JPH11119231A - Apparatus for production of liquid crystal device and production of liquid crystal device using the same - Google Patents

Apparatus for production of liquid crystal device and production of liquid crystal device using the same

Info

Publication number
JPH11119231A
JPH11119231A JP28322497A JP28322497A JPH11119231A JP H11119231 A JPH11119231 A JP H11119231A JP 28322497 A JP28322497 A JP 28322497A JP 28322497 A JP28322497 A JP 28322497A JP H11119231 A JPH11119231 A JP H11119231A
Authority
JP
Japan
Prior art keywords
liquid crystal
sealing material
layer thickness
transparent substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28322497A
Other languages
Japanese (ja)
Inventor
Takao Ishida
崇雄 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP28322497A priority Critical patent/JPH11119231A/en
Publication of JPH11119231A publication Critical patent/JPH11119231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the layer pressure of a liquid crystal to be end-sealed in compliance with a set value, by pressurizing a transparent substrate until a prescribed layer thickness is attained while viewing the numerical values of liquid crystal to correct a projecting shape and confining the liquid crystal. SOLUTION: A liquid crystal injection element 10 is placed between pressurizing force transmitting members 34a and 34b. A pressurized air is introduced via a pressure regulating valve into an air bag from a joint port disposed at the air bag. Supporting bases 32a, 32b are fixed with clasps and the pressurized air pressurizes the transparent substrates of the liquid crystal injected element 10 via the air bag. The pressure applied on the transparent substrates is changed in accordance with the result measured by a liquid crystal layer thickness measuring means. Namely, the means for pressurizing the transparent substrate is capable of changing the pressure for pressurizing the transparent substrates by the pressure regulating valve until the layer thickness attains a prescribed numerical value in accordance with the result of the measurement of the liquid crystal layer thickness measuring means. An end- sealing material dispenser 42 applies end-sealing material on the aperture of the liquid crystal injected element. The end-sealing material is cured by a light source 36 for curing the end- sealing material. The aperture is end-sealed in accordance with the result of the measurement of the layer thickness of the liquid crystals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶素子の製造装
置およびそれを用いた液晶素子の製造方法に係わり、さ
らに詳しくは液晶素子の透明基板間に封じ込める液晶の
層厚を均一に制御する液晶素子の製造装置およびそれを
用いた液晶素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing a liquid crystal element and a method for manufacturing a liquid crystal element using the same, and more particularly, to a liquid crystal for uniformly controlling the thickness of a liquid crystal sealed between transparent substrates of the liquid crystal element. The present invention relates to a device manufacturing apparatus and a liquid crystal device manufacturing method using the same.

【0002】[0002]

【従来の技術】一般に液晶表示素子の構造は、透明導電
膜パターンを形成した2枚の透明基板を透明導電膜パタ
ーンが相対するようにシール材を介して貼り合わせ、シ
ール材で囲われる内側領域の相対する透明導電膜パター
ン間に液晶を挟持する構造とする。
2. Description of the Related Art In general, a liquid crystal display element has a structure in which two transparent substrates on each of which a transparent conductive film pattern is formed are bonded via a sealing material so that the transparent conductive film patterns face each other, and an inner region surrounded by the sealing material. The liquid crystal is sandwiched between the transparent conductive film patterns facing each other.

【0003】また、相対する透明基板間の液晶の分子の
配向方向が、一方の透明基板と他方の透明基板との間で
角度が180°以上捻れるように配向制御するスーパー
ツイステッドネマティック(以下STNと記載する)型
液晶表示素子の場合には、液晶分子が持つ光学異方性に
起因する着色現象を解消する目的で、光学補償素子を液
晶表示素子に併設する構造とする。
Further, a super twisted nematic (hereinafter referred to as STN) which controls the orientation of liquid crystal molecules between opposing transparent substrates so that the angle is twisted by 180 ° or more between one transparent substrate and the other transparent substrate. ) Type liquid crystal display element, a structure in which an optical compensatory element is provided along with the liquid crystal display element in order to eliminate a coloring phenomenon caused by optical anisotropy of liquid crystal molecules.

【0004】この光学補償素子には、光学補償フィルム
を用いる方式と液晶表示素子と類似した構造を持つ光学
補償液晶素子を用いる方式とがある。光学補償液晶素子
の構造は、相対する透明基板間にシール材を介して貼り
合わせ、シール材で囲われる内側領域の相対する透明基
板間に液晶の分子が液晶表示素子における液晶の捻れ方
向とは逆方向に捻れるように配向制御して液晶を挟持す
る構造とする。
The optical compensating element includes a method using an optical compensating film and a method using an optical compensating liquid crystal element having a structure similar to a liquid crystal display element. The structure of the optical compensation liquid crystal element is such that the liquid crystal molecules are bonded between the transparent substrates facing each other with a sealing material interposed between the transparent substrates facing each other in the inner region surrounded by the sealing material. The liquid crystal is sandwiched by controlling the alignment so that the liquid crystal is twisted in the opposite direction.

【0005】従来の技術による液晶表示素子および光学
補償液晶素子(以下液晶表示素子と光学補償液晶素子を
区別する必要のない場合にはまとめて液晶素子と記載す
る)の製造方法例を以下に記述する。
An example of a method of manufacturing a liquid crystal display device and an optically compensating liquid crystal device according to the prior art (hereinafter, collectively referred to as a liquid crystal device when it is not necessary to distinguish between the liquid crystal display device and the optically compensating liquid crystal device) is described below. I do.

【0006】従来技術による液晶素子の製造方法は、ま
ず、2枚の透明基板を透明基板間にスペーサーを介在さ
せ、開口部を設けたシール材を介して貼り合わせた空セ
ルとする。そして、減圧した液晶注入チャンバー中で空
セルのシール材開口部を液晶容器中に入れた後に、液晶
注入チャンバーの圧力を大気圧にすることにより、空セ
ル内外の圧力差を利用してシール材開口部より空セル内
に液晶を注入して液晶注入素子を形成する。
In a conventional method of manufacturing a liquid crystal element, an empty cell is first formed by bonding two transparent substrates with a spacer interposed between the transparent substrates and a sealing material provided with an opening. Then, after the sealing material opening of the empty cell is put into the liquid crystal container in the depressurized liquid crystal injection chamber, the pressure of the liquid crystal injection chamber is set to the atmospheric pressure, thereby utilizing the pressure difference between the inside and outside of the empty cell. Liquid crystal is injected into the empty cell through the opening to form a liquid crystal injection element.

【0007】図3は液晶注入素子の断面模式図であり、
透明基板12aと透明基板12bとの間にスペーサー1
4とシール材16を介して液晶18を注入している。シ
ール材16には液晶を注入するための開口部16aを設
けてある。
FIG. 3 is a schematic sectional view of a liquid crystal injection element.
Spacer 1 between transparent substrate 12a and transparent substrate 12b
The liquid crystal 18 is injected via the seal 4 and the sealing material 16. The sealing material 16 has an opening 16a for injecting liquid crystal.

