JPH1112036A - Production of dielectric ceramic electronic part - Google Patents

Production of dielectric ceramic electronic part

Info

Publication number
JPH1112036A
JPH1112036A JP9158360A JP15836097A JPH1112036A JP H1112036 A JPH1112036 A JP H1112036A JP 9158360 A JP9158360 A JP 9158360A JP 15836097 A JP15836097 A JP 15836097A JP H1112036 A JPH1112036 A JP H1112036A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
composition
cao
dielectric
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9158360A
Other languages
Japanese (ja)
Other versions
JP3395577B2 (en
Inventor
Eisuke Kurokawa
英輔 黒川
Hidekazu Koga
英一 古賀
Yasuhiko Hakotani
靖彦 箱谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15836097A priority Critical patent/JP3395577B2/en
Publication of JPH1112036A publication Critical patent/JPH1112036A/en
Application granted granted Critical
Publication of JP3395577B2 publication Critical patent/JP3395577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing the subject electronic parts with high QE value. SOLUTION: The electronic parts can be obtained by baking a dielectric ceramic composition of the composition formula xZrO2 -yTiO2 -zA(1+w)/3 Nb(2-w)/3 O2 ; wherein, A is at least one kind of component selected from the group consisting of Mg, Co, Zn, Ni and Mn, and (x), (y), (z) and (w) satisfy the relationships described below; furthermore, the above composition is controlled in the content of Ca as an impurity to <=0.01 wt.% in terms of CaO; 0.10<=(x)<=0.60, 0.20<=(y)<=0.60, 0.01<=(z)<=0.70, and 0<=(w)<=1.50 (the respective units for (x), (y) and (z) are molar fractions, and (w) denotes an absolute number). QE = central frequency/(wide range side frequency corresponding to resonance resistance minus 3dB) - (narrow range side frequency corresponding to resonance resistance minus 3dB).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波、ミリ
波等の高周波領域において誘電体共振器として利用され
る誘電体セラミック電子部品の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a dielectric ceramic electronic component used as a dielectric resonator in a high frequency region such as a microwave and a millimeter wave.

【0002】[0002]

【従来の技術】特開平6−295619号公報にQ
E値、比誘電率が大きく、しかも共振周波数の温度係数
を広範囲で任意に調整できる誘電体磁器組成物として、
材料成分中に不純物としてCaがCaOに換算して0.
04〜0.05%含まれるものが開示されている。
2. Description of the Related Art Japanese Unexamined Patent Publication No.
As a dielectric porcelain composition with a large E value and a large relative dielectric constant, and which can arbitrarily adjust the temperature coefficient of the resonance frequency over a wide range,
As an impurity in the material component, Ca is converted to CaO to be 0.1%.
It is disclosed that the content is between 0.4 and 0.05%.

【0003】[0003]

【発明が解決しようとする課題】前記、従来の誘電体磁
器組成物のQE値より更に高いQE値の誘電体共振器が近
年望まれている。
[SUMMARY OF THE INVENTION The, even more Q E value of the conventional dielectric ceramic composition high Q E value of the dielectric resonator is desired in recent years.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するた
め、本発明の誘電体セラミック電子部品用誘電体磁器組
成物は、組成式としてxZrO2−yTiO2−zA
(1+w)/3Nb(2-w)/32で表したとき、記号Aが{M
g,Co,Zn,Mn}からなる群から選ばれた少なく
とも一種の成分、またx,y,z,wは以下に示した範
囲で、更に、不純物として含まれるCaをCaOに換算
して0.01%以下に制御した誘電体磁器組成物を焼成
することによってQE値の高い優れた誘電体共振器用誘
電体セラミック電子部品を得ることができる。
In order to achieve the above object, a dielectric ceramic composition for a dielectric ceramic electronic component of the present invention has a composition formula of xZrO 2 -yTiO 2 -zA.
When represented by (1 + w) / 3 Nb (2-w) / 3 O 2 , the symbol A is ΔM
g, Co, Zn, Mn}, at least one component selected from the group consisting of x, y, z, and w in the following range. it is possible to obtain a high excellent dielectric resonator dielectric ceramic electronic component of Q E value by firing a dielectric ceramic composition was controlled to 0.01% or less.

