JPH11121393A - Method for doping silicon carbide semiconductor with donor impurities - Google Patents

Method for doping silicon carbide semiconductor with donor impurities

Info

Publication number
JPH11121393A
JPH11121393A JP28057397A JP28057397A JPH11121393A JP H11121393 A JPH11121393 A JP H11121393A JP 28057397 A JP28057397 A JP 28057397A JP 28057397 A JP28057397 A JP 28057397A JP H11121393 A JPH11121393 A JP H11121393A
Authority
JP
Japan
Prior art keywords
phosphorus atoms
temperature
ion
implanted
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28057397A
Other languages
Japanese (ja)
Other versions
JP3105481B2 (en
Inventor
Takeshi Oshima
武 大島
Hisayoshi Ito
久義 伊藤
Isamu Nashiyama
勇 梨山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP09280573A priority Critical patent/JP3105481B2/en
Publication of JPH11121393A publication Critical patent/JPH11121393A/en
Application granted granted Critical
Publication of JP3105481B2 publication Critical patent/JP3105481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electrical characteristics, by ion-implanting phosphorus atoms into SiC which is maintained at a specified temperature, eliminating generated lattice defect by annealing on the spot, and effectively and electrically performing activation. SOLUTION: A temperature of a P-type hexagonal SiC single crystal is maintained at least 1200 deg.C, and, e.g. phosphorus atoms of 1×10<18> /cm<3> are ion- implanted with energy of, e.g. 80-200 keV in the P-type hexahedral crystal SiC single crystal. Electron concentration in this case is about 10<16> /cm<3> . The phosphorus atoms are electrically activated without performing thermal treatment after ion implantation and turned into an N-type semiconductor. Its activation ratio is about 10<-2> . Hence the temperature of thermal treatment necessary for impurity doping of phosphorus atoms can be lowered, and the activation ratio can be improved by using a high temperature ion implantation method. The temperature of an element forming process of SiC semiconductor can be lowered by using the above method, and it is useful for manufacturing the element of SiC semiconductor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化ケイ素半導体
(SiC)にリン原子をドナー不純物としてドープする
方法に関するものであり、リン原子を高温度でイオン注
入することで、注入したリン原子の電気的活性化度を上
げようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for doping a silicon carbide semiconductor (SiC) with a phosphorus atom as a donor impurity. The purpose is to increase the degree of objective activation.

【0002】[0002]

【従来の技術】イオン注入によるSiC半導体へのリン
原子のドープに関しては、その電気的活性化のためには
イオン注入の後、1400℃以上の高温による熱処理を
必要とするため、有効なドーピング法として成立してい
ない。
2. Description of the Related Art With respect to doping of a SiC semiconductor with phosphorus atoms by ion implantation, a heat treatment at a high temperature of 1400 ° C. or more is required after ion implantation for electrical activation. Is not established.

【0003】[0003]

【発明が解決しようとする課題】この原因は、イオン注
入に伴いSiC中に多くの照射損傷格子欠陥が発生し、
このためイオン注入したリン原子がドナー不純物として
電気的に活性化することが妨げられ、電子のドナーとし
て有効に作用しないためである。また、この欠陥が電気
伝導を妨害するため、伝導電子の移動度が低下し、半導
体材料としての電気特性が低下する。従って、注入され
たリン原子の活性化率を上げると共に電気特性の低下を
防ぐには、照射欠陥の発生を抑制する必要がある。本発
明はかかる欠点を改善するために成したものである。
The cause of this is that many irradiation-damaged lattice defects occur in SiC due to ion implantation,
This prevents ion-implanted phosphorus atoms from being electrically activated as donor impurities, and does not effectively act as electron donors. In addition, since the defect hinders electrical conduction, the mobility of conduction electrons is reduced, and the electrical characteristics of the semiconductor material are reduced. Therefore, it is necessary to suppress the occurrence of irradiation defects in order to increase the activation rate of the implanted phosphorus atoms and to prevent a decrease in electrical characteristics. The present invention has been made to improve such disadvantages.

【0004】[0004]

【課題を解決するための手段】本発明は、1,200℃
以上の高温に保持したSiCにリン原子をイオン注入す
ることによって、発生する格子欠陥をその場でアニール
して取り除き、効率よく電気的に活性化して電気特性を
向上しようとするものである。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device comprising the steps of:
By implanting phosphorus atoms into SiC held at the high temperature described above, generated lattice defects are annealed and removed in situ, and electrical activation is efficiently performed to improve electrical characteristics.

【0005】[0005]

【発明の実施の形態】1,200℃の温度に保ったSi
Cにドナー不純物であるリン原子をイオン注入すると、
照射欠陥の発生が抑制され、注入リン原子は電器的に活
性化して伝導電子が増加する。これを、100℃以下で
イオン注入し、1,200℃で熱処理する場合と比べる
と、約10倍の電気的活性化率を得ることができる。以
下、本発明を実施例にしたがってより具体的に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Si kept at a temperature of 1,200 ° C.
When phosphorus atoms, which are donor impurities, are ion-implanted into C,
Generation of irradiation defects is suppressed, and the implanted phosphorus atoms are activated electrically to increase conduction electrons. As compared with the case where the ion implantation is performed at a temperature of 100 ° C. or less and the heat treatment is performed at 1,200 ° C., it is possible to obtain an electric activation rate about 10 times as high. Hereinafter, the present invention will be described more specifically with reference to examples.

【0006】[0006]

【実施例1】(低濃度イオン注入) p型六方晶SiC単結晶を25℃(室温)、800℃、
1,000℃のいずれかの温度に保ち、これに1×10
18/cm3のリン原子を80−200kevのエネルギ
ーでイオン注入すると、注入リン原子は電気的にほとん
ど活性化しない。このSiCを1,200℃で熱処理を
行うと、注入リン原子が活性化してn型半導体になる
が、図1の点線で示すように電子濃度は1015cm
-3(/cm3)程度であり、イオン注入したリン原子の
電気的活性化率は約10-3である。
Example 1 (Low-concentration ion implantation) A p-type hexagonal SiC single crystal was subjected to 25 ° C (room temperature), 800 ° C,
Keep at any temperature of 1,000 ° C and add 1 × 10
When phosphorus atoms of 18 / cm 3 are ion-implanted at an energy of 80 to 200 keV, the implanted phosphorus atoms are hardly electrically activated. When this SiC is subjected to a heat treatment at 1200 ° C., the implanted phosphorus atoms are activated to become an n-type semiconductor. However, as shown by a dotted line in FIG. 1, the electron concentration is 10 15 cm.
-3 (/ cm 3 ), and the electrical activation rate of ion-implanted phosphorus atoms is about 10 -3 .

【0007】これに反し、p型六方晶SiC単結晶を
1,200℃の温度に保ち、これに1×1018/cm3
のリン原子を80−200kevのエネルギーでイオン
注入すると、図1の実線で示すように電子濃度は1016
cm-3(/cm3)程度であり、イオン注入後の熱処理
を行わなくともリン原子は電気的に活性化してn型半導
体になる。しかも、その活性化率は約10-2である。
On the other hand, a p-type hexagonal SiC single crystal is kept at a temperature of 1,200 ° C., and is kept at 1 × 10 18 / cm 3
Is implanted at an energy of 80-200 keV, the electron concentration becomes 10 16 as shown by the solid line in FIG.
cm −3 (/ cm 3 ), and the phosphorus atoms are electrically activated to become an n-type semiconductor without performing heat treatment after ion implantation. Moreover, its activation rate is about 10 -2 .

【0008】即ち、図1は、p型六方晶SiC単結晶へ
1×1018/cm3のリン原子を80−200kevの
エネルギーでイオン注入した試料の室温での電子濃度及
び熱処理後の電子濃度と熱処理温度との関係を示した図
であり、イオン注入後の熱処理はアルゴンガス中で20
分間行った。また、1,200℃で注入を行った試料の
1,200℃の結果は注入後熱処理なしでの結果であ
る。
FIG. 1 shows the electron concentration at room temperature and the electron concentration after heat treatment of a sample in which phosphorus atoms of 1 × 10 18 / cm 3 are ion-implanted into a p-type hexagonal SiC single crystal at an energy of 80 to 200 keV. FIG. 5 is a graph showing the relationship between the heat treatment temperature and the heat treatment after the ion implantation.
Minutes. In addition, the results at 1200 ° C. of the sample injected at 1200 ° C. are the results without heat treatment after the injection.

【0009】したがって、図1において、実線は、本発
明によるものであり、p型六方晶SiC単結晶を1,2
00℃の温度に保ち、これにイオン注入したものを種々
の温度で熱処理した場合の電子濃度を示し、点線は、p
型六方晶SiC単結晶を25℃(室温)に保ち、これに
イオン注入したものを種々の温度で熱処理した場合の電
子濃度を示している。
Therefore, in FIG. 1, the solid line is according to the present invention, and the p-type hexagonal SiC single crystal is 1,2.
The electron concentration is shown when the sample is kept at a temperature of 00 ° C. and is ion-implanted and heat-treated at various temperatures.
The figure shows the electron concentration when a type hexagonal SiC single crystal is kept at 25 ° C. (room temperature), and an ion-implanted one is heat-treated at various temperatures.

【0010】[0010]

【実施例2】(高濃度イオン注入) p型六方晶SiC単結晶を25℃(室温)に保ち、これ
に6×1018/cm3のリン原子を80−200kev
のエネルギーでイオン注入すると、注入リン原子は電気
的にほとんど活性化しない。このSiCを1,200℃
で熱処理を行うと、図2の点線で示すように注入リン原
子が活性化してn型半導体になるが、イオン注入したリ
ン原子の電気的活性化率は約10-3である。
Example 2 (High-concentration ion implantation) A p-type hexagonal SiC single crystal was kept at 25 ° C. (room temperature), and 6 × 10 18 / cm 3 phosphorus atoms were added thereto at 80 to 200 keV.
When the ions are implanted with the energy, the implanted phosphorus atoms are hardly electrically activated. 1,200 ° C
When the heat treatment is performed as shown in FIG. 2, the implanted phosphorus atoms are activated to become an n-type semiconductor as shown by the dotted line in FIG. 2, but the electrical activation rate of the ion-implanted phosphorus atoms is about 10 -3 .

【0011】これに反し、p型六方晶SiC単結晶を
1,200℃に保ち、これに6×1018/cm3のリン
原子を80−200kevのエネルギーでイオン注入す
ると、図2の実線のようにイオン注入後の熱処理を行わ
なくてもリン原子は電気的に活性化してn半導体にな
る。しかも、その活性化率は約10-2である。また、
1,500℃までの熱処理の効果を比較すると、1,2
00℃で注入を行った試料は室温で注入を行った試料に
比べ、約2倍の電気的活性化率が得られた。
On the other hand, when a p-type hexagonal SiC single crystal is kept at 1,200 ° C. and phosphorus atoms of 6 × 10 18 / cm 3 are ion-implanted with an energy of 80-200 keV, the solid line in FIG. As described above, even without performing the heat treatment after the ion implantation, the phosphorus atoms are electrically activated to become n semiconductors. Moreover, its activation rate is about 10 -2 . Also,
Comparing the effects of heat treatment up to 1,500 ° C.,
The sample injected at 00 ° C. had about twice the electrical activation rate as the sample injected at room temperature.

【0012】即ち、図2は、p型六方晶SiC単結晶へ
6×1018/cm3のリン原子を80−200kevの
エネルギーでイオン注入した試料の室温での電子濃度及
び熱処理後の電子濃度と熱処理温度との関係を示した図
であり、イオン注入後の熱処理はアルゴンガス中で20
分間行った。また、1,200℃で注入を行った試料の
1,200℃の結果は注入後熱処理なしでの結果であ
る。
That is, FIG. 2 shows the electron concentration at room temperature and the electron concentration after heat treatment of a sample obtained by ion-implanting 6 × 10 18 / cm 3 phosphorus atoms into a p-type hexagonal SiC single crystal at an energy of 80 to 200 keV. FIG. 5 is a graph showing the relationship between the heat treatment temperature and the heat treatment after the ion implantation.
Minutes. In addition, the results at 1200 ° C. of the sample injected at 1200 ° C. are the results without heat treatment after the injection.

【0013】したがって、図2において、実線は、本発
明によるものであり、p型六方晶SiC単結晶を1,2
00℃の温度に保ち、これにイオン注入したものを種々
の温度で熱処理した場合の電子濃度を示し、点線は、p
型六方晶SiC単結晶を25℃(室温)に保ち、これに
イオン注入したものを種々の温度で熱処理した場合の電
子濃度を示している。
Therefore, in FIG. 2, the solid line is according to the present invention, and the p-type hexagonal SiC single crystal is 1,2.
The electron concentration is shown when the sample is kept at a temperature of 00 ° C. and is ion-implanted and heat-treated at various temperatures.
The figure shows the electron concentration when a type hexagonal SiC single crystal is kept at 25 ° C. (room temperature), and an ion-implanted one is heat-treated at various temperatures.

【0014】[0014]

【発明の効果】高温イオン注入法を用いることでリン原
子の不純物ドープに必要な熱処理の温度の低温化及び活
性化率を高めることが可能になる。また、本発明の方法
を用いることで、SiC半導体の素子化プロセスの低温
化が可能になり、SiC半導体の素子作製に役立つ。
By using the high-temperature ion implantation method, it is possible to lower the temperature of the heat treatment necessary for doping the impurity of phosphorus atoms and to increase the activation rate. Further, by using the method of the present invention, it is possible to lower the temperature of the process for forming a SiC semiconductor device, which is useful for manufacturing a SiC semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】p型六方晶SiC単結晶へ1×1018/cm3
のリン原子を80−200kevのエネルギーでイオン
注入した試料の室温での電子濃度及び熱処理後の電子濃
度と熱処理との関係を示した図である。
FIG. 1. 1 × 10 18 / cm 3 into p-type hexagonal SiC single crystal
FIG. 5 is a diagram showing the relationship between the electron concentration at room temperature, the electron concentration after heat treatment, and the heat treatment of a sample obtained by ion-implanting phosphorus atoms at an energy of 80 to 200 keV.