【0008】ここで、液晶注入素子は、シール材材料と
透明基板材料との熱膨張差異により透明基板12aと透
明基板12bが外側に張り出した凸状となっている。液
晶注入素子が凸状となる現象は、既に、シール材を加熱
硬化し、冷却して空セルとする段階でおこっている。
The liquid crystal injection element has a convex shape in which the transparent substrate 12a and the transparent substrate 12b protrude outward due to the difference in thermal expansion between the sealing material and the transparent substrate material. The phenomenon that the liquid crystal injection element becomes convex has already occurred at the stage where the sealing material is heated and cured, and cooled to form an empty cell.

【0009】空セルが凸状になる理由を以下に述べる。
加熱処理によりシール材16を硬化して透明基板11
a、11bを張り合わせた後に冷却する際に、シール材
材料および透明基板材料の熱膨張係数がそれぞれ10×
10−1・K−1〜60×10−6・K−1および3×
10−6・K−1〜9×10−6・K−1であるため
に、冷却による透明基板の収縮量がシール材の収縮量よ
り少ないので、それぞれの熱膨張率の差異分だけ透明基
板がシール材より伸長する。このとき、透明基板間には
スペーサーが介在しているために、シール材より伸長し
た透明基板が液晶注入素子の外側に凸状となる。ここで
はシール材材料の例としてエポキシ樹脂を、透明基板材
料の例としてガラスを選んでいる。
The reason why the empty cell becomes convex will be described below.
The sealing material 16 is hardened by the heat treatment and the transparent substrate 11 is cured.
When cooling after laminating a and 11b, the thermal expansion coefficients of the sealing material and the transparent substrate material are each 10 ×
10-1 · K-1 to 60 × 10-6 · K-1 and 3 ×
Since the amount of shrinkage of the transparent substrate due to cooling is smaller than the amount of shrinkage of the sealing material because of 10−6 K−1 to 9 × 10−6 K−1, the transparent substrate has an amount corresponding to the difference between the respective coefficients of thermal expansion. Extend from the sealing material. At this time, since the spacer is interposed between the transparent substrates, the transparent substrate extending from the sealing material becomes convex outside the liquid crystal injection element. Here, epoxy resin is selected as an example of the sealing material, and glass is selected as an example of the transparent substrate material.

【0010】次に、凸状形状の液晶注入素子を単独また
は複数個重ねた後に、支持台で挟んで圧力を加えるか、
あるいは、液晶注入素子を加温して凸形形状部分の余分
な液晶を排出する。ここで加温による余分な液晶の排出
は、注入された液晶材料の体積膨張率が6×10−4〜
9×10−4・K−1であり、透明基板材料の体積膨張
率より大きいために実現される。
Next, after a single or a plurality of convex liquid crystal injection elements are stacked, the liquid crystal injection elements are sandwiched by a support and pressure is applied.
Alternatively, the liquid crystal injection element is heated to discharge the excess liquid crystal in the convex portion. Here, excess liquid crystal is discharged by heating when the volume expansion coefficient of the injected liquid crystal material is 6 × 10 −4 or more.
9 × 10−4 · K−1, which is realized because it is larger than the volume expansion coefficient of the transparent substrate material.

【0011】次にシール材の開口部を封止材にて封止し
て、液晶素子とする。
Next, the opening of the sealing material is sealed with a sealing material to obtain a liquid crystal element.

【0012】[0012]

【発明が解決しようとする課題】上記に説明した従来の
技術における液晶素子の製造方法においては、個々の液
晶素子に封止する液晶の層厚が一定にならず、液晶の層
厚分布が生じる課題がある。
In the above-described method of manufacturing a liquid crystal element according to the prior art, the thickness of the liquid crystal sealed in each liquid crystal element is not constant, and the thickness distribution of the liquid crystal occurs. There are issues.

【0013】すなわち、凸状形状の液晶注入素子は、透
明基板自体に反りや偏厚のバラツキがあることや、シー
ル材の太さや厚みにバラツキがあることに起因して個々
の液晶注入素子の凸状形状部の形状と凸状形状量が異な
るために、凸状形状部の液晶注入素子中の余分な液晶を
同一処理方法の加圧あるいは加熱により排出して封止し
ても個々の液晶素子の液晶の層厚にバラツキが生じる課
題がある。
In other words, the liquid crystal injection element having a convex shape has an individual liquid crystal injection element due to the fact that the transparent substrate itself has warpage and uneven thickness, and the thickness and thickness of the sealing material have unevenness. Because the shape of the convex portion and the amount of the convex shape are different, even if the extra liquid crystal in the liquid crystal injection element of the convex portion is discharged and sealed by applying the same processing method of pressurizing or heating, individual liquid crystal is removed. There is a problem that the thickness of the liquid crystal layer of the element varies.

【0014】この液晶の層厚分布が生じる課題はSTN
型液晶表示素子においては工業的観点からは重要、かつ
深刻な課題である。以下にその理由を説明する。
The problem that the layer thickness distribution of the liquid crystal occurs is that the STN
This is an important and serious problem from an industrial point of view in a liquid crystal display device. The reason will be described below.

【0015】第1に、STN型液晶表示素子において
は、その電気光学的特性を有効に利用するために、液晶
の層厚を設定値に対して0.03μm以下の設定範囲内
に制御する必要があること、第2にSTN型液晶表示素
子と光学補償液晶素子との液晶の層厚の関係を次に記述
するように制御する必要がある。
First, in the STN type liquid crystal display element, in order to effectively use the electro-optical characteristics, it is necessary to control the liquid crystal layer thickness within a set range of 0.03 μm or less with respect to a set value. Second, it is necessary to control the relationship between the liquid crystal layer thicknesses of the STN type liquid crystal display element and the optical compensation liquid crystal element as described below.

【0016】前述したように、STN型液晶表示素子の
場合には、液晶分子の光学異方性に起因する着色現象を
光学補償する目的で光学補償液晶素子を併設する構成と
する。STN型液晶表示素子においては、黒表示におけ
る光学補償をすることで表示品質が向上することから、
光学補償液晶素子は併設するSTN型液晶表示素子の黒
表示に合わせたものであることが重要である。
As described above, in the case of the STN type liquid crystal display element, an optical compensation liquid crystal element is provided in order to optically compensate a coloring phenomenon caused by optical anisotropy of liquid crystal molecules. In the STN-type liquid crystal display element, the display quality is improved by performing optical compensation in black display.
It is important that the optical compensation liquid crystal element is adapted to the black display of the attached STN type liquid crystal display element.

【0017】複数の行電極群および複数の列電極群でマ
トリクス表示画素群を構成してマルチプレックス駆動
し、非選択時に黒表示となる液晶表示素子では、選択画
素と同一行または列の非選択画素にも非選択電圧が印加
されている。そのために、非選択画素部の液晶分子の光
軸の方向は電圧無印加の光学補償液晶素子の液晶分子の
光軸とは異なっている。
In a liquid crystal display element which forms a matrix display pixel group with a plurality of row electrode groups and a plurality of column electrode groups and performs multiplex driving and displays black when not selected, the same row or column as the selected pixel is not selected. A non-selection voltage is also applied to the pixel. Therefore, the direction of the optical axis of the liquid crystal molecules in the non-selected pixel portion is different from the optical axis of the liquid crystal molecules in the optical compensation liquid crystal element to which no voltage is applied.

【0018】上記理由で、より適切な光学補償をする目
的を達成するために、光学補償液晶素子は液晶表示素子
の液晶分子の捻れ方向とは逆捻れであるだけではなく、
液晶の屈折率異方性(Δn)と液晶の層厚(d)との積
であるリターデーション (Δn・d)を液晶表示素子
のΔn・dよりおおよそ50nm小さくしたものにす
る。すなわち、液晶表示素子と光学補償液晶素子とはそ
れぞれのΔn・dが50nm異なるものの組み合わせと
して用いる。
For the above reason, in order to achieve the purpose of more appropriate optical compensation, the optically compensating liquid crystal element is not only twisted in the reverse direction of the liquid crystal molecules of the liquid crystal display element but also twisted in the opposite direction.
The retardation (Δn · d), which is the product of the refractive index anisotropy (Δn) of the liquid crystal and the layer thickness (d) of the liquid crystal, is set to be approximately 50 nm smaller than the Δn · d of the liquid crystal display element. That is, the liquid crystal display element and the optically-compensated liquid crystal element are used as a combination in which Δn · d is different by 50 nm.

【0019】図4は工業的に理想的な液晶表示素子と光
学補償液晶素子の生産数量分布図であり、それぞれのΔ
n・dを有する液晶表示素子と光学補償液晶素子の生産
数量分布図である。液晶の層厚を設定値に対して0.0
3μm以下の設定範囲以内の液晶表示素子のΔn・dと
光学補償液晶素子のΔn・dが50nmの差をもって同
一分布で液晶表示素子と光学補償液晶素子が生産されて
いる。Δn・dの値が50nmの差を有する液晶表示素
子と光学補償液晶素子とを組み合わせる。ここでΔnは
液晶により一義的に決まる値であり、同一液晶ではΔn
・dは液晶の層厚(d)に依存する。
FIG. 4 is a production quantity distribution diagram of an industrially ideal liquid crystal display element and an optical compensation liquid crystal element.
FIG. 3 is a production quantity distribution diagram of a liquid crystal display element having n · d and an optical compensation liquid crystal element. The thickness of the liquid crystal layer is set to 0.0
The liquid crystal display element and the optically-compensated liquid crystal element are produced with the same distribution of Δn · d of the liquid crystal display element and the Δn · d of the optically-compensated liquid crystal element within a set range of 3 μm or less with a difference of 50 nm. A liquid crystal display element having a difference of Δn · d of 50 nm and an optical compensation liquid crystal element are combined. Here, Δn is a value uniquely determined by the liquid crystal.
D depends on the liquid crystal layer thickness (d).

【0020】実際には、液晶表示素子と光学補償液晶素
子のΔn・dに対する生産数量を全く同一にはできない
ために、それぞれ分割して、たとえば、液晶表示素子の
A、B、Cブロックと光学補償液晶素子のa、b、cブ
ロックとをそれぞれ組み合わせる。この管理方法であっ
ても、液晶表示素子と光学補償液晶素子の生産数量分布
が異なると、どちらかの液晶素子が過不足となり不具合
が生じる。
Actually, since the production quantities of the liquid crystal display element and the optical compensation liquid crystal element with respect to Δn · d cannot be made exactly the same, the liquid crystal display element is divided into, for example, A, B, C blocks of the liquid crystal display element and the optical compensating liquid crystal element. The blocks a, b, and c of the compensating liquid crystal element are respectively combined. Even with this management method, if the production quantity distributions of the liquid crystal display element and the optical compensation liquid crystal element are different, one of the liquid crystal elements becomes excessive or insufficient, causing a problem.

【0021】それゆえ、工業的には液晶表示素子と光学
補償液晶素子の液晶の層厚の設定範囲以内のものを生産
することのみならず、液晶表示素子と光学補償液晶素子
との液晶の層厚を有する液晶素子の生産数量を各ブロッ
ク毎に同一にすることが生産管理と在庫管理上重要とな
る。
Therefore, industrially, not only can the liquid crystal display element and the optical compensation liquid crystal element be produced within the set range of the liquid crystal layer thickness, but also the liquid crystal layer between the liquid crystal display element and the optical compensation liquid crystal element can be produced. It is important for production control and inventory control to make the production quantity of the liquid crystal element having the same thickness for each block.

【0022】[発明の目的]本発明の目的は個々の液晶
素子に封止する液晶の層厚を設定値どおりに制御する液
晶素子の製造装置およびそれを用いた液晶素子の製造方
法を提供することにある。
[Object of the Invention] An object of the present invention is to provide an apparatus for manufacturing a liquid crystal element which controls a layer thickness of a liquid crystal to be sealed in each liquid crystal element according to a set value, and a method for manufacturing a liquid crystal element using the same. It is in.

【0023】[0023]

【課題を解決するための手段】上記目的を達成するため
に、本発明の液晶素子の製造装置は下記記載の構成を採
用し、本発明の液晶素子の製造方法は下記記載の方法を
採用する。
In order to achieve the above object, a liquid crystal device manufacturing apparatus of the present invention employs the following configuration, and a liquid crystal device manufacturing method of the present invention employs the following method. .

【0024】本発明の液晶素子の製造装置は、相対する
透明基板を貼り合わせる開口部を設けたシール材で囲わ
れる内側領域と相対する透明基板間に液晶を注入した液
晶注入素子の、液晶の層厚を測定する手段と、液晶の層
厚を測定した結果に基づき相対する透明基板を加圧する
手段と、液晶の層厚を測定した結果に基づきシール材の
開口部を封止する手段と、を備えることを特徴とする。
According to the liquid crystal device manufacturing apparatus of the present invention, the liquid crystal injection device in which the liquid crystal is injected between the inner region surrounded by the sealing material provided with the opening for bonding the opposing transparent substrate and the opposing transparent substrate is used. Means for measuring the layer thickness, means for pressing the transparent substrate facing each other based on the result of measuring the layer thickness of the liquid crystal, means for sealing the opening of the sealing material based on the result of measuring the layer thickness of the liquid crystal, It is characterized by having.

【0025】本発明の液晶素子の製造方法は、相対する
透明基板を開口部を設けてシール材にて貼り合わせ、シ
ール材で囲われる内側領域の相対する透明基板間に液晶
を注入した液晶注入素子の、液晶の層厚を測定する工程
と、液晶の層厚を測定した結果に基づき相対する透明基
板に圧力を加える工程と、液晶の層厚を測定した結果に
基づきシール材の開口部を封じる工程と、を有すること
を特徴とする。
According to the method of manufacturing a liquid crystal element of the present invention, a transparent liquid crystal is injected by providing an opening and bonding a transparent material to each other with a sealing material and injecting liquid crystal between the transparent substrates in an inner region surrounded by the sealing material. A step of measuring the layer thickness of the liquid crystal of the element, a step of applying pressure to the transparent substrate facing the liquid crystal based on the result of the measurement of the layer thickness of the liquid crystal, and an opening of the sealing material based on the result of measuring the layer thickness of the liquid crystal. And a sealing step.

【0026】[作用]本発明の液晶素子の製造装置は、
個々の凸状形状の液晶注入素子の中の液晶の層厚を測定
する手段を備えており、測定した液晶の層厚の数値を監
視しながらあらかじめ定めた所定の液晶の層厚になるま
で透明基板を加圧して凸状形状を矯正し、液晶を封止す
る手段を備える構成を採用する。
[Function] The apparatus for manufacturing a liquid crystal element of the present invention comprises:
Equipped with a means for measuring the liquid crystal layer thickness in each convex liquid crystal injection element, and monitoring the measured liquid crystal layer thickness numerical value until a predetermined liquid crystal layer thickness is reached. A configuration including means for pressing the substrate to correct the convex shape and sealing the liquid crystal is employed.

【0027】本発明の液晶素子の製造方法は、個々の凸
状形状の液晶注入素子中の液晶の層厚を測定しながら、
あらかじめ定めた所定の液晶の層厚数値になるまで透明
基板に圧力を加えて凸状形状を矯正し、液晶を封じ込め
る方法を採用する。
In the method of manufacturing a liquid crystal element according to the present invention, while measuring the layer thickness of the liquid crystal in each of the liquid crystal injection elements having a convex shape,
A method is employed in which the convex shape is corrected by applying pressure to the transparent substrate until the predetermined liquid crystal layer thickness reaches a predetermined value, and the liquid crystal is sealed.

【0028】このように本発明の液晶素子の製造装置お
よびそれを用いた液晶素子の製造方法では、個々の液晶
注入素子が持つ別個の凸状形状を矯正して液晶を封止す
る。このため本発明では、個々の液晶素子に封じ込める
液晶の層厚を設定値どおりに制御した液晶素子を得るこ
とが可能になる。
As described above, in the liquid crystal device manufacturing apparatus and the liquid crystal device manufacturing method using the same according to the present invention, the liquid crystal is sealed by correcting the individual convex shapes of the individual liquid crystal injection elements. For this reason, in the present invention, it is possible to obtain a liquid crystal element in which the thickness of the liquid crystal contained in each liquid crystal element is controlled according to a set value.

【0029】ここで液晶注入素子中の液晶の層厚を測定
する測定原理について説明する。
Here, the measurement principle for measuring the layer thickness of the liquid crystal in the liquid crystal injection element will be described.

【0030】図5は液晶素子の液晶分子の光軸の方向を
示す配向ベクトルと偏光子および検光子の光軸の方向と
の関係を示す図であって、入射光側の液晶の配向ベクト
ル光軸に対する偏光子の光軸とのなす角度(θ)と、検
光子の光軸とのなす角度(γ)と、出射光側の液晶の配
向ベクトル光軸とのなす角度(φ)について定義してあ
る。
FIG. 5 is a diagram showing the relationship between the orientation vector indicating the direction of the optical axis of the liquid crystal molecules of the liquid crystal element and the directions of the optical axes of the polarizer and the analyzer. An angle (θ) between the polarizer and the optical axis with respect to the axis, an angle (γ) with the optical axis of the analyzer, and an angle (φ) between the orientation vector optical axis of the liquid crystal on the exit light side are defined. It is.

【0031】図5に示す液晶を用いた光学素子を通過す
る光の透過率は、1987年発行のMol.Crys
t.Liq.Letters 第4巻の69頁から75
頁に記載されているように、液晶の屈折率異方性(Δ
n)と液晶の層厚(d)および透過する光の波長(λ)
との値から計算することができる。
The transmittance of light passing through the optical element using the liquid crystal shown in FIG. 5 is described in Mol. Crys
t. Liq. Letters, Vol. 4, pp. 69-75
As described on the page, the refractive index anisotropy of the liquid crystal (Δ
n), the liquid crystal layer thickness (d), and the wavelength of transmitted light (λ)
Can be calculated from the value

【0032】例えば、φ、すなわち液晶の捻れ角度が2
70°の液晶注入素子であって、θが−45°、γが4
5°の場合の光学素子の例の透過光の透過率(T)との
関係を表す数式を以下に示す。
For example, φ, that is, the twist angle of the liquid crystal is 2
70 ° liquid crystal injection element, wherein θ is −45 ° and γ is 4
An equation representing the relationship with the transmittance (T) of the transmitted light of the example of the optical element in the case of 5 ° is shown below.

【数1】 (Equation 1)

【0033】この数式からΔnが既知の液晶を用いた液
晶注入素子を透過する測定光の透過率を測定すれば、液
晶の層厚を算出することができる。
The layer thickness of the liquid crystal can be calculated by measuring the transmittance of the measuring light passing through the liquid crystal injection element using the liquid crystal whose Δn is known from this equation.

【0034】[0034]

【発明の実施の形態】以下図面を用いて本発明を実施す
るための最良の形態における液晶素子の製造装置とそれ
を用いた液晶素子の製造方法について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a liquid crystal device manufacturing apparatus and a liquid crystal device manufacturing method using the same in the best mode for carrying out the present invention will be described below with reference to the drawings.

【0035】[製造装置の説明]図1は本発明の液晶素
子の製造装置の構成を示す斜視図である。
[Description of Manufacturing Apparatus] FIG. 1 is a perspective view showing the structure of a manufacturing apparatus for a liquid crystal element according to the present invention.

【0036】本発明の液晶素子の製造装置は、液晶注入
素子の液晶の層厚を測定する手段と、液晶の層厚を測定
した結果に基づき相対する透明基板を加圧する手段と、
液晶の層厚を測定した結果に基づきシール材の開口部を
封止する手段とを備える。
The apparatus for manufacturing a liquid crystal element according to the present invention comprises: means for measuring the thickness of the liquid crystal of the liquid crystal injection element; means for pressing the transparent substrate facing each other based on the result of measuring the thickness of the liquid crystal;
Means for sealing the opening of the sealing material based on the result of measuring the thickness of the liquid crystal layer.

【0037】まず、液晶注入素子の液晶の層厚を測定す
る手段の構成は、測定用光源と分光光度計と、偏光子
と、検光子とからなる。
First, the configuration of the means for measuring the layer thickness of the liquid crystal of the liquid crystal injection element comprises a light source for measurement, a spectrophotometer, a polarizer, and an analyzer.

【0038】ハロゲン灯、キセノン灯などからなる測定
用光源22から発せられる測定光は偏光子26と検光子
28を介して液晶注入素子10を透過した後に、分光光
度計24で種々の波長の透過率として測定される。
The measuring light emitted from the measuring light source 22 composed of a halogen lamp, a xenon lamp or the like is transmitted through the liquid crystal injection element 10 through the polarizer 26 and the analyzer 28, and then transmitted through the spectrophotometer 24 at various wavelengths. It is measured as a percentage.

【0039】前述したように、測定した透過率は液晶注
入素子10と、偏光子26と、検光子28とからなる光
学素子によって決まる。
As described above, the measured transmittance is determined by the optical element including the liquid crystal injection element 10, the polarizer 26, and the analyzer 28.

【0040】すなわち、入射光側の液晶の配向ベクトル
光軸に対する出射光側の液晶の配向ベクトル光軸とのな
す角度(φ)、および液晶の屈折率異方性(Δn)が定
まっている液晶注入素子と、入射光側の液晶の配向ベク
トル光軸に対する偏光子の光軸とのなす角度(θ)と、
検光子の光軸とのなす角度(γ)とが定まっている光学
素子においては、測定した透過率(T)は液晶注入素子
10の液晶の層厚(d)に依存し、測定した透過光の透
過率(T)から液晶注入素子10の液晶の層厚(d)を
算出することができる。
That is, an angle (φ) between the orientation vector optical axis of the liquid crystal on the incident light side and the orientation vector optical axis of the liquid crystal on the exit light side, and the refractive index anisotropy (Δn) of the liquid crystal are determined. An angle (θ) between the injection element and the optical axis of the polarizer with respect to the optical axis of the liquid crystal on the incident light side;
In an optical element having an angle (γ) between the analyzer and the optical axis, the measured transmittance (T) depends on the liquid crystal layer thickness (d) of the liquid crystal injection element 10, and the measured transmitted light The thickness (d) of the liquid crystal of the liquid crystal injection element 10 can be calculated from the transmittance (T) of the liquid crystal.

【0041】次に、相対する透明基板を加圧する手段の
構成は、それぞれ対となっている支持台と加圧力伝達材
とからなる。
Next, the structure of the means for pressing the opposing transparent substrates comprises a pair of supporting bases and a pressing force transmitting material.

【0042】金属板などからなる支持台32a、支持台
32bには、それぞれシリコーンゴム材の空気袋からな
る加圧力伝達材34a、加圧力伝達材34bを張り付け
てある。
A pressing force transmitting member 34a and a pressing force transmitting member 34b each formed of an air bag made of a silicone rubber material are attached to the support base 32a and the support base 32b made of a metal plate or the like.

【0043】支持台32a、支持台32bおよび加圧力
伝達材34a、加圧力伝達材34bには、液晶の層厚を
測定する手段において測定光源から発せられる測定光を
通過させるための測定口36a、測定口36bおよび測
定口38a、測定口38bがある。
The support 32a, the support 32b, the pressure transmitting material 34a, and the pressure transmitting material 34b have measuring ports 36a through which measurement light emitted from a measuring light source is passed in a means for measuring the layer thickness of the liquid crystal. There is a measurement port 36b, a measurement port 38a, and a measurement port 38b.

【0044】液晶注入素子10を加圧力伝達材34aと
加圧力伝達材34bとの間に置き、加圧空気を加圧力伝
達材としての空気袋に配設してある継ぎ手口より圧力可
変機構としての圧力調整弁(図示せず)を介して空気袋
中に導入できる。
The liquid crystal injection element 10 is placed between the pressure transmitting member 34a and the pressure transmitting member 34b, and pressurized air is supplied from a joint provided in an air bag serving as the pressure transmitting member as a pressure variable mechanism. Can be introduced into the air bag via a pressure regulating valve (not shown).

【0045】支持台32aと支持台32bとは留め金
(図示せず)で固定されており、導入した加圧空気は空
気袋を介して液晶注入素子10の透明基板を加圧するこ
とができる。そして液晶の層厚を測定する手段で測定し
た結果に基づき圧力可変機構により透明基板に加える圧
力を変えることができる。
The support table 32a and the support table 32b are fixed by a clasp (not shown), and the introduced pressurized air can press the transparent substrate of the liquid crystal injection element 10 through an air bag. The pressure applied to the transparent substrate can be changed by the pressure variable mechanism based on the result measured by the means for measuring the layer thickness of the liquid crystal.

【0046】なお、ここでは加圧力伝達材として空気袋
を用いているが、他にはゴム部材などの弾性部材を用い
て、支持台をバネなどで直接的に機械加圧する方式でも
構わない。
Here, an air bag is used as the pressure transmitting material, but an elastic member such as a rubber member may be used, and the support table may be directly mechanically pressed by a spring or the like.

【0047】次に、シール材の開口部を封止する手段の
構成は、封止材分注器と封止材硬化用光源とからなる。
Next, the structure of the means for sealing the opening of the sealing material includes a sealing material dispenser and a light source for curing the sealing material.

【0048】注射器などからなる封止材分注器42は封
止材を液晶注入素子の開口部に塗布するためのものであ
る。封止材硬化用光源44は塗布した封止材を硬化する
ためのもので、封止材材料によって異なるが紫外線や赤
外線を発する光源である。そして液晶の層厚を測定する
手段で測定した結果に基づきシール材の開口部を封止す
ることができる。
The sealing material dispenser 42 composed of a syringe or the like is for applying the sealing material to the opening of the liquid crystal injection element. The sealing material curing light source 44 is for curing the applied sealing material, and is a light source that emits ultraviolet rays or infrared rays depending on the sealing material. The opening of the sealing material can be sealed based on the result measured by the means for measuring the thickness of the liquid crystal layer.

【0049】上述の説明では省略したが、封止材を液晶
注入素子の開口部に塗布する際に、前記相対向する透明
基板を加圧する手段にて液晶注入素子の中の液晶を開口
部より押し出した後に、押し出された液晶を拭き取る機
構を有すれば、封止材の透明基板に対する接着力を増す
効果を大きくすることができる。
Although omitted in the above description, when the sealing material is applied to the opening of the liquid crystal injection element, the liquid crystal in the liquid crystal injection element is applied from the opening by means of pressing the transparent substrate facing each other. If a mechanism for wiping out the extruded liquid crystal after the extrusion is provided, the effect of increasing the adhesive strength of the sealing material to the transparent substrate can be increased.

【0050】本発明の液晶素子の製造装置は、液晶注入
素子の液晶の層厚を測定する手段と、相対向する透明基
板を加圧する手段と、シール材の開口部を封止する手段
とを備え、それぞれの手段はお互いに関連を持った構成
とする。
The apparatus for manufacturing a liquid crystal element according to the present invention comprises a means for measuring the thickness of the liquid crystal of the liquid crystal injection element, a means for pressing the opposing transparent substrates, and a means for sealing the opening of the sealing material. Provided, each means has a configuration related to each other.

【0051】すなわち、透明基板を加圧する手段は、液
晶の層厚を測定する手段で液晶の層厚を測定し、その測
定した結果に基づいて測定した液晶の層厚があらかじめ
定めた所定数値になるまで圧力可変機構としての圧力調
整弁にて透明基板を加圧する圧力を変えることができ
る。
That is, the means for pressing the transparent substrate measures the layer thickness of the liquid crystal by the means for measuring the layer thickness of the liquid crystal, and the layer thickness of the liquid crystal measured on the basis of the measurement result becomes a predetermined numerical value. Until it is possible, the pressure for pressing the transparent substrate can be changed by a pressure adjusting valve as a pressure variable mechanism.

【0052】この液晶の層厚を測定する手段による測定
と、透明基板を加圧する手段による透明基板の加圧と
は、時系列的に順次交互におこなう構成であっても構わ
ないが、同時にしかも連続的におこなう構成の方が好ま
しい。
The measurement by the means for measuring the layer thickness of the liquid crystal and the pressing of the transparent substrate by the means for pressing the transparent substrate may be performed in a time-sequentially and alternately manner. A configuration in which the process is performed continuously is preferable.

【0053】また、シール材の開口部を封止する手段
は、液晶の層厚を測定する手段で測定し、その測定した
結果に基づいて透明基板を加圧する手段で液晶の層厚が
あらかじめ定めた所定数値になるまで加圧力を変えた
後、シール材の開口部に封止材を塗布して液晶を封止す
ることができる。
The means for sealing the opening of the sealing material is measured by means for measuring the thickness of the liquid crystal layer, and the thickness of the liquid crystal layer is determined in advance by means for pressing the transparent substrate based on the measurement result. After the pressure is changed to a predetermined value, a sealing material is applied to the opening of the sealing material to seal the liquid crystal.

【0054】このシール材の開口部を封止する手段によ
る開口部の封止は、液晶の層厚があらかじめ定めた所定
数値になるまで透明基板を加圧する手段による透明基板
の加圧を保持した状態でおこなう構成であることが好ま
しい。
The sealing of the opening by the means for sealing the opening of the sealing material is performed by pressing the transparent substrate by the means for pressing the transparent substrate until the liquid crystal layer thickness reaches a predetermined value. It is preferable that the configuration is performed in a state.

【0055】これらの一連の操作を手動で単独で順次お
こなう構成の他に、それぞれの手段間を電気信号で自動
制御し、連続的におこなう構成とすることも可能であ
る。
In addition to the structure in which these series of operations are performed manually and sequentially, it is also possible to have a structure in which each means is automatically controlled by an electric signal to be continuously performed.

【0056】[製造方法の説明]図2は本発明の液晶素
子の製造方法の構成を示す図であり、液晶注入素子と製
造法装置の断面図である。
[Explanation of Manufacturing Method] FIG. 2 is a cross-sectional view showing a structure of a manufacturing method of a liquid crystal element of the present invention, which is a liquid crystal injection element and a manufacturing apparatus.

【0057】本発明の液晶素子の製造方法は、液晶注入
素子の相対向する透明基板間に注入した液晶の層厚を測
定する工程と、液晶の層厚を測定した結果に基づき相対
向する透明基板に圧力を加える工程と、液晶の層厚を測
定した結果に基づきシール材の開口部を封じる工程とを
有する。
The method for manufacturing a liquid crystal element according to the present invention comprises the steps of measuring the thickness of the liquid crystal injected between the transparent substrates facing each other of the liquid crystal injection element, and the steps of measuring the thickness of the liquid crystal injected between the transparent substrates. The method includes a step of applying pressure to the substrate and a step of closing the opening of the sealant based on the result of measuring the thickness of the liquid crystal layer.

【0058】まず、相対する透明基板を開口部を設けて
シール材にて貼り合わせた後に、シール材で囲われる内
側領域の相対する透明基板間に液晶を注入して液晶注入
素子を形成する。この段階では前述したように、液晶注
入素子は凸状形状になっている。
First, the transparent substrates facing each other are provided with openings and bonded with a sealing material, and then liquid crystal is injected between the transparent substrates facing each other in the inner region surrounded by the sealing material to form a liquid crystal injection element. At this stage, as described above, the liquid crystal injection element has a convex shape.

【0059】次に、対向する透明基板間に注入された液
晶の層厚を測定する工程は、注入液晶素子を透過する光
の透過率を測定する方法で構成する。
Next, the step of measuring the layer thickness of the liquid crystal injected between the opposing transparent substrates comprises a method of measuring the transmittance of light transmitted through the injected liquid crystal element.

【0060】測定用光源22、偏光子26、液晶注入素
子10、検光子28、分光光度計24を記載順に配置
し、測定用光源22から発する測定光が液晶注入素子1
0を透過した透過光を分光光度計にて受光し、透過光の
透過率を測定する。
The measurement light source 22, the polarizer 26, the liquid crystal injection element 10, the analyzer 28, and the spectrophotometer 24 are arranged in the stated order, and the measurement light emitted from the measurement light source 22 is applied to the liquid crystal injection element 1.
The transmitted light passing through 0 is received by a spectrophotometer, and the transmittance of the transmitted light is measured.

【0061】前述した方法で、液晶注入素子10を透過
した透過率から液晶の屈折率異方性(Δn)が既知であ
る液晶注入素子10の液晶の層厚を算出する。
The thickness of the liquid crystal of the liquid crystal injection element 10 whose refractive index anisotropy (Δn) of the liquid crystal is known is calculated from the transmittance transmitted through the liquid crystal injection element 10 by the method described above.

【0062】次に、相対する透明基板に圧力を加える工
程は、液晶注入素子を挟んだ加圧力伝達材を介して加圧
し、液晶注入素子の凸状部分の余分な液晶を押し出す方
法で構成する。
Next, the step of applying pressure to the opposing transparent substrate is constituted by a method in which pressure is applied via a pressure transmitting material sandwiching the liquid crystal injection element to push out excess liquid crystal in the convex portion of the liquid crystal injection element. .

【0063】支持台32a、支持台32bのそれぞれに
貼り付けた加圧力伝達材34a、加圧力伝達材34bと
してのシリコーンゴム材からなる空気袋間に液晶注入素
子10を挟み、対になっている空気袋に配設してある継
ぎ手口より圧力調整弁(図示せず)を介して加圧空気を
空気袋中に導入する。
The liquid crystal injection elements 10 are sandwiched between air bags made of silicone rubber material as the pressure transmitting members 34a and 34b attached to the support tables 32a and 32b, respectively. Pressurized air is introduced into the air bag through a joint opening provided in the air bag through a pressure regulating valve (not shown).

【0064】支持台32aと支持台32bとは留め金
(図示せず)で固定しており、導入した加圧空気で空気
袋を介して液晶注入素子10の透明基板を加圧する。こ
の結果、凸状形状の液晶注入素子10を矯正するととも
に、液晶注入素子の凸状部分の液晶のうち加圧力で定ま
る量をシール材の開口部16aより加圧排出する。
The support table 32a and the support table 32b are fixed by a clasp (not shown), and pressurize the transparent substrate of the liquid crystal injection element 10 with the introduced pressurized air through an air bag. As a result, the liquid crystal injection element 10 having the convex shape is corrected, and the amount of the liquid crystal in the convex portion of the liquid crystal injection element determined by the pressing force is discharged from the opening 16a of the sealing material.

【0065】この透明基板に圧力を加える工程では、液
晶の層厚を測定する工程で測定した結果に基づき透明基
板に加える圧力を変える。
In the step of applying pressure to the transparent substrate, the pressure applied to the transparent substrate is changed based on the result measured in the step of measuring the thickness of the liquid crystal layer.

【0066】次に、シール材の開口部を封じる工程は、
開口部に封止材を塗布した後に、封止材を硬化する方法
で構成する。
Next, the step of sealing the opening of the sealing material includes:
After applying the sealing material to the opening, the sealing material is cured.

【0067】シール材の開口部16aより加圧排出した
余分の液晶を拭き取り、封止材としての紫外線硬化樹脂
を注射器などの封止材分注器42でシール材の開口部1
6aに塗布する。そして、封止材硬化用光源44として
の紫外線光源から発する紫外線で紫外線硬化樹脂を硬化
して、液晶注素子内に液晶を封止し、液晶素子とする。
Excess liquid crystal which has been pressurized and discharged from the opening 16a of the sealing material is wiped off, and an ultraviolet curable resin as a sealing material is applied to the opening 1 of the sealing material by a sealing material dispenser 42 such as a syringe.
6a. Then, the ultraviolet curable resin is cured by ultraviolet rays emitted from an ultraviolet light source as the light source 44 for curing the sealing material, and the liquid crystal is sealed in the liquid crystal injection element to form a liquid crystal element.

【0068】シール材の開口部を封じる工程では、液晶
の層厚を測定する工程で測定した結果に基づきシール材
の開口部を封じる。
In the step of sealing the opening of the sealing material, the opening of the sealing material is sealed based on the result measured in the step of measuring the thickness of the liquid crystal layer.

【0069】本発明の液晶素子の製造方法は、液晶注入
素子の相対する透明基板間に注入した液晶の層厚を測定
する工程と、相対向する透明基板に圧力を加える工程
と、シール材の開口部を封じる工程とを有し、それぞれ
の工程はお互いに関連を持った構成とする。
The method for manufacturing a liquid crystal element according to the present invention comprises the steps of measuring the thickness of the liquid crystal injected between the transparent substrates facing each other in the liquid crystal injection element, applying pressure to the opposing transparent substrates, A step of sealing the opening, and the respective steps are configured to be related to each other.

【0070】すなわち、透明基板に圧力を加える工程
は、液晶の層厚を測定する工程で液晶の層厚を測定し、
その測定した結果に基づいて測定した液晶の層厚があら
かじめ定めた所定数値になるまで透明基板に加える圧力
を変える。
That is, in the step of applying pressure to the transparent substrate, the thickness of the liquid crystal is measured in the step of measuring the thickness of the liquid crystal.
The pressure applied to the transparent substrate is changed until the layer thickness of the liquid crystal measured based on the measurement result reaches a predetermined numerical value.

【0071】そして、液晶の層厚を測定しながら、透明
基板に圧力を加える工程にて加える圧力を徐々に増し
て、液晶の層厚が所定数値になった時点で、シール材の
開口部を封じる工程でシール材の開口部に封止材を塗布
して液晶を封止する。
Then, while measuring the thickness of the liquid crystal layer, the pressure applied in the step of applying pressure to the transparent substrate is gradually increased, and when the thickness of the liquid crystal layer reaches a predetermined value, the opening of the sealing material is closed. In the sealing step, a liquid crystal is sealed by applying a sealing material to an opening of the sealing material.

【0072】この液晶の層厚を測定する工程でおこなう
測定と、透明基板に圧力を加える工程の加圧とは、時系
列的に順次交互におこなう構成であっても構わないが、
同時にしかも連続的におこなう構成の方が好ましい。
The measurement performed in the step of measuring the layer thickness of the liquid crystal and the pressurization in the step of applying pressure to the transparent substrate may be performed in a time-sequentially and alternately manner.
It is preferable that the configuration be performed simultaneously and continuously.

【0073】また、シール材の開口部を封じる工程は、
液晶の層厚を測定する工程で測定し、その測定した結果
に基づいて透明基板に圧力を加える工程で液晶の層厚が
あらかじめ定めた所定数値になるまで加圧力を変えてお
こなった後、シール材の開口部に封止材を塗布して液晶
を封じ込める。
Further, the step of sealing the opening of the sealing material includes:
In the step of measuring the thickness of the liquid crystal layer, applying pressure to the transparent substrate based on the measurement result, changing the pressure until the thickness of the liquid crystal layer reaches a predetermined value, and then sealing A liquid crystal is sealed by applying a sealing material to the opening of the material.

【0074】このシール材の開口部を封じる工程は、液
晶の層厚があらかじめ定めた所定数値になるまで透明基
板に圧力を加える工程で透明基板に加えた加圧力を保持
した状態でおこなう構成であることが好ましい。
The step of closing the opening of the sealing material is performed in a step of applying pressure to the transparent substrate until the thickness of the liquid crystal reaches a predetermined value, while maintaining the pressure applied to the transparent substrate. Preferably, there is.

【0075】これらの一連の操作を手動で単独で順次お
こなう構成の他に、それぞれの工程の手段間を電気信号
で自動制御し、連続的におこなう構成とすることも可能
である。
In addition to the configuration in which a series of these operations are performed manually and sequentially, the configuration in which the means in each step are automatically controlled by an electric signal to perform the operations continuously may be employed.

【0076】[0076]

【発明の効果】以上の説明で明らかなように、本発明の
液晶素子の製造装置は、個々の凸状形状の液晶注入素子
の中の液晶の層厚を測定する手段を備えており、測定し
た液晶の層厚の数値を見ながらあらかじめ定めた所定の
液晶の層厚になるまで透明基板を加圧して凸状形状を矯
正する手段とその状態を保持して液晶を封じ込める手段
を備える。そして、本発明の液晶素子の製造方法は、個
々の凸状形状の液晶注入素子中の液晶の層厚を測定しな
がら、あらかじめ定めた所定の液晶の層厚数値になるま
で透明基板に圧力を加えて凸状形状を矯正し、その状態
を保持して液晶を封じ込める。
As is apparent from the above description, the apparatus for manufacturing a liquid crystal element according to the present invention includes means for measuring the thickness of the liquid crystal in each of the liquid crystal injection elements having a convex shape. A means for correcting the convex shape by pressing the transparent substrate until a predetermined liquid crystal layer thickness is obtained while observing the numerical value of the obtained liquid crystal layer thickness, and a means for holding the liquid crystal and holding the state. In the method of manufacturing a liquid crystal element according to the present invention, while measuring the layer thickness of the liquid crystal in each liquid crystal injection element having a convex shape, a pressure is applied to the transparent substrate until a predetermined liquid crystal layer thickness value is obtained. In addition, the convex shape is corrected, and the liquid crystal is sealed while maintaining the state.

【0077】このため、本発明では、液晶の層厚を制御
することが可能となり、所望の液晶の層厚を有する液晶
素子を得ることができる。
Therefore, according to the present invention, the thickness of the liquid crystal layer can be controlled, and a liquid crystal element having a desired liquid crystal layer thickness can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態における液晶素子の製造装置
を示す斜視図である。
FIG. 1 is a perspective view showing an apparatus for manufacturing a liquid crystal element according to an embodiment of the present invention.

【図2】本発明の実施形態における液晶素子の製造方法
を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a method for manufacturing a liquid crystal element according to an embodiment of the present invention.

【図3】液晶注入素子の形状を示す断面図である。FIG. 3 is a sectional view showing a shape of a liquid crystal injection element.

【図4】工業的に理想的な液晶素子の生産数量分布を示
す図である。
FIG. 4 is a diagram showing a production quantity distribution of an industrially ideal liquid crystal element.

【図5】液晶を用いた光学素子の各構成要素間の関係を
示す図である。
FIG. 5 is a diagram showing a relationship between components of an optical element using a liquid crystal.

【符号の説明】[Explanation of symbols]

10 液晶注入素子 22 測定用光源 24 分光光度計 26 偏光子 28 検光子 32a、32b 支持台 34a、34b 加圧力伝達材 42 封止材分注器 44 封止材硬化用光源 Reference Signs List 10 liquid crystal injection element 22 light source for measurement 24 spectrophotometer 26 polarizer 28 analyzer 32a, 32b support base 34a, 34b pressure transmitting material 42 sealing material dispenser 44 light source for curing sealing material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 相対する透明基板間に液晶を挟持してな
る液晶素子の製造装置であって、相対する透明基板を開
口部を設けてシール材にて貼り合わせ、シール材で囲わ
れる内側領域と相対する透明基板間に液晶を注入した液
晶注入素子の、液晶の層厚を測定する手段と、前記液晶
の層厚を測定する手段で測定した結果に基づき、相対す
る透明基板を加圧する手段と、前記液晶の層厚を測定す
る手段で測定した結果に基づき、シール材の開口部を封
止する手段とを備えることを特徴とする液晶素子の製造
装置。
1. An apparatus for manufacturing a liquid crystal device comprising a liquid crystal sandwiched between opposing transparent substrates, wherein the opposing transparent substrates are provided with an opening and bonded with a sealing material, and an inner region surrounded by the sealing material. A means for measuring the layer thickness of the liquid crystal of the liquid crystal injection element in which the liquid crystal is injected between the transparent substrates opposed to each other, and a means for pressing the opposed transparent substrate based on the result measured by the means for measuring the layer thickness of the liquid crystal. And a means for sealing an opening of a sealing material based on a result measured by the means for measuring the layer thickness of the liquid crystal.
【請求項2】 請求項1記載の液晶素子の製造装置であ
って、相対する透明基板を加圧する手段は、前記液晶の
層厚を測定する手段で測定する液晶の層厚が所定の数値
になるまで相対する透明基板を加圧する圧力を変える圧
力可変機構を有することを特徴とする液晶素子の製造装
置。
2. The apparatus for manufacturing a liquid crystal element according to claim 1, wherein the means for pressing the opposing transparent substrate has a liquid crystal layer thickness measured by the means for measuring the liquid crystal layer thickness having a predetermined value. An apparatus for manufacturing a liquid crystal element, comprising: a pressure variable mechanism for changing a pressure for pressing a transparent substrate facing each other.
【請求項3】 請求項1記載の液晶素子の製造装置であ
って、シール材の開口部を封止する手段は、前記透明基
板を加圧する手段で透明基板を加圧した状態を保持しな
がらシール材の開口部を封止する機構を有することを特
徴とする液晶素子の製造装置。
3. The apparatus for manufacturing a liquid crystal element according to claim 1, wherein the means for sealing the opening of the sealing material holds the transparent substrate pressed by the transparent substrate pressing means. An apparatus for manufacturing a liquid crystal element, comprising a mechanism for sealing an opening of a sealant.
【請求項4】 相対する透明基板間に液晶を挟持してな
る液晶素子の製造方法であって、相対する透明基板を開
口部を設けてシール材にて貼り合わせ、シール材で囲わ
れる内側領域の相対する透明基板間に液晶を注入した液
晶注入素子の、液晶の層厚を測定する工程と、前記液晶
の層厚を測定する工程で測定した結果に基づき、相対す
る透明基板に圧力を加える工程と、前記液晶の層厚を測
定する工程で測定した結果に基づき、シール材の開口部
を封じる工程とを有することを特徴とする液晶素子の製
造方法。
4. A method for manufacturing a liquid crystal device comprising a liquid crystal sandwiched between opposed transparent substrates, wherein the opposed transparent substrates are provided with an opening, bonded together with a sealing material, and an inner region surrounded by the sealing material. Applying pressure to the opposing transparent substrate based on the result of the step of measuring the layer thickness of the liquid crystal and the step of measuring the layer thickness of the liquid crystal of the liquid crystal injection element in which the liquid crystal is injected between the opposing transparent substrates. A method for manufacturing a liquid crystal element, comprising: a step of sealing an opening of a sealing material based on a result measured in a step of measuring a layer thickness of the liquid crystal.
【請求項5】 請求項4記載の液晶素子の製造方法であ
って、相対する透明基板に圧力を加える工程は、前記液
晶の層厚を測定する工程で測定する液晶の層厚が所定の
数値になるまで相対する透明基板に加える圧力を変える
ことを特徴とする液晶素子の製造方法。
5. The method for manufacturing a liquid crystal element according to claim 4, wherein the step of applying pressure to the opposing transparent substrate includes the step of measuring the layer thickness of the liquid crystal in which the layer thickness of the liquid crystal measured is a predetermined numerical value. A method for manufacturing a liquid crystal element, characterized by changing a pressure applied to an opposing transparent substrate until the pressure is reduced.
【請求項6】 請求項4記載の液晶素子の製造方法であ
って、シール材の開口部を封じる工程は、前記透明基板
に圧力を加える工程で透明基板に圧力を加えた状態を保
持しておこなうことを特徴とする液晶素子の製造方法。
6. The method for manufacturing a liquid crystal element according to claim 4, wherein the step of sealing the opening of the sealing material includes the step of applying pressure to the transparent substrate while maintaining the state of applying pressure to the transparent substrate. A method for manufacturing a liquid crystal element, comprising:
JP28322497A 1997-10-16 1997-10-16 Apparatus for production of liquid crystal device and production of liquid crystal device using the same Pending JPH11119231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28322497A JPH11119231A (en) 1997-10-16 1997-10-16 Apparatus for production of liquid crystal device and production of liquid crystal device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28322497A JPH11119231A (en) 1997-10-16 1997-10-16 Apparatus for production of liquid crystal device and production of liquid crystal device using the same

Publications (1)

Publication Number Publication Date
JPH11119231A true JPH11119231A (en) 1999-04-30

Family

ID=17662708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28322497A Pending JPH11119231A (en) 1997-10-16 1997-10-16 Apparatus for production of liquid crystal device and production of liquid crystal device using the same

Country Status (1)

Country Link
JP (1) JPH11119231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359394C (en) * 2003-09-09 2008-01-02 Lg.菲利浦Lcd株式会社 Apparatus and method for fabricating liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359394C (en) * 2003-09-09 2008-01-02 Lg.菲利浦Lcd株式会社 Apparatus and method for fabricating liquid crystal display device

Similar Documents

Publication Publication Date Title
US5677749A (en) Method for producing an LCD having no spacers in the display area in which heating alleviates cell distortion or greater pressure is applied to the seal region
US5587821A (en) Liquid crystal display device having a particular compensator
KR100408961B1 (en) Cell thickness detection method, cell thickness control system, and manufacturing method for liquid crystal device
US20180272950A1 (en) Vehicle mirror having image display function and method for producing the same
JPH11119231A (en) Apparatus for production of liquid crystal device and production of liquid crystal device using the same
JP2004279946A (en) 2d/3d switching type liquid crystal display panel and 2d/3d switching type liquid crystal display device
JPH08313917A (en) Liquid crystal display element and its production
JPH02212816A (en) Liquid crystal display device
JP3790321B2 (en) Liquid crystal display
US7626657B2 (en) Multi-function integrated polarizer/optical film structure having first and second polarizer films coated on opposite sides of a first substrate and one-half a third polarizer film coated on opposite sides of a second substrate
JPH10274773A (en) Liquid crystal cell and manufacturing method thereof
JPS60146224A (en) Liquid crystal display device
US7773192B2 (en) Method for measuring a cell gap in a liquid crystal display
JPH06160865A (en) Liquid crystal display element and its production
KR100224744B1 (en) Dstn mode lcd and method of compensating the phase difference
WO2020034539A1 (en) Manufacturing method and manufacturing equipment for display panel
JP2506833B2 (en) Liquid crystal display manufacturing method
JP2609088B2 (en) Manufacturing method of liquid crystal display
JP2903136B2 (en) Manufacturing method of liquid crystal electro-optical device
JP3794388B2 (en) Cell gap adjusting device and method of manufacturing liquid crystal display device
KR970002984B1 (en) Cell gap correcting method and device of liquid crystal display element
JP4158890B2 (en) Liquid crystal optical element and manufacturing method thereof
JPH02304526A (en) Liquid crystal display element
KR940009131B1 (en) Film compensated light phase
KR930002930B1 (en) Making method of lcd