両面ラップと呼ばれる方法を用いて粗研磨を行ない、MR素子高さを予め決められた所定の寸法に加工する。
(3)更にこの状態でスライダ3の浮上面4の研磨を行い、MR素子高さを所定の値に近付ける。即ち、完成した磁気ヘッドのMR素子高さをHfとすれば、この工程における研磨加工の目標値Hbは、Hf+0.03〜0.15μm程度である。尚、この工程までは従来技術と同じである。
(4)第1の磁気抵抗効果素子101や第2の磁気抵抗効果素子201が各スライダに含まれるようにロウバー7を切断する。
(5)スライダを研磨装置に装着し、スライダ毎に第2の磁気抵抗効果素子201の抵抗値を検出しながらその結果を研磨装置にフィードバックしながら浮上面4の研磨を行ない、上記の抵抗値またはその抵抗値から換算したMR素子高さがHfになるまで研磨加工を行なう。
(6)次に本実施例では浮上面4の表面に、良く知られたイオンミリング法あるいはスパッタ法を用いて浮上用のレールを形成する。
Next, the polishing process of the flying surface of the slider will be described. FIG. 11 shows a machining process flow in this embodiment as compared with the prior art. That is,
(1) The substrate 6 provided with the first magnetoresistive effect element 101, the second magnetoresistive effect element 201, and the inductive magnetic transducer 10 is cut into the shape of the row bar 7.
(2) The surface of the substrate 6 orthogonal to the surface on which the first magnetoresistive effect element 101 and the second magnetoresistive effect element 201 are formed is subjected to rough polishing using a method called double-sided lapping, and MR The element height is processed into a predetermined dimension.
(3) Further, the air bearing surface 4 of the slider 3 is polished in this state to bring the MR element height close to a predetermined value. That is, if the MR element height of the completed magnetic head is Hf, the target value Hb of the polishing process in this step is about Hf + 0.03 to 0.15 μm. The process up to this step is the same as in the prior art.
(4) The row bar 7 is cut so that the first magnetoresistive effect element 101 and the second magnetoresistive effect element 201 are included in each slider.
(5) A slider is attached to the polishing apparatus, and the air bearing surface 4 is polished while detecting the resistance value of the second magnetoresistive effect element 201 for each slider and feeding back the result to the polishing apparatus. Alternatively, polishing is performed until the MR element height converted from the resistance value becomes Hf.
(6) Next, in this embodiment, a levitating rail is formed on the surface of the air bearing surface 4 by using a well-known ion milling method or sputtering method.

一方、従来技術では、(3)ロウバーの状態で浮上面の加工を行ない、その後に、第2の磁気抵抗効果素子201の抵抗値またはその換算したMR素子高さがHfになるまで仕上げ研磨加工が行なわれる。しかしながら、数10の磁気抵抗効果素子が連なったロウバーの状態で研磨が行なわれるため、たとえ第2の磁気抵抗効果素子の抵抗値を検出して、その結果を研磨装置にフィードバックしても当該のスライダ部分にだけ必要な研磨荷重を印加することが不可能である。従って、この場合には目標のMR素子高さHfに対して、極めて大きなばらつきが生じてしまうことを避けることが出来ない。   On the other hand, in the prior art, (3) the air bearing surface is processed in the state of a row bar, and then finish polishing until the resistance value of the second magnetoresistance effect element 201 or the converted MR element height becomes Hf. Is done. However, since polishing is performed in the state of a row bar in which several tens of magnetoresistive elements are connected, even if the resistance value of the second magnetoresistive element is detected and the result is fed back to the polishing apparatus, It is impossible to apply a necessary polishing load only to the slider portion. Therefore, in this case, it is unavoidable that extremely large variations occur with respect to the target MR element height Hf.

次に、上記した(5)の工程における浮上面の高精度研磨加工方法について、図12〜図15を用いて説明する。図12は本実施例で使用した研磨装置の概念図である。また、図13は第1の磁気抵抗効果素子101及び第2の磁気抵抗効果素子201を有するスライダ3を研磨装置に装着したときの概念図である。これらの図において、スライダ3の裏面(第1の磁気抵抗効果膜103及び第2の磁気抵抗効果膜203が表面に露出していない側の面)をポリウレタン等の粘着性弾性体301を貼り付け、研磨冶具302の上下シリンダ303に固定する。
図13に示すように、上下シリンダ303には例えばフィルム状の回路基板304が装着されており、フィルム状の回路基板304の端子305と図6に示した第2の磁気抵抗効果素子201の端子204とを、例えばワイヤーボンディング法を用いてワイヤ309で結線し、研磨加工中に第2の磁気抵抗効果素子201の抵抗値を検出することが出来る。
Next, a highly accurate polishing method for the air bearing surface in the step (5) described above will be described with reference to FIGS. FIG. 12 is a conceptual diagram of the polishing apparatus used in this example. FIG. 13 is a conceptual diagram when the slider 3 having the first magnetoresistive effect element 101 and the second magnetoresistive effect element 201 is attached to the polishing apparatus. In these drawings, an adhesive elastic body 301 such as polyurethane is attached to the back surface of the slider 3 (the surface on which the first magnetoresistive film 103 and the second magnetoresistive film 203 are not exposed). Then, it is fixed to the upper and lower cylinders 303 of the polishing jig 302.
As shown in FIG. 13, for example, a film-like circuit board 304 is attached to the upper and lower cylinders 303, and a terminal 305 of the film-like circuit board 304 and a terminal of the second magnetoresistive effect element 201 shown in FIG. 6. 204 can be connected with a wire 309 using, for example, a wire bonding method, and the resistance value of the second magnetoresistive element 201 can be detected during polishing.