【図2】p型六方晶SiC単結晶へ6×1018/cm3
のリン原子を80−200kevのエネルギーでイオン
注入した試料の室温での電子濃度及び熱処理後の電子濃
度と熱処理温度との関係を示した図である。
FIG. 2: 6 × 10 18 / cm 3 into p-type hexagonal SiC single crystal
FIG. 4 is a diagram showing the relationship between the electron concentration at room temperature, the electron concentration after heat treatment, and the heat treatment temperature of a sample in which phosphorus atoms of the formula (1) are ion-implanted at an energy of 80 to 200 keV.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化ケイ素半導体にリン原子を高温でイ
オン注入することを特徴とする炭化ケイ素半導体へのリ
ン原子不純物をドープする方法。
1. A method of doping a silicon carbide semiconductor with a phosphorus atom impurity, which comprises implanting phosphorus atoms into the silicon carbide semiconductor at a high temperature.
【請求項2】 イオン注入の温度が1,200℃以上で
ある請求項1記載の炭化ケイ素半導体へのリン原子不純
物をドープする方法。
2. The method for doping a silicon carbide semiconductor with a phosphorus atom impurity according to claim 1, wherein the temperature of the ion implantation is 1200 ° C. or higher.
JP09280573A 1997-10-14 1997-10-14 Method for doping donor impurities into silicon carbide semiconductor Expired - Fee Related JP3105481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09280573A JP3105481B2 (en) 1997-10-14 1997-10-14 Method for doping donor impurities into silicon carbide semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09280573A JP3105481B2 (en) 1997-10-14 1997-10-14 Method for doping donor impurities into silicon carbide semiconductor

Publications (2)

Publication Number Publication Date
JPH11121393A true JPH11121393A (en) 1999-04-30
JP3105481B2 JP3105481B2 (en) 2000-10-30

Family

ID=17626923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09280573A Expired - Fee Related JP3105481B2 (en) 1997-10-14 1997-10-14 Method for doping donor impurities into silicon carbide semiconductor

Country Status (1)

Country Link
JP (1) JP3105481B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179620A1 (en) * 2000-08-10 2002-02-13 Hoya Corporation Silicon carbide and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179620A1 (en) * 2000-08-10 2002-02-13 Hoya Corporation Silicon carbide and method of manufacturing the same

Also Published As

Publication number Publication date
JP3105481B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US6537886B2 (en) Ultra-shallow semiconductor junction formation
JPH0582750B2 (en)
US20020187614A1 (en) Methods for forming ultrashallow junctions with low sheet resistance
US5565690A (en) Method for doping strained heterojunction semiconductor devices and structure
JP3105481B2 (en) Method for doping donor impurities into silicon carbide semiconductor
Tanaka et al. Electrical activation of the ion-implanted phosphorus in 4H-SiC by excimer laser annealing
US6835626B2 (en) Method to overcome instability of ultra-shallow semiconductor junctions
KR100596701B1 (en) Method for gettering transition metal impurities in silicon crystal
JPH09190984A (en) Method of forming well of semiconductor element
JP3949192B2 (en) Method for manufacturing diamond semiconductor device
JPH06216137A (en) Semiconductor device and manufacture thereof
JPH0964355A (en) Manufacture of semiconductor element
US11862477B2 (en) Method for manufacturing semiconductor device having gallium oxide-based semiconductor layer
JP2000068225A (en) Method for implanting ions into silicon carbide semiconductor
JP2943369B2 (en) Semiconductor substrate manufacturing method
JP3539738B2 (en) Impurity addition method
KR910008979B1 (en) Poly-silicon film forming method of metal annealing
JPH11233761A (en) Method of forming transistor element constituted of silicon carbide semiconductor
JP2661054B2 (en) (III) Manufacturing method of group V compound semiconductor device
JP2022173926A (en) Semiconductor epitaxial wafer and method for manufacturing the same
JPH0521461A (en) Manufacture of semiconductor device
JP5092353B2 (en) Method for doping silicon carbide and method for manufacturing silicon carbide semiconductor device
JPH02302043A (en) Mos type semiconductor device and its manufacture
JPH05275362A (en) Manufacture of semiconductor device
Tsai et al. Ultra low–temperature microwave annealing for ultra–shallow junctions and P–MOS devices

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees