JPH11125651A - Method for orientating breakdown position of power cable line - Google Patents

Method for orientating breakdown position of power cable line

Info

Publication number
JPH11125651A
JPH11125651A JP28938697A JP28938697A JPH11125651A JP H11125651 A JPH11125651 A JP H11125651A JP 28938697 A JP28938697 A JP 28938697A JP 28938697 A JP28938697 A JP 28938697A JP H11125651 A JPH11125651 A JP H11125651A
Authority
JP
Japan
Prior art keywords
breakdown
phase
power cable
cable line
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28938697A
Other languages
Japanese (ja)
Other versions
JP3528544B2 (en
Inventor
Keiichi Ouchi
啓一 大内
Takeshi Endo
桓 遠藤
Kenichiro Soma
謙一郎 杣
Masayuki Yamaguchi
正幸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP28938697A priority Critical patent/JP3528544B2/en
Publication of JPH11125651A publication Critical patent/JPH11125651A/en
Application granted granted Critical
Publication of JP3528544B2 publication Critical patent/JP3528544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost and highly reliable method for orientating a breakdown position of a power cable line. SOLUTION: According to this method, a breakdown position of a multiphase power cable line having insulating connection parts 11 at the same position of respective phases is orientated, thereby orientating a breakdown position of a power cable line. At this time, a detecting part 20 for detecting a breakdown signal corresponding to a surge current resulting from a breakdown is set at each insulating connection part 11 of the same position of each phase of the multiphase power cable line. A magnetization element 31 in common to the phases is magnetized by a sum signal obtained by adding the breakdown signals from the detecting parts 20 at the same position of the phases. A breakdown position is evaluated in accordance with a magnetization amount of the magnetization element 31.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力ケーブル線路
の絶縁破壊位置標定方法に関し、特に、低コストで信頼
性が高い電力ケーブル線路の絶縁破壊位置標定方法に関
する。
The present invention relates to a method for locating a dielectric breakdown of a power cable line, and more particularly to a method of locating a dielectric breakdown of a power cable line at low cost and high reliability.

【0002】[0002]

【従来の技術】送電系統の信頼性を確保するためには、
超高圧CVケーブル線路で絶縁破壊が発生した場合、そ
の発生箇所を短時間で見つけだし、迅速な復旧を行う必
要がある。この場合、1回線当たり単心電力ケーブルを
3条布設して多回線(2回線、3回線あるいはそれ以
上)構成とした電力ケーブル線路では、その任意箇所で
絶縁破壊が生じると、その両端の変電所、その他の親局
において絶縁破壊を生じた回線、事故相は、継電器の動
作その他により直ちに特定が可能である。ところが長距
離の電力ケーブル線路ではどの位置(変電所その他から
の距離)で絶縁破壊が生じたかの位置標定は非常に困難
である。そのため、事故区間あるいは事故点検出システ
ム(FLシステム)が開発され、重要線路に設置されて
いる。
2. Description of the Related Art In order to ensure the reliability of a transmission system,
When insulation breakdown occurs in an ultra-high voltage CV cable line, it is necessary to find out the location of the breakdown in a short time and to quickly restore the location. In this case, if a single-core power cable is laid in three lines per line and a multi-line (two lines, three lines or more) configuration is made, and an insulation breakdown occurs at an arbitrary position, the voltage at both ends is changed. The line and the accident phase in which the insulation breakdown has occurred in other places, can be immediately identified by the operation of the relay or the like. However, it is very difficult to locate a position (distance from a substation or the like) in a long-distance power cable line. Therefore, an accident section or an accident point detection system (FL system) has been developed and installed on an important railway.

【0003】CVケーブル線路の事故点位置の検出方法
としては、ケーブル線路の両終端部に電力ケーブルの絶
縁破壊時に発生するサージ電流を磁界により検出する光
磁界センサを設け、これらの光磁界センサを光ファイバ
を介して測定器に接続し、メモリ回路のデジタルデータ
のサージ電流波形を基に絶縁破壊位置標定を行う光磁界
センサー方式がある。
[0003] As a method of detecting the location of an accident point on a CV cable line, optical magnetic sensors are provided at both ends of the cable line to detect a surge current generated at the time of insulation breakdown of a power cable by a magnetic field. There is an optical magnetic field sensor system which is connected to a measuring instrument via an optical fiber and locates a dielectric breakdown position based on a surge current waveform of digital data in a memory circuit.

【0004】また、絶縁接続部のクロスボンド線や接地
線に光CTを設けて地絡零相電流を検出する光出力CT
方式もある。更に、低圧マーレーループ方式、パルスレ
ーダ方式なども適用される場合がある。
Further, an optical output CT for detecting a zero-phase-to-ground current by providing an optical CT on a cross bond line or a ground line of an insulating connection portion.
There is also a method. Further, a low-pressure Marley loop system, a pulse radar system, or the like may be applied.

【0005】[0005]

【発明が解決しようとする課題】しかし、光磁界センサ
ー方式によると、周辺あるいは他相磁界の影響を受けて
誤動作し易いという問題があると共に、光ファイバー線
心数が多数必要であり、システムが高価であるという問
題がある。また、光出力CT方式によると、判定ソフト
が高度であること、回線別判定ができないこと、システ
ムが高価であるなどの問題がある。
However, according to the optical magnetic field sensor system, there is a problem that it is likely to malfunction due to the influence of the peripheral or other phase magnetic field, and a large number of optical fiber cores are required, and the system is expensive. There is a problem that is. Further, according to the optical output CT method, there are problems such as that the judgment software is sophisticated, judgment by line cannot be made, and the system is expensive.

【0006】更に、マーレーループ方式は、原理上、被
測定ケーブルの長さが計算式にはいるので、故障点標定
精度に問題があり、パルスレーダ方式は故障点接地抵抗
により標定精度が左右される問題があり、これらの方式
は、電力ケーブル線路の事故点標定方法として不適当
で、長距離電力ケーブル線路には適用されていない。そ
のため、現在の主力の方式は上述の光磁界センサー方式
と光出力CT方式であるが、これらはいずれも高価であ
るという問題があり、低コストで信頼性の高い新しい事
故点標定方式が要望されていた。
Further, in the Murray loop method, since the length of the cable to be measured is included in the calculation formula in principle, there is a problem in the fault locating accuracy. In the pulse radar method, the locating accuracy is influenced by the fault point grounding resistance. However, these methods are unsuitable as fault location methods for power cable lines and have not been applied to long-distance power cable lines. Therefore, the current main methods are the above-mentioned optical magnetic field sensor method and the light output CT method. However, both of these methods are expensive, and a new low-cost and highly reliable method for locating accidents is demanded. I was

【0007】従って、本発明の目的は、より低コストで
信頼性の高い電力ケーブル線路の絶縁破壊位置標定方法
を提供することにある。
It is, therefore, an object of the present invention to provide a lower cost and more reliable method of locating the breakdown of a power cable line.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するため、各相の同一位置に絶縁接続部を有する1回
線あるいは多回線の多相電力ケーブル線路の絶縁破壊位
置を評定する電力ケーブル線路の絶縁破壊位置評定方法
において、絶縁破壊によって生じるサージ性電流に応じ
た絶縁破壊信号を検出する検出部を前記1回線あるいは
多回線の多相電力ケーブル線路の前記各相の同一位置の
前記絶縁接続部にそれぞれ設け、前記各相の同一位置の
前記検出部から得られたそれぞれの前記絶縁破壊信号を
加算した和の信号によって各相に共通の着磁片を着磁
し、前記着磁片の着磁量に応じて前記絶縁破壊位置を評
定することを特徴とする電力ケーブル線路の絶縁破壊位
置標定方法を提供する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a power supply for evaluating a dielectric breakdown position of a single or multi-line multi-phase power cable line having an insulating connection at the same position of each phase. In the method of evaluating the insulation breakdown position of a cable line, a detection unit for detecting an insulation breakdown signal corresponding to a surge current caused by insulation breakdown is provided at the same position of each phase of the one-line or multi-line multi-phase power cable line. The magnetizing pieces common to the respective phases are magnetized by a sum signal obtained by adding the respective dielectric breakdown signals obtained from the detectors at the same position of the respective phases. The present invention provides a method for locating a dielectric breakdown position of a power cable line, wherein the dielectric breakdown position is evaluated according to a magnetization amount of a piece.

【0009】本発明の電力ケーブル線路の絶縁破壊位置
標定方法は、絶縁破壊時に発生するサージ電流を利用し
て着磁片を着磁させ、その着磁量の分布から事故点標定
を行う新しい方式である。この方式は、動作の信頼性が
高く、電源が不要であるため低コストである特徴を有す
る。この新方式では、複数の絶縁接続部で接続された多
相電力ケーブル線路の各相の同一位置の絶縁接続部で各
相ごとにサージ電流を検出し、それぞれ着磁片を着磁さ
せ、それぞれの着磁量を親局へ伝送し、親局で各同一検
出位置の間の着磁量の分布から事故点を評定していた。
A method for locating a dielectric breakdown of a power cable line according to the present invention is a new method for locating a magnetized piece using a surge current generated at the time of a dielectric breakdown, and locating a fault point from a distribution of the amount of magnetization. It is. This method is characterized by high operation reliability and low cost because no power supply is required. In this new method, surge current is detected for each phase at the same position of the insulation connection of each phase of the multi-phase power cable line connected by multiple insulation connections, and the magnetized pieces are magnetized, respectively. Was transmitted to the master station, and the master station evaluated the fault point from the distribution of the magnetization amount between the same detection positions.

【0010】本発明では、電力ケーブル線路の各相から
検出した信号を一括して着磁し、読み出し、回線を区別
せずに絶縁破壊が生じた位置を評定するようにしたもの
である。絶縁破壊が生じた回線は親局で特定が可能であ
るため、検出位置から絶縁破壊が生じた位置までの距離
が判明すれば、事故相と絶縁破壊が生じた位置を標定で
きる。
In the present invention, signals detected from each phase of the power cable line are collectively magnetized, read out, and the position where the dielectric breakdown has occurred is evaluated without distinguishing the line. Since the line where the insulation breakdown has occurred can be specified by the master station, if the distance from the detection position to the position where the insulation breakdown has occurred is known, the accident phase and the position where the insulation breakdown has occurred can be located.

【0011】このように、本発明の電力ケーブル線路の
絶縁破壊位置標定方法は、着磁部を共通化したため、シ
ステムを簡素化し、低コスト化できた。
As described above, according to the method for locating a dielectric breakdown of a power cable line of the present invention, since the magnetized portion is shared, the system can be simplified and the cost can be reduced.

【0012】[0012]

【発明の実施の形態】以下、本発明の電力ケーブル線路
の絶縁破壊位置標定方法の実施の形態を説明する。ま
ず、上述した着磁片を着持させる新しい絶縁破壊位置標
定方法について説明する。電力ケーブルに絶縁破壊が生
じると、絶縁破壊時に単発性の急峻なサージ電流が発生
する。このサージ波は、事故点を基点に線路を両端に向
かって伝播していく。このとき、サージ波の高周波成分
ほど減衰が大きい。そのため、特定の高周波成分につい
て、複数地点で強度を計測することで事故点の位置が標
定可能となる。新しい標定方法(サージピークホールド
方式)は、この原理を基に、サージ性電気エネルギーに
より着磁片を着磁すると、着磁量はサージ波の検出位置
から絶縁破壊点までの距離に依存するようになることを
利用したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for locating a dielectric breakdown of a power cable line according to the present invention will be described below. First, a new dielectric breakdown position locating method for holding the above-described magnetized piece will be described. When insulation breakdown occurs in a power cable, a single steep surge current occurs at the time of insulation breakdown. This surge wave propagates from the accident point to the both ends of the line with the accident point as a starting point. At this time, the higher the surge wave component, the greater the attenuation. Therefore, the position of the accident point can be located by measuring the intensity of a specific high-frequency component at a plurality of points. Based on this principle, a new orientation method (surge peak hold method) is based on this principle. When the magnetized piece is magnetized by the surge electric energy, the amount of magnetization depends on the distance from the surge wave detection position to the insulation breakdown point. It is a thing that uses that it becomes.

【0013】図1は、サージピークホールド方式の一般
的な実施形態を示す。電力ケーブル10は複数の絶縁接
続部11で接続されている。この絶縁接続部11では電
力ケーブルのシースがシース絶縁筒12で縁切りされて
いる。絶縁接続部11にはシースからサージ性電気エネ
ルギーを検出する検出部20が設置されている。この検
出部20は、サージ波のセンサーとして、絶縁接続部1
1のシース絶縁筒12の両側に設置されている一対の金
属箔電極21と、この金属箔電極21に接続されたコン
デンサ22と高周波コイル23を構成要素とするバンド
パスフィルタ24と、このバンドパスフィルタ24に接
続された両波検波(整流)器25を備える。この検出部
20の両波検波器25には、着磁部30が接続されてい
る。
FIG. 1 shows a general embodiment of the surge peak hold method. The power cable 10 is connected by a plurality of insulated connection parts 11. In the insulated connecting portion 11, the sheath of the power cable is cut off by the sheath insulating tube 12. The insulated connection section 11 is provided with a detection section 20 for detecting surge electric energy from the sheath. The detecting unit 20 serves as a surge wave sensor,
A pair of metal foil electrodes 21 provided on both sides of one sheathed insulating tube 12, a band-pass filter 24 including a capacitor 22 and a high-frequency coil 23 connected to the metal foil electrodes 21, A dual wave detector (rectifier) 25 connected to the filter 24 is provided. The magnetizing unit 30 is connected to the dual-wave detector 25 of the detecting unit 20.

【0014】この着磁部30には、着磁片31と、この
着磁片31を捲回し、検波器25と接続されている着磁
コイル32が配置されている。また、着磁量を検出する
ホール効果素子33が、着磁片31の一方の端縁と対向
して配置されている。このホール効果素子33は変電所
等の親局と光ファイバ34で接続されている。図1にお
いて、絶縁破壊により電力ケーブル10のシースに生じ
たサージ電流は、箔電極21間で検出され、サージ性電
気エネルギーが箔電極21に取り込まれる。取り込まれ
たサージ性電気エネルギーは、バンドパスフィルタ24
によって特定の周波数範囲の信号だけ選別され、更に両
波検波器24で整流され、単極性パルス電流に変換され
る。次に、この単極性パルス電流は着磁コイル32を流
れ、着磁片31を着磁させる。磁束回路中に配置された
ホール効果素子33は、磁束密度、つまり着磁量を読み
出し、直流出力電圧を信号として出力する。この信号は
通常の光ファイバ34を用いた信号情報伝送法で変電所
等の親局に送られ、ここで強度が計測される。親局で
は、各計測点の着磁量の分布から事故点の位置を評定す
る。
A magnetizing piece 31 and a magnetizing coil 32 wound around the magnetizing piece 31 and connected to the detector 25 are arranged in the magnetizing section 30. In addition, a Hall effect element 33 that detects the amount of magnetization is arranged to face one edge of the magnetized piece 31. The Hall effect element 33 is connected to a master station such as a substation via an optical fiber 34. In FIG. 1, a surge current generated in the sheath of the power cable 10 due to insulation breakdown is detected between the foil electrodes 21, and the surge electric energy is taken into the foil electrodes 21. The captured surge electric energy is transmitted to the bandpass filter 24.
Thus, only a signal in a specific frequency range is selected, further rectified by the dual-wave detector 24, and converted into a unipolar pulse current. Next, this unipolar pulse current flows through the magnetizing coil 32 to magnetize the magnetizing piece 31. The Hall effect element 33 arranged in the magnetic flux circuit reads out the magnetic flux density, that is, the amount of magnetization, and outputs a DC output voltage as a signal. This signal is sent to a master station such as a substation by a signal information transmission method using an ordinary optical fiber 34, where the intensity is measured. The master station evaluates the position of the accident point from the distribution of the magnetization at each measurement point.

【0015】このような方式の事故点標定システムは、
受動素子のみを用いるので電源が不要、動作検証が容
易、動作の信頼性が高く、低コストであるなどの特徴を
有している。多相電力ケーブル線路は、各相がそれぞれ
複数の絶縁接続部11で接続され、各相の絶縁接続部1
1は同一箇所に設置されている。各相の同一箇所のそれ
ぞれの絶縁接続部11に対してこのようなサージ波の検
出部20と着磁部30を設けると、コスト高になる。従
って、検出相がUVWと3相あれば1接続箇所当たり3
信号が、3回線回路であれば9信号が個々に親局へ送ら
れことになる。この場合、3信号あるいは9信号にアド
レス信号を加えて信号を多重化し、1伝送系で送り、親
局部で元に戻して9信号とすることも可能であるが、装
置が高価になる。
An accident point locating system of such a type is as follows.
Since only passive elements are used, a power supply is not required, operation verification is easy, operation reliability is high, and cost is low. In the multi-phase power cable line, each phase is connected by a plurality of insulated connection portions 11, and the insulated connection portions 1 of each phase are connected.
1 is installed in the same place. If such a surge wave detecting unit 20 and a magnetizing unit 30 are provided for each of the insulated connecting portions 11 at the same position in each phase, the cost increases. Therefore, if the detection phase is UVW and three phases, 3
If the signals are three-line circuits, nine signals are individually sent to the master station. In this case, it is possible to multiplex the signals by adding an address signal to three or nine signals, transmit the signals by one transmission system, and return to the original signal at the parent station to obtain nine signals, but the apparatus becomes expensive.

【0016】図2は、本発明の電力ケーブル線路の絶縁
破壊位置標定方法の実施形態を示す。この標定方法は、
絶縁破壊が生じた電力ケーブルを特定せずに、検出位置
からどの程度離れた距離で絶縁破壊が生じたかを特定す
るものである。この実施形態では、3条ケーブルからの
3信号を一括合成して着磁、読み出し、伝送するシステ
ムを示す。
FIG. 2 shows an embodiment of the method for locating a dielectric breakdown of a power cable line according to the present invention. This orientation method is
It is intended to specify how far away from the detection position the insulation cable has occurred without identifying the power cable where the insulation breakdown has occurred. In this embodiment, a system is shown in which three signals from three cables are combined, magnetized, read, and transmitted.

【0017】多相電力ケーブル線路のU相、V相、W相
それぞれは、複数の絶縁接続部11で接続されており、
U相、V相、W相それぞれの絶縁接続部11が同一の場
所に設置されている。図2に示すシステムは、U相、V
相、W相それぞれの絶縁接続部11のシース絶縁筒12
の両側にそれぞれ一対の金属箔電極21が設置されてい
る。3つの電力ケーブル10の箔電極21はそれぞれバ
ンドパスフィルタ(B.P.F)24と検波器25とを
介して一つの着磁部30に接続され、着磁部30は各相
共通となっている。それぞれの検波器25は一つの着磁
コイル31に接続され、この着磁コイル32は着磁片3
1を捲回して一つの着磁片31を着持できるようになっ
ている。また、着磁片31の着磁量を検出する検出器3
3が着磁片31の一方の端縁と対向して配置され、読み
出した着磁量の信号を一本の光ファイバ34などで変電
所等の親局に伝送できるようになっている。
Each of the U-phase, V-phase, and W-phase of the multi-phase power cable line is connected by a plurality of insulated connecting portions 11,
The U-phase, V-phase, and W-phase insulating connection parts 11 are installed at the same place. The system shown in FIG.
Insulation tube 12 of the insulation connection part 11 of each phase and W phase
A pair of metal foil electrodes 21 are provided on both sides of the metal foil. The foil electrodes 21 of the three power cables 10 are respectively connected to one magnetized unit 30 via a band pass filter (BPF) 24 and a detector 25, and the magnetized unit 30 is common to each phase. ing. Each detector 25 is connected to one magnetizing coil 31, and this magnetizing coil 32 is
1 is wound so that one magnetized piece 31 can be held. A detector 3 for detecting the amount of magnetization of the magnetized piece 31
Reference numeral 3 is arranged so as to face one end of the magnetized piece 31 so that the read signal of the magnetized amount can be transmitted to a master station such as a substation via one optical fiber 34 or the like.

【0018】本実施形態では、1回線3条ケーブル線路
の同一の接続箇所11におけるU相、V相、W相それぞ
れの検出点からの絶縁破壊信号を加算し、この加算した
信号で一つの着磁片31を着磁するようになっている。
つまり、各相の検出部20から得られた絶縁破壊信号を
加算した和の信号によって共通の着磁片31を着磁さ
せ、その着磁量の大きさを検出し、親局へ信号として送
出する。親局では、電力ケーブル線路の長さ方向に対し
て異なる位置で検出した複数の着磁量の分布に基づいて
絶縁破壊位置を評定する。
In the present embodiment, the breakdown signals from the U-phase, V-phase, and W-phase detection points at the same connection point 11 of the one-line three-cable line are added, and the added signal is used as one termination. The magnetic piece 31 is magnetized.
That is, the common magnetized piece 31 is magnetized by a sum signal obtained by adding the dielectric breakdown signals obtained from the detection units 20 of the respective phases, the magnitude of the magnetized amount is detected, and the signal is sent to the master station as a signal. I do. The master station evaluates the breakdown position based on the distribution of a plurality of magnetization amounts detected at different positions in the length direction of the power cable line.

【0019】絶縁破壊はU相、V相、W相のいずれか1
箇所のみで生じることを前提にすると、これらの3箇所
の信号を加え合わせても、絶縁破壊によるサージは1箇
所であるから、絶縁破壊位置は、絶縁破壊を生じた箇所
の付近の異なる箇所の検出点からの信号の強度比較によ
り特定できる。一方、本実施形態の絶縁破壊位置標定方
法では絶縁破壊相(条)は特定することはできないが、
絶縁破壊相は変電所等の親局の保護継電器からの情報で
特定できる。これにより、多数の電力ケーブルに対する
信号を一括合成した信号でも、個々に送った場合と同等
の精度で、絶縁破壊相と絶縁破壊位置を評定することが
できる。
The dielectric breakdown is any one of U phase, V phase and W phase.
Assuming that the surge occurs only at the location, even if these three signals are added, only one surge due to the dielectric breakdown occurs. It can be specified by comparing the intensity of the signal from the detection point. On the other hand, the dielectric breakdown phase (strip) cannot be specified by the dielectric breakdown position locating method of the present embodiment,
The insulation breakdown phase can be specified by information from a protection relay of a master station such as a substation. As a result, even if signals for a large number of power cables are combined together, the breakdown phase and the breakdown position can be evaluated with the same accuracy as in the case of individually sending the signals.

【0020】このように本実施形態の電力ケーブル線路
の絶縁破壊位置標定方法によると、着磁部を共通とした
ため、着磁回路や検出器の数の減少、伝送系の簡略化に
より、事故点位置の標定精度を保ったままでシステムを
簡単化し、低コスト化を達成することができた。なお、
説明では1回線3信号系統を例にとって説明したが、同
様に、2回線6信号、3回線9信号系統、あるいはそれ
以上の線路についても全て一括合成して伝送することに
より、あるいは必要に応じて2分岐合成伝送によりシス
テムを簡素化し、低コスト化できる。
As described above, according to the method for locating the dielectric breakdown of the power cable line of the present embodiment, since the magnetized portion is made common, the number of magnetized circuits and detectors is reduced, and the transmission system is simplified, so that the fault point is reduced. The system was simplified and the cost was reduced while maintaining the location accuracy. In addition,
In the explanation, one signal and three signal systems have been described as an example, but similarly, two lines and six signals, three lines and nine signal systems, or even more lines are collectively combined and transmitted, or as necessary. The system can be simplified and the cost can be reduced by the two-branch combining transmission.

【0021】更に、本実施形態では、着磁部を共通化し
たが、サージ性電気エネルギーの検出器21は各電力ケ
ーブルに配置し、それ以外のバンドパスフィルタ、検波
器なども共通とすることが可能であり、これにより、更
に低コスト化を達成することが可能である。
Furthermore, in the present embodiment, the magnetized portion is shared, but the surge electric energy detector 21 is arranged on each power cable, and the other band-pass filters, detectors and the like are also shared. It is possible to further reduce the cost.

【0022】[0022]

【発明の効果】以上説明したように、本発明の電力ケー
ブル線路の絶縁破壊位置標定方法によると、低コスト及
び信頼性の高い標定方法において、着磁部を各相に共通
にしたため、更に低コスト化を達成することができた。
As described above, according to the method for locating a dielectric breakdown of a power cable line according to the present invention, the magnetized portion is commonly used for each phase in the low-cost and highly reliable locating method. Cost reduction was achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】サージピークホールド方式の電力ケーブル線路
の絶縁破壊位置標定方法を説明する回路図である。
FIG. 1 is a circuit diagram illustrating a method for locating a dielectric breakdown position of a power cable line of a surge peak hold method.

【図2】本発明の電力ケーブル線路の絶縁破壊位置標定
方法の一実施形態を説明する概念図である。
FIG. 2 is a conceptual diagram illustrating an embodiment of a method for locating a dielectric breakdown of a power cable line according to the present invention.

【符号の説明】[Explanation of symbols]

10 電力ケーブル 11 絶縁接続部 12 シース絶縁筒 20 検出部 21 検出器 22 コンデンサー 23 高周波コイル 24 バンドパスフィルタ 25 検波器(ダイオード) 30 着磁部 31 着磁片 32 着磁コイル 33 読み出し部 34 伝送線 DESCRIPTION OF SYMBOLS 10 Power cable 11 Insulated connection part 12 Sheath insulating cylinder 20 Detecting part 21 Detector 22 Capacitor 23 High frequency coil 24 Bandpass filter 25 Detector (diode) 30 Magnetized part 31 Magnetized piece 32 Magnetized coil 33 Readout part 34 Transmission line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 正幸 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masayuki Yamaguchi 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Prefecture Power Systems Research Laboratory, Hitachi Cable, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 各相の同一位置に絶縁接続部を有する1
回線あるいは多回線の多相電力ケーブル線路の絶縁破壊
位置を評定する電力ケーブル線路の絶縁破壊位置評定方
法において、 絶縁破壊によって生じるサージ性電流に応じた絶縁破壊
信号を検出する検出部を前記1回線あるいは多回線の多
相電力ケーブル線路の前記各相の同一位置の前記絶縁接
続部にそれぞれ設け、 前記各相の同一位置の前記検出部から得られたそれぞれ
の前記絶縁破壊信号を加算した和の信号によって各相に
共通の着磁片を着磁し、 前記着磁片の着磁量に応じて前記絶縁破壊位置を評定す
ることを特徴とする電力ケーブル線路の絶縁破壊位置標
定方法。
1. An apparatus having an insulated connection at the same position in each phase.
In the method for evaluating a breakdown position of a power cable line for evaluating a breakdown position of a multi-phase power cable line of a circuit or a multi-line, the detecting unit for detecting a breakdown signal corresponding to a surge current caused by the breakdown is provided by the one line. Alternatively, the sum is obtained by adding the respective insulation breakdown signals obtained from the detection unit at the same position of each phase in the insulated connection unit at the same position of each phase of the multi-phase multi-phase power cable line. A magnetized piece common to each phase is magnetized by a signal, and the dielectric breakdown position is evaluated according to the amount of magnetization of the magnetized piece.
【請求項2】 前記着磁片の前記着磁量を前記各相の同
一位置から親局へ伝送する請求項1記載の電力ケーブル
線路の絶縁破壊位置標定方法。
2. The method according to claim 1, wherein the amount of magnetization of the magnetized piece is transmitted from a same position of each phase to a master station.
【請求項3】 前記着磁片の前記着磁量を複数の前記各
相の同一位置から前記親局へ伝送し、前記複数の前記各
相の同一位置の間の前記着磁量の分布に基づいて前記絶
縁破壊位置を評定する請求項2記載の電力ケーブル線路
の絶縁破壊位置評定方法。
3. The magnetization amount of the magnetized piece is transmitted from the same position of each of the plurality of phases to the master station, and the distribution of the magnetization amount between the same positions of the plurality of phases is determined. 3. The method for evaluating a dielectric breakdown position of a power cable line according to claim 2, wherein the dielectric breakdown position is evaluated based on the electrical breakdown.
JP28938697A 1997-10-22 1997-10-22 Method of locating insulation breakdown of power cable line Expired - Fee Related JP3528544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28938697A JP3528544B2 (en) 1997-10-22 1997-10-22 Method of locating insulation breakdown of power cable line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28938697A JP3528544B2 (en) 1997-10-22 1997-10-22 Method of locating insulation breakdown of power cable line

Publications (2)

Publication Number Publication Date
JPH11125651A true JPH11125651A (en) 1999-05-11
JP3528544B2 JP3528544B2 (en) 2004-05-17

Family

ID=17742555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28938697A Expired - Fee Related JP3528544B2 (en) 1997-10-22 1997-10-22 Method of locating insulation breakdown of power cable line

Country Status (1)

Country Link
JP (1) JP3528544B2 (en)

Also Published As

Publication number Publication date
JP3528544B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
KR101143024B1 (en) Apparatus and method for detecting leak current
US5726574A (en) Method of locating a fault in an electric power cable
US7075308B2 (en) Blocking impedance
RU2129285C1 (en) Tap-off of high-frequency signal of error from high- frequency electromagnetic field in high-power electric machine
JPH11125651A (en) Method for orientating breakdown position of power cable line
JPH09152462A (en) Partial discharge detection method for transformer
JPS60207078A (en) Detection of accident section of single-core power cable
Inoue et al. Fault section detection system for 275-kV XLPE-insulated cables with optical sensing technique
KR101117870B1 (en) Apparatus and method for detecting leak current
JP3351304B2 (en) System for detecting the applied voltage polarity of a cable line and the system for detecting the breakdown position of a cable line
JP2866172B2 (en) Transmission line fault direction locating method
JPH11183555A (en) Dielectric breakdown district identifying method for power cable line
JP2005140541A (en) Feeder failure spotting system
JPH0363711B2 (en)
JP3531442B2 (en) Method of locating insulation breakdown of power cable
JP2568097B2 (en) Power cable accident section detection method
KR200346412Y1 (en) Voltage Detector for Shielded Cable or CNCV
JPH11352175A (en) Dielectric breakdown locating method for power cable line
JPH0843473A (en) Fault-section judgment method for power cable
JPH0627761B2 (en) Electric power cable fault detection method
JPH11337607A (en) Method and apparatus for detection of shielding wire for cable
JPH01299477A (en) Method for determining failed section of underground transmission line
JPH02154170A (en) Measuring method for partial discharge
JPH06235748A (en) Fault locator for power cable
JPH10170590A (en) Areal and underground line monitoring device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20031226

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040203

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090305

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100305

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110305

LAPS Cancellation because of no payment of annual fees