図12に示した実施例において、複数個のスライダ3を固定した研磨冶具302をラップ研磨装置に取り付け、スライダ3の浮上面4と研磨定盤306とが対向するように配置する。研磨加工を行なう前は、アクチュエータ307と上下シリンダ303とが離れており、また上下シリンダ303が例えばコイルバネ308により押し上げられた状態にあるので、スライダ面4と研磨定盤306とが非接触の状態に置かれている。   In the embodiment shown in FIG. 12, a polishing jig 302 to which a plurality of sliders 3 are fixed is attached to a lapping apparatus, and is arranged so that the air bearing surface 4 of the slider 3 and the polishing surface plate 306 face each other. Before polishing, the actuator 307 and the upper and lower cylinders 303 are separated from each other, and the upper and lower cylinders 303 are pushed up by, for example, a coil spring 308, so that the slider surface 4 and the polishing surface plate 306 are not in contact with each other. Is placed in.

図14はスライダ3を研磨加工しているときの状態を表わす図であって、アクチュエータ24を用いて上下シリンダ303に荷重Fを付加することにより、スライダ3の浮上面4と研磨定盤306の表面とが接触させる。この状態で砥粒を含まない油性あるいは水溶性の研磨液(図示せず)を研磨定盤306上に滴下しながら、研磨定盤306を例えば0.1〜20r/minの範囲で回転させ、研磨冶具302を研磨定盤306の直径方向または法線方向に例えば1〜300mm/sの範囲内で往復運動させることによって、浮上面4の表面が研磨される。尚、研磨定盤306の表面には、例えば平均粒径が1/2〜1/20μmのダイヤモンド砥粒を機外にて定盤表面に埋め込んだ固定砥粒定盤を用いる。   FIG. 14 is a diagram showing a state when the slider 3 is being polished. By applying a load F to the upper and lower cylinders 303 using the actuator 24, the air bearing surface 4 of the slider 3 and the polishing surface plate 306. Make contact with the surface. In this state, while dripping an oily or water-soluble polishing liquid (not shown) that does not contain abrasive grains onto the polishing surface plate 306, the polishing surface plate 306 is rotated within a range of 0.1 to 20 r / min, for example. The surface of the air bearing surface 4 is polished by reciprocating the polishing jig 302 in the diameter direction or normal direction of the polishing surface plate 306 within a range of 1 to 300 mm / s, for example. For the surface of the polishing surface plate 306, for example, a fixed abrasive surface plate in which diamond abrasive grains having an average particle size of 1/2 to 1/20 μm are embedded in the surface of the surface plate outside the machine is used.

研磨が行なわれている間、スライダ3の上に設けられた第2の磁気抵抗効果素子201を用いて第2の磁気抵抗効果膜202の抵抗値を適宜あるいは決められたスケジュールに従って測定し、その結果をアクチュエータ307にフィードバックされる。そして、図15に例示するように、第2の磁気抵抗効果素子202を用いて測定した抵抗値もしくは抵抗値から換算したMR素子高さが所定の値になったとき、そのスライダ4に研磨荷重を加えていたアクチュエータ307を反対方法に作動させ、上下シリンダ302に加える荷重をゼロにすることによって上下シリンダ302がコイルバネ308の復元力により押し上げられる。(図12において、右端及び4番目の研磨治具が該当する)
このようにして、スライダ3内に形成した第2の磁気抵抗効果素子202の抵抗値もしくは抵抗値から換算したMR素子高さが所定の値を有する磁気ヘッド1が完成する。図15の本実施例に示すように、複数個のスライダ3を一括して研磨加工を行ない、MR素子高さが所定の値に達したスライダ3から順次加工が終了する。そして、MR素子高さが所定の値に達しないスライダ3は引続き研磨加工が継続される。研磨冶具302に装着した全てのスライダ3の研磨が終了したとき、研磨定盤306の回転と研磨冶具302の往復運動を停止し、加工が終了する。
While the polishing is performed, the resistance value of the second magnetoresistive film 202 is measured according to an appropriate or determined schedule using the second magnetoresistive element 201 provided on the slider 3, The result is fed back to the actuator 307. Then, as illustrated in FIG. 15, when the resistance value measured using the second magnetoresistive effect element 202 or the MR element height converted from the resistance value reaches a predetermined value, a polishing load is applied to the slider 4. When the actuator 307 that has been applied is operated in the opposite manner and the load applied to the upper and lower cylinders 302 is zero, the upper and lower cylinders 302 are pushed up by the restoring force of the coil spring 308. (In FIG. 12, the right end and the fourth polishing jig correspond)
In this way, the magnetic head 1 having a predetermined value of the MR element height converted from the resistance value or resistance value of the second magnetoresistive effect element 202 formed in the slider 3 is completed. As shown in the present embodiment in FIG. 15, a plurality of sliders 3 are polished together, and the processing is sequentially completed from the sliders 3 whose MR element height has reached a predetermined value. The slider 3 whose MR element height does not reach the predetermined value continues to be polished. When polishing of all the sliders 3 attached to the polishing jig 302 is completed, the rotation of the polishing surface plate 306 and the reciprocating motion of the polishing jig 302 are stopped, and the processing is completed.

以上で説明したように、本実施例で述べた研磨加工法は下記の効果を有し、MR素子高さ及び浮上面形状を極めて高精度に加工することが可能である。
(1)スライダ毎に、かつ個々のスライダに設けた磁気抵抗効果素子の特性を利用して研磨加工を行なうため、従来技術におけるロウバー毎の研磨加工に起因する加工量のばらつきを低減することが出来る。
(2)スライダ毎に研磨加工を行なうため、その加工を独立して制御することが出来る。
(3)スライダ内に第1の磁気抵抗効果素子(記録再生用)と第2の磁気抵抗効果素子(研磨加工モニター用)とを近接させて形成することにより、両者の離間距離に起因する加工量のばらつきを低減することが出来る。
(4)記録再生用の磁気抵抗効果素子を構成する磁気抵抗効果膜及び電極と同一部材及び同一形状の研磨加工用素子を用いることにより、実質的には記録再生用の磁気抵抗効果素子の研磨加工が可能になる。
(5)研磨加工用の磁気抵抗効果素子はシールド膜を除外したため、研磨加工時に発生するスクラッチ起因のノイズを低減することが出来、抵抗値の高感度測定が可能になる。
As described above, the polishing method described in this embodiment has the following effects, and can process the MR element height and the air bearing surface shape with extremely high accuracy.
(1) Since polishing is performed for each slider and using the characteristics of the magnetoresistive effect element provided on each slider, it is possible to reduce variations in processing amount due to polishing processing for each row bar in the prior art. I can do it.
(2) Since the polishing process is performed for each slider, the process can be controlled independently.
(3) By forming the first magnetoresistive element (for recording / reproducing) and the second magnetoresistive element (for polishing process monitoring) close to each other in the slider, processing caused by the distance between them. Variation in quantity can be reduced.
(4) By using a magnetoresistive effect film and electrodes constituting the magnetoresistive effect element for recording / reproducing and the same member and the same shape of the polishing element, polishing of the magnetoresistive effect element for recording / reproducing is substantially performed. Processing becomes possible.
(5) Since the magnetoresistive effect element for polishing process excludes the shield film, it is possible to reduce the noise caused by the scratch generated during the polishing process, and the resistance value can be measured with high sensitivity.

即ち、シールド膜が存在する場合、または記録再生用の磁気抵抗効果素子を用いて研磨加工量を測定する場合、磁気抵抗効果膜及び電極を挟んで設けられたシールド膜の間隔は高々80〜100nm程度であるため、研磨加工時のスクラッチによってシールド膜と電極との短絡によって検出すべき抵抗値が本来の抵抗値よりも小さくなって測定される。これによって正確な研磨を行なうことが出来ずに、MR素子高さの大きなばらつきを発生させる。
(6)スライダ毎に、かつ個々のスライダを弾性体を介して研磨装置に装着し研磨加工を行なうため、従来技術におけるロウバーのねじれや反りに起因する浮上面の形状ばらつきを低減することが出来る。
That is, when a shield film is present, or when the amount of polishing processing is measured using a magnetoresistive effect element for recording and reproduction, the distance between the shield film provided between the magnetoresistive film and the electrode is at most 80 to 100 nm. Therefore, the resistance value to be detected by a short circuit between the shield film and the electrode due to scratching during polishing is smaller than the original resistance value, and is measured. As a result, accurate polishing cannot be performed, and a large variation in MR element height occurs.
(6) Since each slider and each slider is attached to a polishing apparatus via an elastic body and polishing is performed, variation in shape of the air bearing surface due to row bar twisting and warping in the prior art can be reduced. .

次に、本実施例に基いて研磨加工を行なった結果について説明する。
図16は、スライダ毎に設けた第2の磁気抵抗効果素子201の抵抗値を検出しながら加工研磨を実施し、研磨終了後に第1の磁気抵抗効果素子101の抵抗値を測定した結果を表わす。その結果、スライダ内に形成した第1の磁気抵抗効果素子101と第2の磁気抵抗効果素子201との抵抗値は極めて良い相関関係にあることが明らかである。
Next, the results of polishing processing based on this example will be described.
FIG. 16 shows the result of processing and polishing performed while detecting the resistance value of the second magnetoresistive element 201 provided for each slider, and measuring the resistance value of the first magnetoresistive element 101 after the end of polishing. . As a result, it is clear that the resistance values of the first magnetoresistive effect element 101 and the second magnetoresistive effect element 201 formed in the slider have a very good correlation.

このことは、スライダ内の第1の磁気抵抗効果素子101に近接させて設けた第2の磁気抵抗効果素子201の抵抗値をモニターしながら加工研磨を行なうことによって、第1の磁気抵抗効果素子101、即ち実際の磁気ヘッドにおける磁気抵抗効果素子の抵抗値もしくはMR素子高さを精度良く加工することが出来ると言うことを意味する。   This is because the first magnetoresistive element is processed and polished while monitoring the resistance value of the second magnetoresistive element 201 provided close to the first magnetoresistive element 101 in the slider. That is, it means that the resistance value or MR element height of the magnetoresistive effect element in the actual magnetic head can be processed with high accuracy.

図17(a)、(b)は、従来技術であるロウバーの状態で浮上面の研磨加工を行ない、その後スライダに切断した磁気ヘッドのMR素子高さ(抵抗換算値)とMR素子の抵抗値の分布図である。また、図18(a)、(b)は、本実施例を用いてスライダ毎に研磨加工を施したときのMR素子高さ(抵抗換算値)とMR素子の抵抗値の分布図である。MR素子の抵抗値は、マクロ社製のΔV−H装置を用い測定した。MR素子高さは、測定した抵抗値をMR素子高さに換算した値である。   17 (a) and 17 (b) show the MR element height (resistance conversion value) and MR element resistance value of the magnetic head after the air bearing surface is polished in the state of a row bar as in the prior art, and then cut into a slider. FIG. FIGS. 18A and 18B are distribution diagrams of the MR element height (resistance conversion value) and the resistance value of the MR element when each slider is polished using this embodiment. The resistance value of the MR element was measured using a ΔV-H apparatus manufactured by Macro. The MR element height is a value obtained by converting the measured resistance value into the MR element height.

この結果から明らかのように、従来技術におけるMR素子高さは平均値0.26μm、最大値0.34μm、最小値0.17μm、ばらつき(3σ値)0.091μmであるのに対して、本実施例におけるMR素子高さは平均値0.25μm、最大値0.27μm、最小値0.23μm、ばらつき(3σ値)0.022μmである。また、従来技術におけるMR素子の抵抗値は平均値41.3Ω、最大値62.3Ω、最小値31.0Ω、ばらつき(3σ値)15.4Ωであるのに対して、本実施例におけるMR素子の抵抗値は平均値42.1Ω、最大値45.7Ω、最小値38.9Ω、ばらつき(3σ値)3.7Ωである。   As is clear from this result, the MR element height in the prior art has an average value of 0.26 μm, a maximum value of 0.34 μm, a minimum value of 0.17 μm, and a variation (3σ value) of 0.091 μm. The MR element height in the example has an average value of 0.25 μm, a maximum value of 0.27 μm, a minimum value of 0.23 μm, and a variation (3σ value) of 0.022 μm. Further, the resistance value of the MR element in the prior art is an average value of 41.3Ω, a maximum value of 62.3Ω, a minimum value of 31.0Ω, and a variation (3σ value) of 15.4Ω. The resistance value is an average value of 42.1Ω, a maximum value of 45.7Ω, a minimum value of 38.9Ω, and a variation (3σ value) of 3.7Ω.

換言すれば、本実施例で説明した磁気ヘッドの構造(図6参照)及びスライダ毎の研磨加工方法(図12参照)を用いることによって、記録面密度100Gbit/inの磁気ディスク装置の実現に必要不可欠なMR素子高さ精度±0.024μmを有する磁気ヘッドを作製することが可能であることを示している。 In other words, by using the structure of the magnetic head described in this embodiment (see FIG. 6) and the polishing method for each slider (see FIG. 12), a magnetic disk device with a recording surface density of 100 Gbit / in 2 can be realized. This shows that it is possible to manufacture a magnetic head having an indispensable MR element height accuracy of ± 0.024 μm.

本実施例を用いて研磨加工した磁気ヘッドを無作為に抽出し、そのサンプリング数とGMR素子の素子高さのばらつき(3σ)と抵抗値のばらつき(3σ)と平均値のと比の関係を図19(a)、(b)に示す。上記の方法によって作製された磁気ヘッドを無作為に数〜100個範囲で抽出した場合、抽出数が10個以上であればGMR素子の素子高さのばらつき(3σ)は0.026μmとなり、抵抗値のばらつき(3σ)と抵抗値の平均値との比は概略0.11となる。   The magnetic head polished by using this embodiment is randomly extracted, and the relationship between the sampling number, the variation in the height of the GMR element (3σ), the variation in the resistance value (3σ), and the average value is shown. It shows to Fig.19 (a), (b). When the magnetic head manufactured by the above method is randomly extracted in the range of several to 100, if the number of extraction is 10 or more, the variation (3σ) in the element height of the GMR element becomes 0.026 μm, and the resistance The ratio between the value variation (3σ) and the average resistance value is approximately 0.11.

この結果から、無作為に10個の磁気ヘッドを抽出し、そのGMR素子高さばらつき(3σ)が0.026μm以下、あるいは抵抗値のばらつき(3σ)と平均値との比が概略0.11であれば、図18に示す本実施例を用いた場合の分布と同じといえる。なお、GMR素子の抵抗値からGMR素子高さを算出する換算式が不明の場合、GMR素子の部分を集束イオンビーム加工装置(FIB)により、素子高さ方向に加工し、その断面からGMR素子の素子高さを求めても良い。   From this result, 10 magnetic heads were randomly extracted, and the GMR element height variation (3σ) was 0.026 μm or less, or the ratio between the resistance variation (3σ) and the average value was approximately 0.11. If so, it can be said that the distribution is the same as in the case of using the present embodiment shown in FIG. If the conversion formula for calculating the GMR element height from the resistance value of the GMR element is unknown, the GMR element portion is processed in the element height direction by a focused ion beam processing apparatus (FIB), and the GMR element from the cross section is processed. The element height may be obtained.

図20(a)は従来技術における磁気ヘッドの再生出力とGMR素子の抵抗値との関係を、また図20(b)は本実施例における関係を表わす。その結果、従来技術においては図17(a)に示したようにMR素子高さのばらつきが大きいので、その結果としてGMR素子の抵抗値及び再生出力が広範囲に分布する。一方、本実施例においては、図19(b)に示す如くMR素子高さのばらつきを極めて小さくすることが出来るので、GMR素子の抵抗値及び再生出力のばらつきも低減することが可能になる。これによって、磁気ヘッドとして重要な特性のひとつである再生出力の安定した、かつ高信頼度を有する磁気ヘッドを提供することが出来るといっても過言ではない。   FIG. 20A shows the relationship between the reproduction output of the magnetic head and the resistance value of the GMR element in the prior art, and FIG. 20B shows the relationship in this embodiment. As a result, in the prior art, as shown in FIG. 17A, the MR element height varies greatly, and as a result, the resistance value and the reproduction output of the GMR element are distributed over a wide range. On the other hand, in this embodiment, since the variation in the MR element height can be extremely reduced as shown in FIG. 19B, the variation in the resistance value and reproduction output of the GMR element can be reduced. Thus, it is no exaggeration to say that it is possible to provide a magnetic head having one of the important characteristics as a magnetic head and having a stable reproduction output and high reliability.

図21(a)、(b)に従来の加工方法であるロウバーの状態で浮上面の仕上げ研磨加工を行った場合の浮上面形状であるクラウン及びキャンバーの分布を示す。また、図22(a)、(b)に本実施例を用いてスライダ毎に研磨加工を施したときの浮上面形状であるクラウン及びキャンバーの分布を示す。なお、クラウン及びキャンバーの測定は、ZYGO社の光干渉型形状測定器であるNEW VIEW200により測定し、測定長は、クラウンの場合、1.1mm、キャンバーの場合、0.9mmとした。   FIGS. 21 (a) and 21 (b) show the distribution of the crown and camber, which are the shape of the air bearing surface when the finish of the air bearing surface is finished in the state of the row bar, which is a conventional processing method. FIGS. 22A and 22B show the distribution of crowns and cambers, which are the air bearing surfaces when the slider is polished for each slider using this embodiment. The crown and camber were measured by NEW VIEW200, a light interference type shape measuring instrument manufactured by ZYGO, and the measurement length was 1.1 mm for the crown and 0.9 mm for the camber.

この結果から明らかのように、従来技術におけるクラウンは平均値2.9nm、最大値9.9nm、最小値−1.8nm、ばらつき(3σ値)2.3nmであり、キャンバーは平均値−0.76nm、最大値3.7nm、最小値−4.1nm、ばらつき(3σ値)3.0nmであるのに対して、本実施例におけるクラウンは平均値1.8nm、最大値3.0nm、最小値0.52nm、ばらつき(3σ値)1.4nmであり、キャンバーは平均値−0.22nm、最大値0.9nm、最小値−1.1nm、ばらつき(3σ値)1.0nmである。   As is clear from this result, the crown in the prior art has an average value of 2.9 nm, a maximum value of 9.9 nm, a minimum value of −1.8 nm, and a variation (3σ value) of 2.3 nm, and the camber has an average value of −0. 76 nm, maximum value 3.7 nm, minimum value −4.1 nm, variation (3σ value) 3.0 nm, whereas crown in this example has an average value 1.8 nm, maximum value 3.0 nm, minimum value The camber has an average value of −0.22 nm, a maximum value of 0.9 nm, a minimum value of −1.1 nm, and a variation (3σ value) of 1.0 nm.

換言すれば、本実施例で説明した磁気ヘッドの構造(図9参照)及びスライダ毎の研磨加工方法(図15参照)を用いることによって、記録面密度100Gbit/inの磁気ディスク装置の実現に必要不可欠な浮上面の形状精度±2nmを有する磁気ヘッドを作製することが可能であることを示している。 In other words, by using the structure of the magnetic head described in this embodiment (see FIG. 9) and the polishing method for each slider (see FIG. 15), a magnetic disk device with a recording surface density of 100 Gbit / in 2 can be realized. This shows that it is possible to manufacture a magnetic head having an indispensable air bearing surface shape accuracy of ± 2 nm.

本実施例を用いて研磨加工した磁気ヘッドを無作為に抽出し、そのサンプリング数とクラウンばらつき(3σ)及びキャンバーばらつき(3σ)の関係を図23(a)、(b)に示す。無作為に30個の磁気ヘッドを抽出した場合、クラウンのばらつき(3σ)は1.4nmとなり、またキャンバーのばらつき(3σ)は1.0nmとなる。この結果から、無作為に30個の磁気ヘッドを抽出し、そのクラウン(3σ)が1.4nm以下であり、かつキャンバーのばらつき(3σ)が1.0nm以下であれば、図22に示す本実施例を用いた場合の分布と同じといえる。   23A and 23B show the relationship between the sampling number, the crown variation (3σ), and the camber variation (3σ), which are randomly extracted from the magnetic head polished by using this embodiment. When 30 magnetic heads are randomly extracted, the crown variation (3σ) is 1.4 nm, and the camber variation (3σ) is 1.0 nm. From this result, if 30 magnetic heads are extracted at random, and the crown (3σ) is 1.4 nm or less and the camber variation (3σ) is 1.0 nm or less, the book shown in FIG. It can be said that the distribution is the same as in the case of using the embodiment.

記録再生用と研磨加工量検出用の磁気抵抗効果素子をスライダ内に形成し、加工量をモニターしながらスライダ毎に仕上げ研磨加工を行なうことによって、高精度に制御されたMR素子高さ及び浮上面形状を有する磁気ヘッドを実現することが出来る。   MR element height and flying height are controlled with high precision by forming magnetoresistive effect elements for recording / reproducing and for detecting the amount of polishing in the slider, and performing finish polishing for each slider while monitoring the amount of processing. A magnetic head having a surface shape can be realized.

磁気ヘッドとディスクとの関係を表わす配置図である。FIG. 3 is an arrangement diagram showing a relationship between a magnetic head and a disk. 磁気ヘッドの製造過程を説明するための概念図である。It is a conceptual diagram for demonstrating the manufacturing process of a magnetic head. 磁気ヘッドの構造を説明するための斜視図である。It is a perspective view for demonstrating the structure of a magnetic head. 磁気ヘッドの連なった状態であるロウバーの概略図である。It is the schematic of a row bar which is in the state where a magnetic head continued. ロウバーを説明するための拡大概略図である。It is an expansion schematic for demonstrating a row bar. 磁気ディスク装置の面記録密度とGMR素子高さ精度の関係を表わす図である。It is a figure showing the relationship between the surface recording density of a magnetic disc unit, and GMR element height accuracy. 磁気ヘッドの浮上面形状(クラウン、キャンバー)の概念図である。It is a conceptual diagram of the air bearing surface shape (crown, camber) of a magnetic head. 磁気ディスク装置の面記録密度と磁気ヘッド浮上面の形状精度との関係を表わす図である。It is a figure showing the relationship between the surface recording density of a magnetic disc apparatus, and the shape precision of a magnetic head air bearing surface. 本実施例である磁気ヘッドの構造を説明するための斜視図である。It is a perspective view for demonstrating the structure of the magnetic head which is a present Example. 本実施例である磁気ヘッドの断面構造図である。1 is a cross-sectional structure diagram of a magnetic head according to an embodiment. 従来技術及び本実施例における研磨加工プロセスフローである。It is the polishing process flow in a prior art and a present Example. 本実施例であるスライダ毎の研磨加工を行なうための装置概略図(加工前)である。It is the apparatus schematic for performing the grinding | polishing process for every slider which is a present Example (before a process). 加工装置のスライダ取り付け部の拡大図である。It is an enlarged view of the slider attachment part of a processing apparatus. 本実施例であるスライダ毎の研磨加工を行なうための装置概略図(加工中)である。It is the apparatus schematic for performing the grinding | polishing process for every slider which is a present Example (during processing). 本実施例であるスライダ毎の研磨加工を行なうための装置概略図(加工終了)である。It is the apparatus schematic for performing the grinding | polishing process for every slider which is a present Example (process completion | finish). 第1及び第2の磁気抵抗効果素子における抵抗値相関図である。It is a resistance value correlation diagram in the 1st and 2nd magnetoresistive effect element. 従来技術におけるGMR素子高さ(抵抗値換算)とGMR素子抵抗値の分布図である。It is a distribution map of GMR element height (resistance value conversion) and GMR element resistance value in the prior art. 本実施例におけるGMR素子高さ(抵抗値換算)とGMR素子抵抗値の分布図である。It is a distribution map of the GMR element height (resistance value conversion) and GMR element resistance value in a present Example. 磁気ヘッドのサンプリング数とGMR素子高さ(抵抗値換算)及びGMR素子抵抗値のばらつき(3σ)の関係を表す図である。It is a figure showing the relationship between the sampling number of a magnetic head, GMR element height (resistance value conversion), and dispersion | variation (3 (sigma)) of GMR element resistance value. 本実施例におけるGMR素子の抵抗値と再生出力との関係を表わす図である。It is a figure showing the relationship between the resistance value of the GMR element and reproduction output in a present Example. 従来技術におけるクラウン及びキャンバーの分布図である。It is a distribution map of the crown and camber in the prior art. 本実施例におけるクラウン及びキャンバーの分布図である。It is a distribution map of a crown and a camber in a present Example. 磁気ヘッドのサンプリング数とクラウン及びキャンバーのばらつき(3σ)の関係を表す図である。It is a figure showing the relationship between the sampling number of a magnetic head, and the dispersion | variation (3 (sigma)) of a crown and a camber.

符号の説明Explanation of symbols

1…磁気ヘッド、2…ディスク、3…スライダ、4…スライダ面、5…磁気抵抗効果素子、6…基板、7…ロウバー、8…コイル、9…上部磁性膜、10…誘導型磁気変換素子、11…上部シールド膜、12…磁気抵抗効果膜、13…電極、14…下部シールド膜、15…抵抗検知素子、101…第1の磁気抵抗効果素子、102…第1の磁気抵抗効果膜、103…第1の電極、104…下部シールド膜、105…上部シールド膜、201…第2の磁気抵抗効果素子、202…第2の磁気抵抗効果膜、203…第2の電極、204…抵抗検知用端子、205…磁気変換素子の端子、301…表面粘着性の弾性体、302…研磨冶具、303…上下シリンダ、304…フィルム状回路基板、305…端子、306…研磨定盤、307…アクチュエータ、308…ばね、309…ワイヤーボンディングのワイヤー DESCRIPTION OF SYMBOLS 1 ... Magnetic head, 2 ... Disk, 3 ... Slider, 4 ... Slider surface, 5 ... Magnetoresistive element, 6 ... Substrate, 7 ... Row bar, 8 ... Coil, 9 ... Upper magnetic film, 10 ... Induction type magnetic transducer 11 ... Upper shield film, 12 ... Magnetoresistive film, 13 ... Electrode, 14 ... Lower shield film, 15 ... Resistance sensing element, 101 ... First magnetoresistive element, 102 ... First magnetoresistive film, DESCRIPTION OF SYMBOLS 103 ... 1st electrode, 104 ... Lower shield film, 105 ... Upper shield film, 201 ... 2nd magnetoresistive effect element, 202 ... 2nd magnetoresistive effect film, 203 ... 2nd electrode, 204 ... Resistance detection 205 ... Terminal of magnetic conversion element 301 ... Surface adhesive elastic body 302 ... Polishing jig 303 ... Upper cylinder, 304 ... Film circuit board, 305 ... Terminal, 306 ... Polishing surface plate, 307 ... Actu Over motor, 308 ... spring 309 ... wire bonding wire

Claims (4)

基板上に絶縁膜を形成した後、該絶縁膜上に磁気記録媒体からの磁気信号を再生するための第1の磁気抵抗効果素子と研磨加工量を計測するための第2の磁気抵抗効果素子とを隣接して形成する素子形成工程と、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子とを対にしてひとつのスライダに切断するスライダ分割工程と、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子とが形成された面に対して直交する前記基板の面を研磨して浮上面となす研磨工程とを備え、該研磨工程は前記第2の磁気抵抗効果素子の抵抗値を測定し、該第2の磁気抵抗効果素子が所定の抵抗値に達したときに前記浮上面の研磨加工をスライダ毎に終了させることを特徴とする薄膜磁気ヘッドの製造方法。   After forming an insulating film on the substrate, a first magnetoresistive element for reproducing a magnetic signal from the magnetic recording medium and a second magnetoresistive element for measuring the amount of polishing processing are formed on the insulating film. Are formed adjacent to each other, a slider splitting step in which the first magnetoresistive effect element and the second magnetoresistive effect element are paired and cut into one slider, and the first magnetism A polishing step of polishing the surface of the substrate perpendicular to the surface on which the resistance effect element and the second magnetoresistance effect element are formed to form an air bearing surface, the polishing step comprising the second magnetic A resistance value of a resistance effect element is measured, and the polishing of the air bearing surface is finished for each slider when the second magnetoresistance effect element reaches a predetermined resistance value. Method. 前記素子形成工程において、前記第1の磁気抵抗効果素子は第1の磁気抵抗効果膜及び該第1の磁気抵抗効果膜の両端部で接触させた一組の第1の電極を挟むようにして積層された一組のシールド膜を前記絶縁膜上に配置し、前記第2の磁気抵抗効果素子は第2の磁気抵抗効果膜及び該第2の磁気抵抗効果膜の両端部で接触させた一組の第2の電極のみを前記絶縁膜上に配置してなり、前記第1の磁気抵抗効果膜と前記第2の磁気抵抗効果膜、及び前記第1の電極と前記第2の電極とが各々幾何学的に同一形状であって、同一素材を用いて形成することを特徴とする請求項1に記載の磁気ヘッドの製造方法。   In the element formation step, the first magnetoresistive element is stacked so as to sandwich a first magnetoresistive film and a pair of first electrodes that are in contact at both ends of the first magnetoresistive film. A pair of shield films are disposed on the insulating film, and the second magnetoresistive element is in contact with the second magnetoresistive film and both ends of the second magnetoresistive film. Only the second electrode is disposed on the insulating film, and the first magnetoresistive film, the second magnetoresistive film, and the first electrode and the second electrode are respectively geometrical. The method of manufacturing a magnetic head according to claim 1, wherein the magnetic heads are formed using the same material having the same shape. 前記素子形成工程において、前記第1の磁気抵抗効果膜と前記第2の磁気抵抗効果膜とが、前記絶縁膜上であって同一平面内に形成してなることを特徴とする請求項2に記載の磁気ヘッドの製造方法。   3. The element forming step, wherein the first magnetoresistive film and the second magnetoresistive film are formed on the insulating film in the same plane. A manufacturing method of the magnetic head. 前記分割工程で切断されたスライダは、前記浮上面に直交する方向に個別に可動可能な研磨治具に装着され、前記スライダの研磨加工量を前記第2の磁気抵抗効果素子の抵抗値を用いて制御することを特徴とする請求項1に記載の磁気ヘッドの製造方法。
The slider cut in the dividing step is mounted on a polishing jig that is individually movable in a direction perpendicular to the air bearing surface, and the polishing amount of the slider is used as the resistance value of the second magnetoresistance effect element. The method of manufacturing a magnetic head according to claim 1, wherein the magnetic head is controlled.
JP2006266340A 2001-07-31 2006-09-29 Method of manufacturing thin film magnetic head Pending JP2006344381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266340A JP2006344381A (en) 2001-07-31 2006-09-29 Method of manufacturing thin film magnetic head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001230767 2001-07-31
JP2006266340A JP2006344381A (en) 2001-07-31 2006-09-29 Method of manufacturing thin film magnetic head

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002222339A Division JP2003115102A (en) 2001-07-31 2002-07-31 Thin-film magnetic head and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006344381A true JP2006344381A (en) 2006-12-21

Family

ID=37641202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266340A Pending JP2006344381A (en) 2001-07-31 2006-09-29 Method of manufacturing thin film magnetic head

Country Status (1)

Country Link
JP (1) JP2006344381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120287530A1 (en) * 2011-05-10 2012-11-15 Hitachi Global Storage Technologies Netherlands B.V. Thin-femto magnetic head slider and method for producing the same
US8407882B2 (en) 2008-09-26 2013-04-02 HGST Netherlands B.V. Method for manufacturing thin film magnetic heads

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8407882B2 (en) 2008-09-26 2013-04-02 HGST Netherlands B.V. Method for manufacturing thin film magnetic heads
US20120287530A1 (en) * 2011-05-10 2012-11-15 Hitachi Global Storage Technologies Netherlands B.V. Thin-femto magnetic head slider and method for producing the same
US8786975B2 (en) * 2011-05-10 2014-07-22 HGST Netherlands B.V. Thin-femto magnetic head slider and method for producing the same

Similar Documents

Publication Publication Date Title
US7268976B2 (en) Magnetic head and method of manufacturing the same
US7911736B2 (en) Storage device and method of using a head that has a concave surface when powered down
US8035929B2 (en) Magnetic head assembly and magnetic tape driving apparatus
JP4685734B2 (en) Manufacturing method of magnetic head slider
JP3650051B2 (en) Process monitor element, magnetic transducer, assembly of process monitor elements, and method of manufacturing magnetic transducer
US7751154B2 (en) Magnetic recording heads with bearing surface protections and methods of manufacture
US20080013219A1 (en) Methods of manufacturing magnetic heads with reference and monitoring devices
JP2006048806A (en) Magnetic head and its manufacturing method
US8407882B2 (en) Method for manufacturing thin film magnetic heads
JP3990197B2 (en) Thin film magnetic head
US20070230063A1 (en) Method for merging sensor field-mill and electronic lapping guide material placement for a partial mill process and sensor formed according to the method
US10290314B1 (en) Locating electrical contact pads on a slider body, and related row bars that include such slider bodies
US7995308B2 (en) Magnetic head for perpendicular magnetic recording and method of manufacturing same, the magnetic head incuding pole layer and two shields sandwiching the pole layer
JP2006344381A (en) Method of manufacturing thin film magnetic head
US8325440B2 (en) Magnetic head including a pole layer and an antireflection film sandwiched by two shields
US7870659B2 (en) Method for defining a perpendicular magnetic head
US7796359B2 (en) Magnetic head for perpendicular magnetic recording and method of manufacturing the same, the magnetic head including pole layer and two shields sandwiching the pole layer
JP2006331562A (en) Manufacturing method of thin film magnetic head, and thin film magnetic head
JP2003115102A (en) Thin-film magnetic head and its manufacturing method
US7854060B2 (en) Magnetic head substructure for use for manufacturing a magnetic head
JPH11242806A (en) Thin film magnetic head, magnetic disk device, grinding/ processing method and its measuring method
US20190311733A1 (en) Electonic test structres for one or more magnetoresistive elements, and related methods
JP2008010023A (en) Manufacturing method of thin film magnetic head
JP4209580B2 (en) Head slider processing method
JP2011028825A (en) Method for manufacturing magnetic head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414