【0005】0.10≦x≦0.60 0.20≦y≦0.60 0.01≦z≦0.70 0 ≦w≦1.50 (但しx,y,zはモル分率、wは無名数を示す)0.10 ≦ x ≦ 0.60 0.20 ≦ y ≦ 0.60 0.01 ≦ z ≦ 0.70 0 ≦ w ≦ 1.50 (where x, y and z are mole fractions, w Indicates anonymous number)

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、組成式をxZrO2−yTiO2−zA(1+w )/3Nb
(2-w)/32で表したとき、記号Aが{Mg,Co,Z
n,Ni,Mn}からなる群から選ばれた少なくとも一
種の成分、またx,y,z,wは以下に示した範囲で、
更に不純物として含まれるCaをCaOに換算して0.
01%以下に制御した誘電体磁器組成物を焼成する誘電
体セラミック電子部品の製造方法である。
The invention according to claim 1 of the embodiment of the present invention is a composition formula xZrO 2 -yTiO 2 -zA (1 + w) / 3 Nb
When represented by (2-w) / 3 O 2 , the symbol A is {Mg, Co, Z
at least one component selected from the group consisting of n, Ni, Mn}, and x, y, z, and w in the following ranges:
Further, Ca contained as an impurity is converted into CaO to be 0.1%.
This is a method for producing a dielectric ceramic electronic component in which the dielectric ceramic composition is controlled to 01% or less.

【0007】0.10≦x≦0.60 0.20≦y≦0.60 0.01≦z≦0.70 0 ≦w≦1.50 (但しx,y,zはモル分率、wは無名数を示す)材料
成分中にCaをCaOに換算して、0.04〜0.05
%の範囲で含有させた誘電体磁器組成物は特開平6−2
95619号公報で示されているが、本発明において、
誘電体磁器組成物全体に対し不純物としてCaをCaO
に換算して0.01%以下に制御することにより、更に
E値を向上させ、しかも比誘電率も低下させないこと
が実験的に判明した。
0.10 ≦ x ≦ 0.60 0.20 ≦ y ≦ 0.60 0.01 ≦ z ≦ 0.70 0 ≦ w ≦ 1.50 (where x, y and z are mole fractions, w Represents an anonymous number) Ca in the material component is converted to CaO, and 0.04 to 0.05
% Of the dielectric porcelain composition contained in JP-A-6-2.
No. 95619, in the present invention,
Ca is used as an impurity in the entire dielectric porcelain composition.
By controlling to 0.01% or less in terms of, it was experimentally found that the QE value was further improved and the relative dielectric constant was not reduced.

【0008】本発明の請求項2に記載の発明は、出発原
料成分の粒径が1μm以下のものを使用する請求項1に
記載の誘電体セラミック電子部品の製造方法であって、
誘電体磁器組成物の成分の粒子径を1μm以下のものを
用いることにより、より低い温度の焼成で比誘電率、Q
Eの高い焼結体を得ることができ、省エネルギー効果も
得られる。粒子径が1μm以上の粉末を用いると誘電体
セラミック焼結体の焼結粒子が大きくなったり、又は部
分的に異常粒成長が発生し得られる誘電体共振器用誘電
体セラミックQE値が低下するという問題点がある。
According to a second aspect of the present invention, there is provided the method for producing a dielectric ceramic electronic component according to the first aspect, wherein the starting material has a particle size of 1 μm or less,
By using a component of the dielectric ceramic composition having a particle diameter of 1 μm or less, the relative dielectric constant, Q
A sintered body having a high E can be obtained, and an energy saving effect can be obtained. When a powder having a particle diameter of 1 μm or more is used, the sintered particles of the dielectric ceramic sintered body become large, or abnormal grain growth occurs partially, and the dielectric ceramic Q E value for a dielectric resonator decreases. There is a problem.

【0009】本発明の請求項3に記載の発明は、誘電体
磁器組成物を酸素雰囲気中で焼成する請求項1に記載の
誘電体セラミック電子部品の製造方法であって、誘電体
磁器組成物を酸素雰囲気中で焼成することにより、誘電
体セラミック内部、外部の焼結が均一となり焼結体密度
が向上し、より高いQE値の誘電体セラミックを得るこ
とができる。
According to a third aspect of the present invention, there is provided the method for producing a dielectric ceramic electronic component according to the first aspect, wherein the dielectric ceramic composition is fired in an oxygen atmosphere. the by firing in an oxygen atmosphere, it can be dielectric ceramic interior, improved sintered density becomes uniform external sintering to obtain a dielectric ceramic higher Q E value.

【0010】本発明の請求項4に記載の発明は、誘電体
磁器組成物を仮焼後、1μm〜1.2μmに微粉砕した
ものを用いる請求項1から請求項3の何れか一つに記載
の誘電体セラミック電子部品の製造方法であって、仮焼
物を1μm〜1.2μmに粉砕した材料粉末を用いるこ
とによって、焼成後の焼結体密度が向上し高いQE値の
誘電体セラミックを得ることができる。
The invention according to claim 4 of the present invention is characterized in that the dielectric porcelain composition is calcined and then finely pulverized to 1 μm to 1.2 μm. A method for producing a dielectric ceramic electronic component according to the above, wherein the calcined material is pulverized to 1 μm to 1.2 μm to obtain a dielectric ceramic having a high Q E value by improving the density of the sintered body after firing. Can be obtained.

【0011】本発明の請求項5に記載の発明は、誘電体
磁器組成物の混合及び粉砕に使用する媒体材質中に含ま
れる不純物のCaがCaOに換算して1%以下のものを
使用する請求項1、または請求項2、または請求項4の
何れか一つに記載の誘電体セラミック電子部品の製造方
法であって、誘電体磁器組成物仮焼物の混合、及び粉砕
に用いる媒体から必要以上のCaOの混入によりQE
の低下を防止するためである。
The invention according to claim 5 of the present invention uses a dielectric porcelain composition in which the amount of Ca contained in the medium material used for mixing and grinding is 1% or less in terms of CaO. The method for producing a dielectric ceramic electronic component according to any one of claims 1, 2, and 4, wherein the method comprises mixing a calcined dielectric ceramic composition and a medium used for grinding. This is to prevent a decrease in Q E value by the incorporation of the above CaO.

【0012】本発明の請求項6に記載の発明は、誘電体
磁器組成物の焼成用サヤ材質中に含まれる不純物のCa
がCaOに換算して1%以下のものを使用する請求項1
から請求項5の何れか一つに記載の誘電体セラミック電
子部品の製造方法であって、誘電体セラミックを焼成す
るサヤ材質に不純物として含まれるCaOが、焼成時に
誘電体セラミック焼結体へ拡散することによってQE
の低下を防止するためである。
[0012] The invention according to claim 6 of the present invention is characterized in that the impurity Ca contained in the sheath material for firing the dielectric ceramic composition is Ca.
Is used in which 1% or less is converted into CaO.
The method for producing a dielectric ceramic electronic component according to any one of claims 1 to 5, wherein CaO contained as an impurity in a sheath material for firing the dielectric ceramic diffuses into the dielectric ceramic sintered body during firing. This is to prevent a decrease in Q E value by.

【0013】以下、本発明の一実施形態について説明す
る。 (実施の形態1)図1は、誘電体磁器組成物に対するC
aO添加量とQE値との関係を実験的に求めた図であ
る。
Hereinafter, an embodiment of the present invention will be described. (Embodiment 1) FIG.
A graph of the obtained empirically the relationship between aO amount and Q E value.

【0014】出発原料には化学的に高純度で、粒子径を
1μm以下に制御したZrO2,TiO2,MgO,Co
O,ZnO,NiO,Nb25,MnCO3、及びCa
O粉末を(表1)に示す組成になるように秤量後、ポリ
エチレン製のボールミルに入れ、媒体として不純物のC
aO含有率が1%以下の安定化ジルコニア製の玉石と、
溶媒としてエタノールを加え約20時間混合、乾燥した
後、不純物のCaO含有率が1%以下のアルミナ質のル
ツボに入れ、大気中で900℃の温度で2時間仮焼を行
った。次に前記仮焼粉末を混合と同じ方法で粉砕し、粒
子径が1μm〜1.2μmの材料粉末を得た。
The starting material is ZrO 2 , TiO 2 , MgO, Co, which is chemically high-purity and whose particle diameter is controlled to 1 μm or less.
O, ZnO, NiO, Nb 2 O 5, MnCO 3, and Ca
O powder was weighed so as to have the composition shown in (Table 1), and then placed in a polyethylene ball mill.
a stabilized zirconia cobblestone having an aO content of 1% or less;
After adding ethanol as a solvent and mixing and drying for about 20 hours, the mixture was placed in an alumina crucible having a CaO content of 1% or less as impurities and calcined at 900 ° C. for 2 hours in the atmosphere. Next, the calcined powder was pulverized in the same manner as in the mixing to obtain a material powder having a particle diameter of 1 μm to 1.2 μm.

【0015】前記材料粉末に有機バインダーを加え混合
した後、32メッシュの篩を通して整粒し、成形圧力2
ton/cm2で直径13mm、厚み6〜8mmの円板に成形し
た。次に不純物のCaOの量が1%以下のアルミナ質サ
ヤに成形体を入れ、大気中にて1400℃の温度で4時
間焼成を行い、(表1)に示す試料No1〜24の焼結
体を得た。得られた焼結体の両面を研磨した後、両面に
電極を付与しない状態のまま、誘電体共振器の測定方法
により、測定周波数4〜5GHzで、比誘電率(ε
r)、QE、及び−25〜85℃の温度範囲でQEの共振
周波数温度係数(τf)の測定を行い、その結果を(表
1)及び図1に示した。尚、QEは中心周波数±3dB
の半値幅から(数1)、比誘電率は(数2)から求め
た。又、特開平6−295619号公報に詳細について
開示されているため、本実施形態1では代表組成に対す
る不純物CaO量の検討を行った。
[0015] After adding an organic binder to the material powder and mixing, the mixture is sieved through a 32 mesh sieve.
It was formed into a disc having a diameter of 13 mm and a thickness of 6 to 8 mm at ton / cm 2 . Next, the compact was placed in an alumina sheath having an amount of CaO as an impurity of 1% or less, and calcined in the atmosphere at a temperature of 1400 ° C. for 4 hours to obtain sintered bodies of samples No. 1 to 24 shown in (Table 1). I got After polishing both surfaces of the obtained sintered body, the relative dielectric constant (ε) was measured at a measurement frequency of 4 to 5 GHz by a dielectric resonator measuring method while electrodes were not provided on both surfaces.
r), performs a measurement of the resonant frequency temperature coefficient of Q E, and Q E in a temperature range of -25 to 85 ° C. (.tau.f), showed the results (Table 1) and FIG. Note that Q E is the center frequency ± 3 dB
(Equation 1) and the relative dielectric constant were obtained from (Equation 2). Further, since the details are disclosed in Japanese Patent Application Laid-Open No. 6-295819, in the first embodiment, the amount of the impurity CaO with respect to the representative composition was examined.

【0016】[0016]

【数1】 (Equation 1)

【0017】[0017]

【数2】 (Equation 2)

【0018】[0018]

【表1】 [Table 1]

【0019】(表1)中の、試料番号3,7,11,1
5,19及び23は特開平6−295619号公報に開
示された不純物として含有されるCaOのデータを採用
した。
Sample numbers 3, 7, 11, 1 in Table 1
5, 19 and 23 used data of CaO contained as an impurity disclosed in Japanese Patent Application Laid-Open No. 6-295609.

【0020】(表1)、図1から明らかなように、Ca
Oの添加量が0.05%より多くなるに従ってQE値が
急激に低下するのに対し、CaOの添加量が0.01%
より少ない場合は、従来品と比較して30%以上QE
が高くなっていることが分かる。この高いQE値のNo
1,25及び26と低いQE値のNo3,4,7及び8
の焼結体をX線回折で調査した結果CaOが0.05%
以上の場合は、焼結体中にCaOの偏析相が現れる。こ
の偏析相がQE値を低下させているものと思われる。従
って、誘電体磁器組成に対し不純物として許容できるC
aOの量は0.01%以下が好ましく、この範囲内であ
れば比誘電率、共振周波数温度係数を損なうことなくQ
E値の優れた誘電体共振器用誘電体セラミックを得るこ
とができる。又、使用する出発原料の粒子径が1μmよ
り大きい場合、得られた焼結体の結晶粒子径が大きくな
ったり、部分的に異常粒成長したりするため、誘電体共
振器用誘電体セラミックの導体損失が増して誘電体セラ
ミックのQE値が低くなる問題が生じる。従って出発原
料の粒子径を1μm以下に制御することは必須条件とな
る。更に、混合、及び粉砕に使用する媒体としてのジル
コニアボールに不純物として含まれるCaOの量が1%
を越えると、混合、粉砕中にジルコニアボールが磨耗し
誘電体磁器材料中に混入するCaOが増大し誘電体セラ
ミックQE値が低くなる問題が生じるため、CaOの含
有率が1%以下のジルコニア玉石の使用は必須条件とな
る。又、更に焼成用サヤについても同様である。
(Table 1) As is clear from FIG.
Amount of O Whereas Q E value abruptly decreases according to a number consisting of 0.05%, the added amount of CaO is 0.01%
When the number is smaller, it can be seen that the QE value is higher than the conventional product by 30% or more. No of this high Q E value
Nos. 3, 4, 7 and 8 with Q E values as low as 1, 25 and 26
X-ray diffraction analysis of the sintered body showed that CaO was 0.05%
In the above case, a segregated phase of CaO appears in the sintered body. The segregation phase is believed that lowering the Q E value. Therefore, C that is acceptable as an impurity for the dielectric ceramic composition
The amount of aO is preferably 0.01% or less, and within this range, the Q value can be maintained without impairing the relative permittivity and the temperature coefficient of the resonance frequency.
A dielectric ceramic for a dielectric resonator having an excellent E value can be obtained. If the starting material used has a particle size of more than 1 μm, the resulting sintered body may have a large crystal particle size or partially grow abnormal grains. loss Q E value of the dielectric ceramic becomes problems lower increases. Therefore, controlling the particle size of the starting material to 1 μm or less is an essential condition. Further, the amount of CaO contained as an impurity in the zirconia ball as a medium used for mixing and grinding is 1%.
By weight, mixing, since the dielectric ceramic Q E value CaO increases the zirconia balls is mixed in with the dielectric ceramic material wear problem lowered occurs during grinding, zirconia content of 1% or less of CaO The use of boulders is a prerequisite. The same applies to the sheath for firing.

【0021】(実施の形態2)実施形態1の試料No2
の材料粉末を用い、外径65mm、内径20mm、高さ40
mmの円筒形状に、成形圧力1〜2ton/cm2で成形した
後、大気中及び酸素雰囲気中にて1400℃の温度で4
時間焼成を行った。得られた焼結体に実施形態1と同じ
測定法で共振周波数、QE値の測定と、アルキメデス法
で焼結体密度の測定を行い、その結果を(表2)に示
す。
(Embodiment 2) Sample No. 2 of Embodiment 1
Material powder, outer diameter 65mm, inner diameter 20mm, height 40
mm at a molding pressure of 1 to 2 ton / cm 2 at a temperature of 1400 ° C. in the air and in an oxygen atmosphere.
The firing was performed for a time. The resulting sintered body to the first embodiment and the resonance frequency in the same measurement method, and measurement of Q E values, performs a measurement of the sintered body density Archimedes method, and the results are shown in (Table 2).

【0022】[0022]

【表2】 [Table 2]

【0023】(表2)から明らかなように、酸素雰囲気
中で焼成した試料No25はNo26よりQ・f0値、
及び焼結体密度の何れも約15%程高くなっていること
が分かる。これは成形体を酸素雰囲気中で焼成すること
で、焼成中に成形体内部まで酸素が十分拡散し均一な焼
成がなされ焼結体密度が大きくなり、その結果焼結体の
Eが高くなったものと思われる。大気中で焼成した試
料No26は焼結体の内部と外部とで密度が異なり、金
属顕微鏡で観察すると内部がポーラスになっていること
が認められた。ここで作成した大型素子は主に基地局用
誘電体フィルタに使用され、この場合は特に高い信頼性
が要求される。このため不均質な焼結体の場合、耐熱衝
撃、耐湿性等の信頼性が低下するので好ましくない。従
って、大型誘電体セラミックの焼成は特に酸素雰囲気中
で均一焼成し、高信頼性の誘電体共振器用誘電体セラミ
ックを作成することが好ましい。
As is clear from Table 2, the sample No. 25 fired in an oxygen atmosphere has a Q · f 0 value higher than that of No. 26,
It can be seen that both the density of the sintered body and the density of the sintered body are increased by about 15%. This is firing the molded body in an oxygen atmosphere, the molded body internal to oxygen diffusion and uniform sintering is performed sintered density is increased sufficiently during calcination, becomes high Q E resulting sintered body It seems to have been. Sample No. 26 fired in the air had a different density between the inside and the outside of the sintered body, and when observed with a metallographic microscope, it was found that the inside was porous. The large element produced here is mainly used for a dielectric filter for a base station. In this case, particularly high reliability is required. For this reason, in the case of a non-homogeneous sintered body, reliability such as thermal shock resistance and moisture resistance is reduced, which is not preferable. Therefore, it is preferable that the large-sized dielectric ceramic is fired uniformly, particularly in an oxygen atmosphere, to produce a highly reliable dielectric ceramic for a dielectric resonator.

【0024】(実施の形態3)実施形態1の試料No2
の材料組成を混合、仮焼した後、粉砕時間を変え(表
3)に示す粒子径の材料粉末を作成した後、夫々整粒
し、外径12mm、内径2mm、高さが15mm角筒形状に、
成形圧力1〜2ton/cm2で成形した。その後、大気中で
1400℃の温度で4時間焼成を行った。得られた焼結
体の密度と、焼結体の内周面、外周面に銀ペーストを塗
布し800℃の温度で電極焼付けを行った誘電体セラミ
ックの比誘電率、QE値を実施形態1と同様に測定し、
その結果を(表3)に示した。
(Embodiment 3) Sample No. 2 of Embodiment 1
After mixing and calcining the material compositions of the above, the pulverization time was changed and material powders having the particle diameters shown in Table 3 were prepared. To
Molding was performed at a molding pressure of 1-2 ton / cm 2 . Thereafter, baking was performed in the atmosphere at a temperature of 1400 ° C. for 4 hours. And density of the sintered body obtained, an inner peripheral surface, the dielectric constant of the dielectric ceramic were electrode baking at a temperature of silver paste is applied to the outer peripheral surface 800 ° C. of the sintered body, carrying out the Q E value form Measure in the same way as 1
The results are shown in (Table 3).

【0025】[0025]

【表3】 [Table 3]

【0026】(表3)から明らかなように、材料粉末の
粉砕粒子径が焼結体の比誘電率、焼結密度、特にQE
に大きく影響していることが分かる。試料No27,2
8の焼結体密度が小さいのは粉末粒子径が小さいため成
形時のパッキング性が悪いことが影響しているものと考
えられ、その結果QE値が低くなったものと思われる。
これに対し粉砕粒子径が1〜1.2μmのNo29及び
30は焼結体密度が大きく、これに伴ってQEも大きく
なる。しかしながらNo31及び32のように粉砕粒子
径が1.5μmより大きくなると、比誘電率、QE値と
も低下し始め好ましくない。これは粉砕粒子径が大きく
なるに従って焼結性が悪くなるためと思われる。
[0026] As is clear from (Table 3), the dielectric constant of the grinding particle size of the material powder is sintered bodies, sintered density, it is found that particularly has a significant effect on Q E value. Sample No. 27, 2
The sintered body density of 8 small is considered to have influenced to be poor packing at the time of molding since the diameter powder particles is small, so that Q E value seems to have lowered.
No29 and 30 milled particle diameter of 1~1.2μm contrast is large sintered density, Q E also increases accordingly. However, when the pulverized particle diameter is larger than 1.5 μm as in Nos. 31 and 32, both the relative dielectric constant and the Q E value begin to decrease, which is not preferable. This is presumably because the sinterability deteriorates as the size of the pulverized particles increases.

【0027】以上、本実施の形態3のように粉砕粒子径
を一定の大きさに管理した製造工程を採用することによ
り、QE値、比誘電率の高い優れた誘電体共振器用誘電
体セラミックを得られることが分かる。
The above, by employing the manufacturing process to manage milled particle size to a certain size as in the third embodiment, Q E value, high dielectric constant excellent dielectric resonator dielectric ceramic It turns out that it is possible to obtain.

【0028】[0028]

【発明の効果】以上のように本発明によれば、組成式と
してxZrO2−yTiO2−zA(1+w )/3Nb(2-w)/3
2で表した時、記号Aが{Mg,Co,Zn,Ni,M
n}からなる群の中から選ばれた少なくとも一種の成
分、またx,y,z,wが次の以下に示した範囲で、更
に不純物として含まれるCaをCaOに換算して0.0
1%以下に制御した誘電体磁器組成物を焼結することに
より、比誘電率、QE値及び共振周波数温度特性の優れ
た誘電体共振器用誘電体セラミックを得ることができ
る。
As described above, according to the present invention, xZrO 2 -yTiO 2 -zA (1 + w ) / 3 Nb (2-w) / 3 O
When expressed in 2, symbol A is {Mg, Co, Zn, Ni , M
At least one component selected from the group consisting of n}, and x, y, z, and w are in the following ranges, and Ca further contained as an impurity is converted to CaO to 0.0
By sintering a dielectric ceramic composition is controlled to 1% or less, it is possible to obtain the dielectric constant, the Q E value and resonance frequency temperature characteristic superior dielectric resonator dielectric ceramic.

【0029】0.10≦x≦0.60 0.20≦y≦0.60 0.01≦z≦0.70 0 ≦w≦1.50 (但しx,y,zはモル分率、wは無名数を示す) 更に、出発原料の粒子径、仮焼後の粉砕粒子粒、及び焼
成雰囲気を制御することにより、更にQE値を大きくす
ることができ、このことが誘電体共振器の高性能化に寄
与し工業的利用価値が大きいものとなるものである。
0.10 ≦ x ≦ 0.60 0.20 ≦ y ≦ 0.60 0.01 ≦ z ≦ 0.70 0 ≦ w ≦ 1.50 (where x, y and z are mole fractions, w Indicates an innumerable number.) Further, by controlling the particle size of the starting material, the crushed particles after calcination, and the firing atmosphere, the QE value can be further increased, which is a factor of the dielectric resonator. It contributes to high performance and has a large industrial use value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】誘電体磁器組成に対するCaO添加量とQE
の関係を表す図
FIG. 1 is a diagram representing the relationship between the CaO addition amount and Q E values for the dielectric ceramic composition

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 組成式をxZrO2−yTiO2−zA
(1+w)/3Nb(2-w)/32で表したとき、記号Aが{M
g,Co,Zn,Ni,Mn}からなる群から選ばれた
少なくとも一種の成分、又x,y,z,wは以下に示し
た範囲で、更に不純物として含まれるCaをCaOに換
算して0.01%以下に制御した誘電体磁器組成物を焼
成する誘電体セラミック電子部品の製造方法。 0.10≦x≦0.60 0.20≦y≦0.60 0.01≦z≦0.70 0 ≦w≦1.50 (但しx,y,zはモル分率、wは無名数を示す)
1. A composition formula of xZrO 2 -yTiO 2 -zA
When represented by (1 + w) / 3 Nb (2-w) / 3 O 2 , the symbol A is ΔM
g, at least one component selected from the group consisting of Co, Zn, Ni, and Mn, and x, y, z, and w are within the following ranges, and Ca contained as an impurity is converted to CaO. A method for producing a dielectric ceramic electronic component, in which a dielectric ceramic composition controlled to 0.01% or less is fired. 0.10 ≤ x ≤ 0.60 0.20 ≤ y ≤ 0.60 0.01 ≤ z ≤ 0.70 0 ≤ w ≤ 1.50 (where x, y, z are mole fractions, w is an anonymous number) Indicates)
【請求項2】 出発原料成分の粒径が1μm以下のもの
を使用する請求項1に記載の誘電体セラミック電子部品
の製造方法。
2. The method for producing a dielectric ceramic electronic component according to claim 1, wherein the starting material component has a particle size of 1 μm or less.
【請求項3】 誘電体磁器組成物を酸素雰囲気中で焼成
する請求項1に記載の誘電体セラミック電子部品の製造
方法。
3. The method for producing a dielectric ceramic electronic component according to claim 1, wherein the dielectric ceramic composition is fired in an oxygen atmosphere.
【請求項4】 誘電体磁器組成物を仮焼後、1μm〜
1.2μmに微粉砕した粉末材料を用いる請求項1から
請求項3の何れか一つに記載の誘電体セラミック電子部
品の製造方法。
4. After calcination of the dielectric porcelain composition, it is 1 μm or more.
The method for producing a dielectric ceramic electronic component according to any one of claims 1 to 3, wherein a powder material finely pulverized to 1.2 µm is used.
【請求項5】 誘電体磁器組成物の混合及び粉砕に使用
する媒体材質中に含まれる不純物のCaがCaOに換算
して1%以下のものを使用する請求項1、または請求項
2、または請求項4の何れか一つに記載の誘電体セラミ
ック電子部品の製造方法。
5. The method according to claim 1, wherein the content of Ca contained in the medium material used for mixing and pulverizing the dielectric ceramic composition is 1% or less in terms of CaO. A method for manufacturing a dielectric ceramic electronic component according to claim 4.
【請求項6】 誘電体磁器組成物の焼成用サヤ材質中に
含まれる不純物のCaがCaOに換算して1%以下のも
のを使用する請求項1から請求項5の何れか一つに記載
の誘電体セラミック電子部品の製造方法。
6. The dielectric ceramic composition according to any one of claims 1 to 5, wherein Ca used as an impurity contained in the sheath material for firing of the dielectric ceramic composition is 1% or less in terms of CaO. Of manufacturing a dielectric ceramic electronic component.
JP15836097A 1997-06-16 1997-06-16 Method of manufacturing dielectric ceramic electronic component Expired - Fee Related JP3395577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15836097A JP3395577B2 (en) 1997-06-16 1997-06-16 Method of manufacturing dielectric ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15836097A JP3395577B2 (en) 1997-06-16 1997-06-16 Method of manufacturing dielectric ceramic electronic component

Publications (2)

Publication Number Publication Date
JPH1112036A true JPH1112036A (en) 1999-01-19
JP3395577B2 JP3395577B2 (en) 2003-04-14

Family

ID=15669982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15836097A Expired - Fee Related JP3395577B2 (en) 1997-06-16 1997-06-16 Method of manufacturing dielectric ceramic electronic component

Country Status (1)

Country Link
JP (1) JP3395577B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060270A (en) * 2000-08-21 2002-02-26 Sumitomo Special Metals Co Ltd Dielectric ceramic composition for electronic device
US9567457B2 (en) 2013-09-11 2017-02-14 Bridgestone Corporation Processes for the removal of rubber from TKS plant matter
US9637562B2 (en) 2012-03-06 2017-05-02 Bridgestone Corporation Processes for recovering rubber from aged briquettes and aged briquettes containing plant matter from non-Hevea plants
US10138304B2 (en) 2012-06-18 2018-11-27 Bridgestone Corporation Methods for increasing the extractable rubber content of non-Hevea plant matter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060270A (en) * 2000-08-21 2002-02-26 Sumitomo Special Metals Co Ltd Dielectric ceramic composition for electronic device
JP4688008B2 (en) * 2000-08-21 2011-05-25 日立金属株式会社 Dielectric ceramic composition for electronic devices
US9637562B2 (en) 2012-03-06 2017-05-02 Bridgestone Corporation Processes for recovering rubber from aged briquettes and aged briquettes containing plant matter from non-Hevea plants
US10316110B2 (en) 2012-03-06 2019-06-11 Bridgestone Corporation Processes for recovering rubber from aged briquettes
US10626194B2 (en) 2012-03-06 2020-04-21 Bridgestone Corporation Processes for the removal of rubber from non-hevea plants
US10138304B2 (en) 2012-06-18 2018-11-27 Bridgestone Corporation Methods for increasing the extractable rubber content of non-Hevea plant matter
US9567457B2 (en) 2013-09-11 2017-02-14 Bridgestone Corporation Processes for the removal of rubber from TKS plant matter
US10287367B2 (en) 2013-09-11 2019-05-14 Bridgestone Corporation Process for the removal of rubber from TKS plant matter

Also Published As

Publication number Publication date
JP3395577B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP4524411B2 (en) Dielectric porcelain composition
JP3828073B2 (en) Dielectric composition for multilayer ceramic capacitor and multilayer ceramic capacitor using the same
JP3395577B2 (en) Method of manufacturing dielectric ceramic electronic component
JP3793485B2 (en) Microwave dielectric porcelain composition and method for producing the porcelain
JP2001114553A (en) Microwave dielectric substance ceramic composition
EP2216307A1 (en) Dielectric ceramics, process for production thereof, and resonator
JP3598851B2 (en) Dielectric ceramic composition, method of manufacturing the same, dielectric resonator and dielectric filter using the same
JP3376855B2 (en) Dielectric ceramic composition, method of manufacturing the same, dielectric resonator and dielectric filter using the same
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP3351207B2 (en) Dielectric porcelain composition and method for producing the same
JP3562085B2 (en) Dielectric ceramic composition, capacitor using the same, and method for producing dielectric ceramic composition
JP3545438B2 (en) Method for producing Ni-Zn ferrite powder
JPH05117024A (en) Dielectric porcelain for high frequency and its production
JP3359427B2 (en) High frequency dielectric ceramic composition
JP3336190B2 (en) High frequency dielectric ceramic composition
JP2003201177A (en) Dielectric ceramic
JPH07187771A (en) Dielectric porcelain composition
JP3329980B2 (en) High frequency dielectric ceramic composition and method for producing the same
JP2002211976A (en) Microwave dielectric porcelain composition and dielectric resonator
JPH06275126A (en) Dielectric ceramic composition
JPH0877828A (en) Dielectric ceramic composition and its manufacture
JPH09165260A (en) Dielectric porcelain composition
JPH0676628A (en) Dielectric ceramic composition
JPH0737429A (en) Dielectric ceramic composition
JPH07192531A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees