JPH1112627A - Method for controlling rotating speed of rotary furnace hearth in reduced iron production - Google Patents

Method for controlling rotating speed of rotary furnace hearth in reduced iron production

Info

Publication number
JPH1112627A
JPH1112627A JP17270197A JP17270197A JPH1112627A JP H1112627 A JPH1112627 A JP H1112627A JP 17270197 A JP17270197 A JP 17270197A JP 17270197 A JP17270197 A JP 17270197A JP H1112627 A JPH1112627 A JP H1112627A
Authority
JP
Japan
Prior art keywords
hearth
reduced iron
iron
rotation speed
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17270197A
Other languages
Japanese (ja)
Inventor
Takazo Kawaguchi
尊三 川口
Yoshihisa Nakamura
義久 中村
Yasuo Kamei
康夫 亀井
Masahiko Hoshi
雅彦 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17270197A priority Critical patent/JPH1112627A/en
Publication of JPH1112627A publication Critical patent/JPH1112627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for suitably controlling rotating speed of a furnace hearth by judging the completing point of reduction reaction at high accuracy at the time of producing reduced iron. SOLUTION: At the time of producing the reduced iron by charging mixed material of powdery iron material and powdery solid reducing agent and burning, CO and CO2 concns. in the atmospheric gas near the discharging part of the burnt reduced iron are continuously measured, and the rotary speed of the furnace hearth is controlled so that CO/CO2 or CO/(CO+CO2 ) becomes a prefixed value, or CO and CO2 concns. are measured as the same way in plural positions along the shifting direction of the furnace hearth near the discharging part so that the difference of CO/CO2 or the difference of CO/(CO+CO2 between each measured position become prefixed value. Dust concn. contained in the same atmospheric gas is continuously measured and the rotating speed of the furnace hearth may be controlled so that the dust concn. becomes the prefixed value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉状の鉄鉱石や鉄
分を含んだダスト、スラッジ、スケール等の粉状鉄原料
と石炭、コークス等の粉状固体還元剤とを混合した原料
を炉床が水平に回転移動する加熱炉に装入して還元鉄を
製造する際の炉床の回転速度の制御方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for converting a raw material obtained by mixing a powdery iron raw material such as dust, sludge, scale or the like containing powdered iron ore or iron and a powdery solid reducing agent such as coal or coke. The present invention relates to a method for controlling a rotating speed of a hearth when the reduced iron is manufactured by being charged into a heating furnace in which a floor rotates horizontally.

【0002】[0002]

【従来の技術】近年、粉状の鉄鉱石と粉状固体還元剤と
を混合して塊成化し、これを炉床が水平に回転移動する
加熱炉床(以下、「回転炉床」といい、この炉床を有す
る炉を「回転床炉」という)に装入して還元鉄を製造す
る技術が注目されている。
2. Description of the Related Art In recent years, a powdered iron ore and a powdery solid reducing agent are mixed and agglomerated, and the resulting agglomerate is heated in a hearth (hereinafter referred to as a "rotating hearth") in which a hearth rotates horizontally. Attention has been focused on a technique for producing reduced iron by charging a furnace having this hearth into a "rotary hearth furnace".

【0003】この回転床炉は古くからあるロータリーキ
ルン炉とは異なり、設備コストが安価であるのが特徴で
あるが、一方、炉床が水平に回転するために原料の装入
および製品の排出に配慮が必要である。その技術の代表
的なものとしては、粉状の鉄鉱石と固体還元剤とを混合
して塊成化物(ペレット)となし、これを高温に加熱す
ることにより鉄鉱石中の酸化鉄を還元して固体状金属鉄
とする技術がある(例えば、米国特許第3,443,9
31号明細書、特開平7−238307号公報)。
[0003] Unlike a rotary kiln furnace which has been used for a long time, this rotary hearth furnace is characterized in that the equipment cost is low. On the other hand, since the hearth rotates horizontally, it is necessary to charge raw materials and discharge products. Care must be taken. As a typical example of the technology, a powdered iron ore is mixed with a solid reducing agent to form an agglomerate (pellet), which is heated to a high temperature to reduce iron oxide in the iron ore. (See, for example, US Pat. No. 3,443,9).
31, specification, JP-A-7-238307).

【0004】図1は、加熱を回転床炉を用いて行う従来
の還元鉄の製造プロセスの一例の概略図である。図示す
るように、粉鉄鉱石と粉石炭にバインダーとしてのベン
トナイトを添加し、混練機で、さらに水分とタールを添
加して混合する。この混合原料をペレタイザーまたはダ
ブルロール圧縮機で塊成化し、回転床炉の原料装入部へ
移送して炉内へ装入し、炉床の移動に伴って1回転させ
る間に鉄鉱石中の酸化鉄を高温還元して固体状金属鉄と
する。得られた金属鉄は排出部から取り出される。
FIG. 1 is a schematic view showing an example of a conventional reduced iron production process in which heating is performed using a rotary bed furnace. As shown in the figure, bentonite as a binder is added to fine iron ore and fine coal, and water and tar are further added and mixed by a kneader. This mixed raw material is agglomerated by a pelletizer or a double-roll compressor, transferred to a raw material charging section of a rotary hearth furnace, charged into the furnace, and rotated once along with the movement of the hearth while the iron ore in the iron ore is rotated. Iron oxide is reduced at high temperature to form solid metallic iron. The obtained metallic iron is taken out from the discharge part.

【0005】上記の還元鉄の製造方法において、粉状鉄
原料としては、粉状の鉄鉱石の他に、製鉄所で発生する
鉄分を含んだ各種のダストやスラッジ、スケールなどが
使用でき、また、粉状固体還元剤としては、石炭、コー
クス、チャー、オイルコークスなどが使用可能である。
これら鉄原料や固体還元剤は、場合によっては乾燥処
理、破砕処理が施される。
[0005] In the above-mentioned method for producing reduced iron, as the powdered iron raw material, in addition to powdered iron ore, various dusts, sludges, scales, etc. containing iron generated in ironworks can be used. As the powdery solid reducing agent, coal, coke, char, oil coke and the like can be used.
These iron raw materials and solid reducing agents may be subjected to drying treatment and crushing treatment in some cases.

【0006】粉状鉄原料と粉状固体還元剤は、次いで混
練処理されるが、その際、必要に応じてバインダーとし
ての水分、タール、糖蜜、有機系樹脂、セメント、スラ
グ、ベントナイト、生石灰、軽焼ドロマイト、消石灰が
添加される。
The powdered iron raw material and the powdered solid reducing agent are then kneaded. At this time, if necessary, water as a binder, tar, molasses, organic resin, cement, slag, bentonite, quicklime, Light dolomite and slaked lime are added.

【0007】混練された原料は、デスクペレタイザイー
により球状のペレットに、またはダブルロール圧縮機に
よりブリケットに塊成化される。この場合、ペレットに
するためには粒径が0.1mm以下の粒度の原料が適
し、ブリッケトには粒径が1mm以下の粒度のものが適
するので、あらかじめ所定の粒度に微粉砕する必要があ
る。また、塊成化物(上記のペレット、ブリケットを指
す)の強度を高めるため、塊成化後に乾燥処理または養
生処理が施される場合もある。
The kneaded raw material is compacted into spherical pellets by a desk pelletizer or briquettes by a double roll compressor. In this case, in order to form pellets, a raw material having a particle size of 0.1 mm or less is suitable, and a briquette having a particle size of 1 mm or less is suitable. . Further, in order to increase the strength of the agglomerate (refer to the above-mentioned pellets and briquettes), a drying treatment or a curing treatment may be performed after the agglomeration.

【0008】得られた塊成化物は、ベルトコンベヤーで
回転床炉の上部に送られ、そこから回転炉床上に幅広く
分散するように装入シュートを用いて装入され、レベラ
ーによりならされる。続いて、炉内を移動する間に加熱
還元され、金属鉄となる。
The agglomerates obtained are conveyed by belt conveyor to the upper part of a rotary hearth furnace, from where they are charged using a charging chute so as to be widely distributed on the rotary hearth and leveled by a leveler. Subsequently, it is reduced by heating while moving in the furnace and becomes metallic iron.

【0009】回転床炉内は、炉内に燃料ガスと空気を送
り込み燃焼させることによって1100〜1300℃の
炉内温度が確保されている。この回転床炉の炉床上に上
記の塊成化物を10〜20mmの薄い厚みで敷き、主に
炉内壁からの輻射熱で900℃以上に昇温し、炉床が1
回転する間に所定の金属化率に達するように炉床の回転
速度を調整しつつ還元焼結させ、排出部からスクリュー
フィーダにより排出する。
In the rotary bed furnace, a furnace temperature of 1100 ° C. to 1300 ° C. is secured by feeding and burning fuel gas and air into the furnace. The above-mentioned agglomerate was spread on the hearth of this rotary hearth furnace with a thin thickness of 10 to 20 mm, and the temperature was raised to 900 ° C. or more mainly by radiant heat from the furnace inner wall, and
During the rotation, reduction sintering is performed while adjusting the rotation speed of the hearth so as to reach a predetermined metallization ratio, and the mixture is discharged from a discharge portion by a screw feeder.

【0010】上記の還元鉄製造プロセスにおいて、生産
性向上の観点から、回転床炉内での加熱還元時間、すな
わち回転炉床の回転速度の設定が重要な課題として挙げ
られる。
[0010] In the above-described reduced iron production process, setting of the heating reduction time in the rotary bed furnace, that is, the setting of the rotation speed of the rotary hearth, is an important issue from the viewpoint of improving productivity.

【0011】このプロセスでは、回転炉床の回転速度が
速すぎると、原料の還元が十分に進んでいないにもかか
わらず製品として排出されることになるので、金属化率
の低い還元鉄となる。逆に、回転炉床の回転速度が遅す
ぎると、原料の還元は十分に進むが、焼成時間が長くな
るので生産性が低下する。また、生成した還元鉄が無用
に長く炉内に留まると、排ガス中のH2 OやCO2 によ
って再酸化されたり、還元鉄中に残留している炭素
(C)がCO2 によってガス化したりし、いずれも操業
上における大きなロスとなる。したがって、得られる還
元鉄の金属化率を迅速に判定し、目標とする金属化率に
なるように回転炉床の回転速度を制御することが重要で
ある。
In this process, if the rotating speed of the rotary hearth is too high, the raw material is discharged as a product even though the reduction of the raw material is not sufficiently performed, so that reduced iron having a low metallization ratio is obtained. . Conversely, if the rotating speed of the rotary hearth is too slow, the reduction of the raw material proceeds sufficiently, but the firing time becomes longer, and the productivity is reduced. Also, if the generated reduced iron stays in the furnace for an unnecessarily long time, it is re-oxidized by H 2 O or CO 2 in the exhaust gas, or carbon (C) remaining in the reduced iron is gasified by CO 2 . However, all of these are major operational losses. Therefore, it is important to quickly determine the metallization rate of the obtained reduced iron and control the rotation speed of the rotary hearth so as to achieve the target metallization rate.

【0012】もちろん、原料条件や炉内温度の変動が皆
無であるなら、回転速度を一度適正な速度に設定してお
きさえすれば問題はないが、原料条件および炉内温度は
変動するのが常であり、変動のつど、炉床の回転速度を
最適値に設定しなおす必要がある。
Of course, if there are no fluctuations in the raw material conditions and the furnace temperature, there is no problem as long as the rotation speed is once set to an appropriate speed, but the raw material conditions and the furnace temperature do not fluctuate. It is always necessary to reset the hearth rotation speed to an optimum value each time it fluctuates.

【0013】一般に、製品である還元鉄の金属化率(m
−Fe/T.Fe)は、製品をサンプリングし、縮分し
た後破砕し、湿式化学分析および原子吸光法により分析
を行うことにより求められる。そのため、多大な手間と
時間がかかり、金属化率を迅速に判定することは難し
い。
Generally, the metallization ratio (m
-Fe / T. Fe) is obtained by sampling the product, shrinking the product, crushing the product, and performing analysis by wet chemical analysis and atomic absorption spectrometry. Therefore, it takes a lot of trouble and time, and it is difficult to quickly determine the metallization ratio.

【0014】これに対して、特開平7−238307号
公報に、排出部近傍における原料(ペレット)層の直上
にガスサンプラーを設置し、サンプリングしたガスのC
OおよびCO2 の濃度を合わせた濃度(CO+CO2
濃度)が5%以下になった時点を還元反応が停止した時
点であると判断する旨の記載がある。
On the other hand, in Japanese Patent Application Laid-Open No. Hei 7-238307, a gas sampler is installed just above a raw material (pellet) layer in the vicinity of a discharge part, and the C of sampled gas is measured.
There is a description that a point in time when the combined concentration of O and CO 2 (concentration of CO + CO 2 ) becomes 5% or less is a point in time when the reduction reaction is stopped.

【0015】しかしながら、この還元反応の停止時点の
判断方法には大きな欠点がある。確かに、固体還元剤中
のC(炭素)は粉状鉄原料中の酸化鉄のO(酸素)と反
応し、COやCO2 を発生させるので、これらのガスの
濃度が低下することによって還元の完了と判定すること
は可能である。しかし、固体還元剤中のCは、炉内を加
熱する際に生じる燃焼排ガス中のH2 OやCO2 とも反
応してCOを生成させる。したがって、サンプリングし
たガスの(CO+CO2 )の濃度が5%以下になった時
点は、固体還元剤中のCが無くなりつつあることを示す
ものではあるが、粉状鉄原料中の酸化鉄のO(酸素)が
すべて還元により除去されたことを意味するものではな
い。例えば、固体還元剤中のC量が多い時は、サンプリ
ングしたガスの(CO+CO2 )の濃度が5%以下にな
った時点で還元が完了したと判断するのでは判断が遅す
ぎ、逆に、固体還元剤中のC量が少ない時には、(CO
+CO2 )の濃度が5%以下になった時点で還元完了の
判断を下すのは早すぎることになる。
[0015] However, this method of judging when to stop the reduction reaction has a significant drawback. Certainly, C (carbon) in the solid reducing agent reacts with O (oxygen) of iron oxide in the powdered iron raw material to generate CO and CO 2. Can be determined to be complete. However, C in the solid reducing agent also reacts with H 2 O and CO 2 in the combustion exhaust gas generated when heating the inside of the furnace to generate CO. Therefore, when the (CO + CO 2 ) concentration of the sampled gas becomes 5% or less, which indicates that C in the solid reducing agent is disappearing, the O of iron oxide in the powdery iron raw material is reduced. It does not mean that all (oxygen) has been removed by reduction. For example, when the amount of C in the solid reducing agent is large, it is too late to judge that the reduction has been completed when the (CO + CO 2 ) concentration of the sampled gas becomes 5% or less. When the amount of C in the solid reducing agent is small, (CO
When the concentration of (+ CO 2 ) becomes 5% or less, it is too early to judge reduction completion.

【0016】[0016]

【発明が解決しようとする課題】本発明は、還元鉄製造
の際の上記の問題を解決し、炉床の回転速度を適正に制
御することによって、安定した高い金属化率の製品を高
生産率で製造することを課題としてなされたものであ
る。その具体的な目的は、還元鉄製造の際に、高精度で
還元反応の完了点を判定し、炉床の回転速度を適正に制
御する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the production of reduced iron and, by appropriately controlling the rotating speed of the hearth, produces a product with a stable and high metallization rate at a high rate. It was made with the task of manufacturing at a high rate. A specific object of the present invention is to provide a method for determining the completion point of the reduction reaction with high accuracy in the production of reduced iron and appropriately controlling the rotation speed of the hearth.

【0017】[0017]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するため検討を重ねた結果、サンプリングした
ガスの(CO+CO2 )の濃度ではなく、CO/CO2
またはCO/(CO+CO2 )を求め、この比が所定の
値となった時、還元が完了したと判断できることがわか
った。この還元完了時点の判断は、焼成された還元鉄の
排出部付近のガス中に含まれるダストの濃度を測定する
ことによっても可能である。したがって、これらの値が
あらかじめ定めた値になるように炉床の回転速度を制御
すれば、適正な回転速度とすることが可能である。
Means for Solving the Problems As a result of repeated studies to solve the above problems, the present inventors have found that the concentration of (CO + CO 2 ) in the sampled gas is not CO / CO 2.
Alternatively, CO / (CO + CO 2 ) was obtained, and it was found that when the ratio reached a predetermined value, it was determined that the reduction was completed. The determination at the time of the completion of the reduction can also be made by measuring the concentration of dust contained in the gas near the discharge portion of the calcined reduced iron. Therefore, if the rotation speed of the hearth is controlled so that these values become predetermined values, it is possible to obtain an appropriate rotation speed.

【0018】本発明は上記の知見に基づいてなされたも
ので、その要旨は、下記(1)〜(3)の還元鉄製造に
おける回転炉床の回転速度制御方法にある。
The present invention has been made based on the above findings, and the gist of the invention resides in the following method (1) to (3) for controlling the rotation speed of a rotary hearth in the production of reduced iron.

【0019】(1)粉状鉄原料と粉状固体還元剤の混合
物を回転炉床に装入し、焼成して還元鉄を製造するに際
し、還元鉄の排出部付近の雰囲気ガス中のCOおよびC
2 の濃度を連続測定し、CO/CO2 またはCO/
(CO+CO2 )があらかじめ定めた値になるように炉
床の回転速度を制御することを特徴とする回転炉床の回
転速度制御方法。
(1) A mixture of a powdered iron raw material and a powdered solid reducing agent is charged into a rotary hearth and fired to produce reduced iron. C
The concentration of O 2 is continuously measured and CO / CO 2 or CO /
A method for controlling the rotation speed of a rotary hearth, wherein the rotation speed of the hearth is controlled so that (CO + CO 2 ) becomes a predetermined value.

【0020】(2)粉状鉄原料と粉状固体還元剤の混合
物を水平回転移動する加熱炉床に装入し、焼成して還元
鉄を製造するに際し、還元鉄の排出部付近において炉床
の移動方向に沿って複数箇所で雰囲気ガス中のCOおよ
びCO2 の濃度を連続測定し、各測定箇所におけるCO
/CO2 またはCO/(CO+CO2 )を求め、各測定
箇所間のCO/CO2 の差またはCO/(CO+CO
2 )の差があらかじめ定めた値になるように炉床の回転
速度を制御することを特徴とする回転炉床の回転速度制
御方法。
(2) A mixture of a powdered iron raw material and a powdered solid reducing agent is charged into a heating hearth that is horizontally rotated and fired to produce reduced iron. The concentration of CO and CO 2 in the atmosphere gas is continuously measured at a plurality of points along the moving direction of
/ CO 2 or CO / (CO + CO 2 ) is calculated, and the difference of CO / CO 2 or CO / (CO + CO
2 ) A method for controlling the rotation speed of a rotary hearth, wherein the rotation speed of the hearth is controlled so that the difference of the predetermined value becomes a predetermined value.

【0021】(3)粉状鉄原料と粉状固体還元剤の混合
物を回転炉床に装入し、焼成して還元鉄を製造するに際
し、還元鉄の排出部付近の雰囲気ガス中に含まれるダス
トの濃度を連続測定し、ダスト濃度があらかじめ定めた
値になるように炉床の回転速度を制御することを特徴と
する回転炉床の回転速度制御方法。
(3) A mixture of the powdered iron raw material and the powdered solid reducing agent is charged into a rotary hearth and fired to produce reduced iron, which is contained in the atmosphere gas near the reduced iron discharge section. A method for controlling the rotation speed of a rotary hearth, comprising continuously measuring the concentration of dust and controlling the rotation speed of the hearth so that the dust concentration becomes a predetermined value.

【0022】ここで、「粉状鉄原料」とは、酸化鉄が主
成分の粉状の鉄原料であり、具体的には、前述した粉状
の鉄鉱石や製鉄所で発生する鉄分を含んだダスト、スラ
ッジ(例えば、焼結機発生ダスト、高炉発生ダスト、転
炉発生ダスト、圧延工場発生スラッジ)、スケール等を
いう。本発明においては、これらを単独で、または2種
以上の混合物状態で使用することができる。
Here, the "pulverized iron raw material" is a powdered iron raw material containing iron oxide as a main component, and specifically includes the above-mentioned powdered iron ore and iron generated in an ironworks. Waste, sludge (eg, sintering machine generated dust, blast furnace generated dust, converter generated dust, rolling plant generated sludge), scale, and the like. In the present invention, these can be used alone or in a mixture of two or more.

【0023】「粉状固体還元剤」とは、石炭、コーク
ス、チャー、オイルコークス等の、主に炭素を含む固体
物質の粉末である。これらも、単独で、または2種以上
組み合わせて使用することができる。
The "pulverized solid reducing agent" is a powder of a solid substance mainly containing carbon, such as coal, coke, char, and oil coke. These can also be used alone or in combination of two or more.

【0024】[0024]

【発明の実施の形態】以下、本発明(上記(1)〜
(3)の発明)について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention (the above (1) to
The invention (3) will be described in detail.

【0025】上記(1)の発明は、粉状鉄原料と粉状固
体還元剤の混合物を回転炉床に装入し、焼成して還元鉄
を製造するに際し、焼成された還元鉄の排出部付近の雰
囲気ガス中のCOおよびCO2 の濃度を連続測定し、C
O/CO2 またはCO/(CO+CO2 )があらかじめ
定めた値になるように炉床の回転速度を制御する方法で
ある。
The invention of the above (1) is characterized in that a mixture of a powdered iron raw material and a powdered solid reducing agent is charged into a rotary hearth and fired to produce reduced iron. Continuously measure the concentration of CO and CO 2 in the surrounding atmosphere gas,
In this method, the rotational speed of the hearth is controlled so that O / CO 2 or CO / (CO + CO 2 ) becomes a predetermined value.

【0026】前述したように、排出部近傍における原料
層(ほぼ還元された状態の還元鉄層となっている)の直
上に設置したガスサンプラーにより採取したガス中のC
OおよびCO2 の濃度は還元反応に関する貴重な情報を
提供するが、(CO+CO2)濃度を求めても還元反応
の完了を判定することはできない。しかし、CO/CO
2 またはCO/(CO+CO2 )の値によれば、次に述
べるように、還元反応の完了を概ね判定できることがわ
かった。
As described above, C in the gas sampled by the gas sampler installed immediately above the raw material layer (which is a reduced iron layer in a substantially reduced state) in the vicinity of the discharge section.
Although the concentrations of O and CO 2 provide valuable information about the reduction reaction, determining the (CO + CO 2 ) concentration does not determine the completion of the reduction reaction. However, CO / CO
According to the value of 2 or CO / (CO + CO 2 ), it was found that the completion of the reduction reaction can be almost determined as described below.

【0027】粉状固体還元剤からの低沸点成分の揮発が
完了し、原料(酸化鉄)の還元が最終段階に入った時点
では、C、CO、CO2 、酸化鉄(FeO)および金属
鉄(Fe)の5成分が存在し、次の反応が行われてい
る。
When volatilization of low-boiling components from the powdery solid reducing agent is completed and raw material (iron oxide) is reduced to the final stage, C, CO, CO 2 , iron oxide (FeO) and metallic iron There are five components of (Fe), and the following reaction is performed.

【0028】 還元反応: FeO + C → Fe + CO ガス化反応: C + CO2 → 2CO ここで、CO/CO2 の比に着目すると、還元反応にお
いてはCOの発生しか起こらないのに対し、ガス化反応
ではCO2 の減少とCOの倍増となるので、還元反応よ
りもガス化反応が生じる比率が相対的に高い時にCO/
CO2 の値は大きくなり、またその変化も大きくなる。
すなわち、酸化鉄(FeO)が存在し原料の還元が行わ
れているときは、CO/CO2 の値の変化は大きくない
が、還元がほぼ完了に近づくと、ガス化反応が生じる比
率が高まるので、CO/CO2 の値は大きく変化するこ
とになる。
Reduction reaction: FeO + C → Fe + CO Gasification reaction: C + CO 2 → 2CO Here, paying attention to the ratio of CO / CO 2 , only CO is generated in the reduction reaction. In the gasification reaction, CO 2 is reduced and CO is doubled. Therefore, when the ratio at which the gasification reaction occurs is relatively higher than the reduction reaction, CO /
The value of CO 2 increases and its change also increases.
That is, when iron oxide (FeO) is present and the raw material is being reduced, the change in the value of CO / CO 2 is not large, but as the reduction is almost completed, the rate at which the gasification reaction occurs increases. Therefore, the value of CO / CO 2 changes greatly.

【0029】そこで、(1)の発明の方法においては、
還元鉄の排出部付近の雰囲気ガス中のCOおよびCO2
の濃度を測定し、CO/CO2 またはCO/(CO+C
2)を求め、その値から還元反応の完了時点を判定す
る。
Therefore, in the method of the invention (1),
CO and CO 2 in the atmosphere gas near the reduced iron discharge section
Of CO / CO 2 or CO / (CO + C
O 2 ) is obtained, and the completion point of the reduction reaction is determined from the value.

【0030】COおよびCO2 の濃度の測定は連続して
行う。上記の還元反応およびガス化反応が生じる比率は
刻々変化するからである。したがって、「連続測定」と
いうのは、少なくともこの変化に追随できる程度の連続
測定であればよい。
The measurement of the concentrations of CO and CO 2 is carried out continuously. This is because the ratio at which the above-described reduction reaction and gasification reaction occur changes every moment. Therefore, the “continuous measurement” may be any continuous measurement that can at least follow this change.

【0031】還元鉄の排出部付近の雰囲気ガスの採取
は、例えば、前記公報に記載の方法と同様に、排出部近
傍における原料層(還元鉄層)の直上にガスサンプラー
を取り付けて行えばよい。なお、サンプリングの際に、
またはサンプリング後測定に供する前に、雰囲気ガス中
に含まれる水蒸気を除去する。通常使用される連続式ガ
ス分析計では、試料ガス中に水蒸気が存在すると分析計
内で結露が起こり、その部分にダストなどが付着し、測
定に支障を来すからである。
The sampling of the atmosphere gas in the vicinity of the reduced iron discharge section may be performed by attaching a gas sampler directly above the raw material layer (reduced iron layer) in the vicinity of the discharge section, for example, as in the method described in the above-mentioned publication. . In addition, at the time of sampling,
Alternatively, water vapor contained in the atmospheric gas is removed before the measurement after sampling. This is because, in a commonly used continuous gas analyzer, when water vapor is present in the sample gas, dew condensation occurs in the analyzer, and dust or the like adheres to the portion, which hinders measurement.

【0032】(1)の発明の方法では、上記のように求
めたCO/CO2 またはCO/(CO+CO2 )があら
かじめ定めた値になるように炉床の回転速度を制御す
る。ここで、「あらかじめ定めておく値」は、その絶対
値は回転床炉の加熱条件(例えば、加熱バーナーの炊き
量、排ガス量等)によって異なるので、実際の操業時に
おける加熱条件に応じてあらかじめCO/CO2 または
CO/(CO+CO2 )の値と炉床の回転速度との関係
を求め、その関係に基づいて定めておけばよい。なお、
CO/CO2 およびCO/(CO+CO2 )は実質的に
は同じことを意味しているので、いずれを用いてもよ
い。
In the method of the present invention (1), the rotational speed of the hearth is controlled so that CO / CO 2 or CO / (CO + CO 2 ) obtained as described above becomes a predetermined value. Here, the “predetermined value” differs in absolute value depending on the heating conditions of the rotary bed furnace (for example, the amount of cooking of the heating burner, the amount of exhaust gas, etc.), and therefore, is determined in advance according to the heating conditions during the actual operation. The relationship between the value of CO / CO 2 or CO / (CO + CO 2 ) and the rotation speed of the hearth may be determined and determined based on the relationship. In addition,
CO / CO 2 and CO / (CO + CO 2 ) mean substantially the same, and any of them may be used.

【0033】上記(2)の発明は、還元鉄の排出部付近
において炉床の移動方向に沿って複数箇所で(1)の発
明の場合と同様に、COおよびCO2 の濃度を連続測定
し、各測定箇所におけるCO/CO2 またはCO/(C
O+CO2 )を求め、各測定箇所間のCO/CO2 の差
またはCO/(CO+CO2 )の差があらかじめ定めた
値になるように炉床の回転速度を制御する方法である。
In the invention of the above (2), the CO and CO 2 concentrations are continuously measured at a plurality of places near the discharge portion of the reduced iron along the moving direction of the hearth, as in the case of the invention of (1). , CO / CO 2 or CO / (C
O + CO 2 ) is obtained, and the rotational speed of the hearth is controlled so that the difference in CO / CO 2 or the difference in CO / (CO + CO 2 ) between the measurement points becomes a predetermined value.

【0034】この方法によれば、上記(1)の発明の場
合における炉床の移動方向に沿った1箇所でのガス分析
データが複数箇所でのデータとなるので、還元反応の完
了の判定をより的確に行うことができるとともに、CO
/CO2 またはCO/(CO+CO2 )の変化を把握す
ることにより還元反応の進行状態の変化をより厳密にと
らえやすくなる。なお、COおよびCO2 の濃度を測定
箇所は多いほど精度は上がるが、通常は2箇所で行えば
よい。
According to this method, since the gas analysis data at one place along the moving direction of the hearth in the case of the above (1) becomes data at a plurality of places, the completion of the reduction reaction is determined. Can be performed more accurately, and CO
By grasping the change in / CO 2 or CO / (CO + CO 2 ), it becomes easier to more strictly grasp the change in the progress of the reduction reaction. Note that the accuracy of CO and CO 2 concentration increases as the number of measurement locations increases, but usually, the measurement may be performed at two locations.

【0035】前記の「あらかじめ定めた値」は、(1)
の発明の方法の場合と同様、実際の操業時に各測定箇所
間のCO/CO2 の差またはCO/(CO+CO2 )の
差と炉床の回転速度の関係を求め、その関係に基づいて
定めておけばよい。
The "predetermined value" is defined as (1)
As in the case of the method of the invention, the relationship between the difference in CO / CO 2 or the difference in CO / (CO + CO 2 ) between the measurement points and the rotation speed of the hearth during actual operation is determined based on the relationship. It should be left.

【0036】上記(3)の発明は、粉状鉄原料と粉状固
体還元剤の混合物を回転炉床に装入し、焼成して還元鉄
を製造するに際し、焼成された還元鉄の排出部付近の雰
囲気ガス中含まれるダストの濃度を測定し、ダスト濃度
があらかじめ定めた値になるように炉床の回転速度を制
御する方法である。
The invention of the above (3) is characterized in that the mixture of the powdered iron raw material and the powdered solid reducing agent is charged into a rotary hearth and fired to produce reduced iron, and the discharged portion of the fired reduced iron is used. This is a method of measuring the concentration of dust contained in a nearby atmosphere gas and controlling the rotation speed of the hearth so that the dust concentration becomes a predetermined value.

【0037】すなわち、この方法では、還元反応の完了
を還元鉄の排出部付近のガス中に含まれるダストの濃度
の測定によって判定するのである。
That is, in this method, completion of the reduction reaction is determined by measuring the concentration of dust contained in the gas near the reduced iron discharge portion.

【0038】原料は昇温され、その中の酸化鉄が還元さ
れることによって金属鉄になり、焼結化する。したがっ
て、還元されたものはいわゆるスポンジ鉄になってお
り、強固である。これに対し、未還元物が残存している
部分では強固な結合をしておらず、排出時の衝撃により
粉化し、発塵する。すなわち、還元が完全に完了してい
る場合にはダスト濃度は低いが、未還元部分が多いとダ
スト濃度は上昇するので、ダスト濃度を測定することに
よって還元反応の完了時点を判定することができる。
The raw material is heated, and the iron oxide contained therein is reduced to metallic iron and sintered. Therefore, what is reduced is what is called sponge iron, which is strong. On the other hand, the portion where the unreduced material remains does not have a strong bond, and is pulverized and dusted by the impact at the time of discharge. That is, when the reduction is completely completed, the dust concentration is low, but when the unreduced portion is large, the dust concentration increases. Therefore, the completion point of the reduction reaction can be determined by measuring the dust concentration. .

【0039】前記の「あらかじめ定めた値」は、(1)
の発明の方法の場合と同様、実際の操業時にダスト濃度
と炉床の回転速度の関係を求め、その関係に基づいて定
めておけばよい。
The "predetermined value" is defined as (1)
As in the case of the method of the invention, the relationship between the dust concentration and the rotation speed of the hearth during the actual operation may be determined and determined based on the relationship.

【0040】ダスト濃度の測定には種々の方法がある
が、鉄原料の還元状態の変化に対応する発塵状態の変化
(すなわち、ダスト濃度の変化)に追随できる測定方法
であれば、いずれの方法であってもよい。その中で、光
学式のものと電気式のものが、ダスト濃度の絶対値の測
定には問題があるが連続測定が可能なので、好適であ
る。光学式のものは、測定部位を挟んで発光部と受光部
があり、光の減量によってダスト濃度を連続測定するも
のである。一方、電気式のものは、電極プローブを有し
ており、ダスト濃度に応じて、電気抵抗が変化すること
を利用したものである。
There are various methods for measuring the dust concentration. Any method can be used as long as it can follow the change in the dusting state (that is, the change in the dust concentration) corresponding to the change in the reduction state of the iron raw material. It may be a method. Among them, the optical type and the electric type are preferable because the measurement of the absolute value of the dust concentration has a problem but continuous measurement is possible. The optical type has a light-emitting portion and a light-receiving portion across a measurement site, and continuously measures dust concentration by reducing the amount of light. On the other hand, the electric type has an electrode probe and utilizes the fact that the electric resistance changes according to the dust concentration.

【0041】上記(1)および(2)の発明の方法は、
回転床炉に装入する原料の形状には関係なく、粉体状、
ペレット、ブリッケト、タイル状、板状、シート状など
どのような場合にも適用できる技術である。
The method of the invention of the above (1) and (2)
Regardless of the shape of the raw material charged into the rotary bed furnace,
It is a technique that can be applied to any case such as pellets, briquettes, tiles, plates, and sheets.

【0042】上記本発明の方法によれば、還元鉄の排出
部付近の雰囲気ガス中のCOおよびCO2 の濃度または
ダスト濃度の測定値に基づいて炉床の回転速度を適正に
制御することができ、その結果、安定した高い金属化率
の還元鉄を効率よく製造することができる。
According to the method of the present invention, it is possible to appropriately control the rotational speed of the hearth based on the measured values of the concentrations of CO and CO 2 or the dust in the atmosphere gas near the discharge portion of reduced iron. As a result, reduced iron having a stable and high metallization ratio can be efficiently produced.

【0043】[0043]

【実施例】表1に示す粉鉄鉱石と表2に示す粉石炭を用
い、表3に示す配合率で配合した後、後述するNo.1
〜No.8のケースで還元鉄を製造し、そのときの還元
鉄の金属化率および生産率により本発明の効果を評価し
た。
EXAMPLES Using fine iron ore shown in Table 1 and fine coal shown in Table 2 and blending at the blending ratio shown in Table 3, the fine powder was mixed with No. 1
-No. In each of the cases No. 8, reduced iron was produced, and the effect of the present invention was evaluated based on the metallization rate and production rate of the reduced iron at that time.

【0044】還元鉄の製造は、前記の図1に示した製造
工程にのっとり、配合した原料を混合した後、ダブルロ
ール圧縮機によりブリッケトに成形し、その後、回転床
炉に装入し、焼成することにより行った。用いた回転床
炉の設備仕様と操業条件を表4に示す。
In the production of reduced iron, following the production process shown in FIG. 1, the blended raw materials are mixed, molded into briquettes by a double-roll compressor, and then charged into a rotary bed furnace and fired. It was done by doing. Table 4 shows the equipment specifications and operating conditions of the rotary hearth furnace used.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】回転床炉の操業にあたっては、排出部近傍
の原料層の直上にガスサンプラーを設置し、COおよび
CO2 濃度またはダスト濃度を連続測定して、CO/C
2、CO/(CO+CO2 )、またはダスト濃度があ
らかじめ定めた値になるように炉床の回転速度を制御し
た。また、前記のガスサンプラーを設置した位置から8
m上流側の原料層の直上にさらにガスサンプラーを設置
し、COおよびCO2濃度を連続測定してCO/CO2
またはCO/(CO+CO2 )を求め、下流側で求めた
値との差(すなわち、CO/CO2 差、CO/(CO+
CO2 )差)があらかじめ定めた値になるように炉床の
回転速度を制御した。
In the operation of the rotary bed furnace, a gas sampler is installed just above the raw material layer near the discharge section, and the CO and CO 2 concentrations or dust concentrations are continuously measured, and CO / C
The rotation speed of the hearth was controlled so that O 2 , CO / (CO + CO 2 ), or dust concentration became a predetermined value. In addition, 8 points from the position where the gas sampler is installed
m, a gas sampler is further installed immediately above the raw material layer on the upstream side, and the CO and CO 2 concentrations are continuously measured to obtain CO / CO 2
Alternatively, CO / (CO + CO 2 ) is obtained, and the difference from the value obtained on the downstream side (that is, CO / CO 2 difference, CO / (CO +
The rotation speed of the hearth was controlled so that the CO 2 ) difference) became a predetermined value.

【0050】還元鉄の製造は、表5に示すNo.1〜N
o.8の各ケースに示した方法で炉床の回転速度制御を
行いながら実施した。表5には、金属化率および生産率
も併せて示した。
The production of reduced iron was carried out according to No. 1 to N
o. 8 was carried out while controlling the rotation speed of the hearth by the method shown in each case. Table 5 also shows the metallization rate and the production rate.

【0051】[0051]

【表5】 [Table 5]

【0052】また、図2に、No.3〜No.8の各ケ
ースについて、炉床の回転速度制御を行った場合のダス
ト濃度、CO/CO2 、CO/(CO+CO2 )、CO
/CO2 差(ΔCO/CO2 と表示)およびCO/(C
O+CO2 )差(ΔCO/(CO+CO2 )と表示)の
経時変化を、回転速度制御を行わなかった場合と対比し
て示した。図中の「ON」は回転速度制御を行った場合
で、ダスト濃度、CO/CO2 等の各種制御因子の値が
いずれもほぼ一定の値(この値が、本発明でいう「あら
かじめ定めた値」である)で推移している。すなわち、
各種制御因子の値がこの「あらかじめ定めた値」になる
ように炉床の回転速度を制御した場合である。一方、
「OFF」は回転速度制御を行わなかった場合で、ダス
ト濃度、CO/CO2 等の各種制御因子の値は著しい変
動を示した。なお、図中のNo.3からNo.8はそれ
ぞれ表5のNo.3からNo.8に対応する。
FIG. 3-No. 8, dust concentration, CO / CO 2 , CO / (CO + CO 2 ), CO
/ CO 2 difference (indicated as ΔCO / CO 2 ) and CO / (C
The change with time of the O + CO 2 difference (indicated as ΔCO / (CO + CO 2 )) is shown in comparison with the case where the rotation speed control was not performed. “ON” in the figure indicates a case in which the rotation speed control is performed, and values of various control factors such as dust concentration and CO / CO 2 are almost constant values (this value is a “predetermined value” in the present invention). Value "). That is,
This is a case where the rotation speed of the hearth is controlled so that the values of various control factors become the “predetermined values”. on the other hand,
“OFF” indicates that the rotation speed control was not performed, and the values of various control factors such as dust concentration and CO / CO 2 showed remarkable fluctuation. In addition, No. in the figure. 3 to No. No. 8 in Table 5 are No. 3 to No. Corresponds to 8.

【0053】表5に示したNo.1のケースは、回転床
炉の床回転速度制御を行わなかった従来例で、製品の金
属化率が概ね92%になるように回転速度を設定した場
合である。この場合、図示していないが、図2に示した
他のケースから類推して各種制御因子は変動していると
考えられ、その結果として還元鉄の金属化率の変動が標
準偏差にみられるように大きかった。このため、回転速
度の調整(特に回転速度の上昇)の必要があっても上昇
させることができず、低い生産率となった。
No. shown in Table 5 Case 1 is a conventional example in which the floor rotation speed control of the rotary hearth furnace was not performed, and the rotation speed was set so that the metallization rate of the product was approximately 92%. In this case, although not shown, various control factors are considered to be fluctuating by analogy with the other cases shown in FIG. 2, and as a result, the fluctuation of the metallization rate of reduced iron is seen in the standard deviation. It was so big. For this reason, even if the rotation speed needs to be adjusted (especially, the rotation speed is increased), it cannot be increased, resulting in a low production rate.

【0054】No.2のケースは、前記の特開平7−2
38307号公報に記載される、(CO+CO2 の濃
度)が5%以下になった時点を還元反応が停止した時点
であると判断する方法に基づき、(CO+CO2 )濃度
<5%を目安として回転数制御を行った場合であるが、
No.1のケースに較べて大幅な改善は認められなかっ
た。
No. The case No. 2 is described in the above-mentioned JP-A-7-2.
No. 38307, based on a method of judging that the point at which (CO + CO 2 concentration) becomes 5% or less is the point at which the reduction reaction is stopped, using (CO + CO 2 ) concentration <5% as a guide In the case where numerical control is performed,
No. No significant improvement was observed compared to case 1.

【0055】No.3〜No.8のケースは本発明例
で、No.3およびNo.4はダスト濃度測定値があら
かじめ定めた値になるように炉床の回転速度制御を行っ
た場合、No.5〜No.8は、COおよびCO2 濃度
の測定値(ガス分析値)からCO/CO2 、CO/(C
O+CO2 )、CO/CO2 差およびCO/(CO+C
2 )差を求め、それに基づいて回転速度制御を行った
場合である。
No. 3-No. The case of No. 8 is an example of the present invention. 3 and No. 3 No. 4 indicates that when the rotation speed of the hearth was controlled so that the measured value of dust concentration became a predetermined value, No. 5-No. 8 is obtained from the measured values of CO and CO 2 concentrations (gas analysis values), CO / CO 2 and CO / (C
O + CO 2 ), CO / CO 2 difference and CO / (CO + C
O 2 ) difference is obtained and the rotational speed control is performed based on the difference.

【0056】本発明例では、従来例に較べ、平均92%
の金属化率を維持した状態で金属化率の変動を低減し、
高い生産率で還元鉄を製造することができた。
In the example of the present invention, the average was 92% as compared with the conventional example.
While maintaining the metallization rate of
Reduced iron could be produced at a high production rate.

【0057】[0057]

【発明の効果】本発明の方法によれば、粉状鉄原料と粉
状固体還元剤の混合物を回転炉床に装入し、焼成して還
元鉄を製造するに際し、還元鉄の排出部付近の雰囲気ガ
ス中のCOおよびCO2 濃度またはダスト濃度の測定値
に基づいて炉床の回転速度を適正に制御することができ
る。その結果、安定した高い金属化率の還元鉄を効率よ
く製造することが可能となる。
According to the method of the present invention, when a mixture of a powdered iron raw material and a powdered solid reducing agent is charged into a rotary hearth and calcined to produce reduced iron, the reduced iron is discharged in the vicinity of the discharge section. The rotation speed of the hearth can be appropriately controlled based on the measured values of the CO and CO 2 concentrations or the dust concentrations in the atmospheric gas. As a result, it is possible to efficiently produce reduced iron having a stable and high metallization ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】回転床炉を用いて行う従来の還元鉄の製造プロ
セスの一例の概略図である。
FIG. 1 is a schematic view of an example of a conventional reduced iron production process performed using a rotary hearth furnace.

【図2】実施例で得られた結果の一例で、炉床の回転速
度制御を行った場合のダスト濃度、CO/CO2 、CO
/(CO+CO2 )、CO/CO2 差およびCO/(C
O+CO2 )差の経時変化を示す図である。
FIG. 2 is an example of the results obtained in the examples, showing the dust concentration, CO / CO 2 , CO
/ (CO + CO 2 ), CO / CO 2 difference and CO / (C
O + CO 2) is a diagram showing changes with time of the difference.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星 雅彦 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 ────────────────────────────────────────────────── ─── Continued on front page (72) Inventor Masahiko Hoshi 4-5-33 Kitahama, Chuo-ku, Osaka City, Osaka Inside Sumitomo Metal Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】粉状鉄原料と粉状固体還元剤の混合物を水
平回転移動する加熱炉床に装入し、焼成して還元鉄を製
造するに際し、還元鉄の排出部付近の雰囲気ガス中のC
OおよびCO2 の濃度を連続測定し、CO/CO2 また
はCO/(CO+CO2 )があらかじめ定めた値になる
ように炉床の回転速度を制御することを特徴とする回転
炉床の回転速度制御方法。
1. A mixture of a powdered iron raw material and a powdered solid reducing agent is charged into a heating furnace bed which is horizontally rotated and baked to produce reduced iron. C
Characterized by continuously measuring the concentrations of O and CO 2 and controlling the rotation speed of the hearth so that CO / CO 2 or CO / (CO + CO 2 ) becomes a predetermined value. Control method.
【請求項2】粉状鉄原料と粉状固体還元剤の混合物を水
平回転移動する加熱炉床に装入し、焼成して還元鉄を製
造するに際し、還元鉄の排出部付近において炉床の移動
方向に沿って複数箇所で雰囲気ガス中のCOおよびCO
2 の濃度を連続測定し、各測定箇所におけるCO/CO
2 またはCO/(CO+CO2 )を求め、各測定箇所間
のCO/CO2 の差またはCO/(CO+CO2 )の差
があらかじめ定めた値になるように炉床の回転速度を制
御することを特徴とする回転炉床の回転速度制御方法。
2. A mixture of a powdered iron raw material and a powdered solid reducing agent is charged into a heating hearth which is horizontally rotated and baked to produce reduced iron. CO and CO in the atmospheric gas at multiple points along the moving direction
2 was measured continuously, and the CO / CO
2 or CO / (CO + CO 2 ), and controlling the rotation speed of the hearth so that the difference in CO / CO 2 or the difference in CO / (CO + CO 2 ) between the measurement points becomes a predetermined value. A method for controlling a rotating speed of a rotary hearth.
【請求項3】粉状鉄原料と粉状固体還元剤の混合物を水
平回転移動する加熱炉床に装入し、焼成して還元鉄を製
造するに際し、還元鉄の排出部付近の雰囲気ガス中に含
まれるダストの濃度を連続測定し、ダスト濃度があらか
じめ定めた値になるように炉床の回転速度を制御するこ
とを特徴とする回転炉床の回転速度制御方法。
3. A mixture of a powdered iron raw material and a powdered solid reducing agent is charged into a heating furnace bed which is horizontally rotated and baked to produce reduced iron. A method for controlling the rotation speed of a rotary hearth, comprising: continuously measuring the concentration of dust contained in the furnace, and controlling the rotation speed of the hearth so that the dust concentration becomes a predetermined value.
JP17270197A 1997-06-30 1997-06-30 Method for controlling rotating speed of rotary furnace hearth in reduced iron production Pending JPH1112627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17270197A JPH1112627A (en) 1997-06-30 1997-06-30 Method for controlling rotating speed of rotary furnace hearth in reduced iron production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17270197A JPH1112627A (en) 1997-06-30 1997-06-30 Method for controlling rotating speed of rotary furnace hearth in reduced iron production

Publications (1)

Publication Number Publication Date
JPH1112627A true JPH1112627A (en) 1999-01-19

Family

ID=15946752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17270197A Pending JPH1112627A (en) 1997-06-30 1997-06-30 Method for controlling rotating speed of rotary furnace hearth in reduced iron production

Country Status (1)

Country Link
JP (1) JPH1112627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037356B2 (en) 2000-11-10 2006-05-02 Nippon Steel Corporation Method for operating rotary hearth type reducing furnace and rotary hearth type reducing furnace facilities
WO2009031537A1 (en) * 2007-09-05 2009-03-12 Nippon Steel Corporation Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron
WO2009035053A1 (en) * 2007-09-14 2009-03-19 Nippon Steel Corporation Process for producing reduced iron pellets, and process for producing pig iron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037356B2 (en) 2000-11-10 2006-05-02 Nippon Steel Corporation Method for operating rotary hearth type reducing furnace and rotary hearth type reducing furnace facilities
WO2009031537A1 (en) * 2007-09-05 2009-03-12 Nippon Steel Corporation Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron
AU2008294980B2 (en) * 2007-09-05 2011-03-17 Nippon Steel Corporation Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron
US8092574B2 (en) 2007-09-05 2012-01-10 Nippon Steel Corporation Method of producing reduced iron cast, and method of producing pig iron
WO2009035053A1 (en) * 2007-09-14 2009-03-19 Nippon Steel Corporation Process for producing reduced iron pellets, and process for producing pig iron
KR101145603B1 (en) * 2007-09-14 2012-05-15 신닛뽄세이테쯔 카부시키카이샤 Process for producing reduced iron pellets, and process for producing pig iron
US9034074B2 (en) 2007-09-14 2015-05-19 Nippon Steel & Sumitomo Metal Corporation Process for producing reduced iron pellets, and process for producing pig iron

Similar Documents

Publication Publication Date Title
RU2433187C2 (en) Hot-pressed iron (hbi) and method for its obtaining
WO1999046410A1 (en) Method and apparatus for rapid reduction of iron oxide in a rotary hearth furnace
EP2458021A1 (en) Apparatus and method for producing reduced iron using alkali-containing iron production dust as the raw material
CN102994680A (en) Controllable atmosphere rotary hearth furnace process for producing direct reduction iron
EP2216419A2 (en) The technology of refining metallic wastes containing zinc in a rotary furnace
EP2458020B1 (en) Carbon composite briquette for producing reduced iron and method for producing reduced iron employing the same
JP2003342646A (en) Carbon-containing, non-calcined pellet for blast furnace and its manufacturing process
JP3043325B2 (en) Method for producing reduced iron pellets and reduced iron pellets produced by this method
JPH1112627A (en) Method for controlling rotating speed of rotary furnace hearth in reduced iron production
CN106414778A (en) Production method of granular metallic iron
JP2004256868A (en) Method for producing reduced metal
JP4105856B2 (en) Reduced iron production method by rotary bed furnace
JP2010090431A (en) Method for producing ferro-alloy containing nickel and vanadium
JP2003183716A (en) Method for manufacturing reduced iron by using rotary bed furnace
JPH1150119A (en) Production of reduced iron
JP5494071B2 (en) Method for producing reduced iron
JP3837845B2 (en) Method for producing reduced iron
JPH1129806A (en) Production of molten iron
JP2002249813A (en) Rotary hearth type reducing furnace operating method
JP3301326B2 (en) Method for producing reduced iron
JP3355967B2 (en) Method for producing reduced iron
JPH10237519A (en) Manufacture of reduced iron
JPH0477054B2 (en)
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
CN206015044U (en) A kind of device for improving the utilization rate of hazardous waste containing zinc by rotary kiln