JP2506833B2 - Liquid crystal display manufacturing method - Google Patents

Liquid crystal display manufacturing method

Info

Publication number
JP2506833B2
JP2506833B2 JP62272501A JP27250187A JP2506833B2 JP 2506833 B2 JP2506833 B2 JP 2506833B2 JP 62272501 A JP62272501 A JP 62272501A JP 27250187 A JP27250187 A JP 27250187A JP 2506833 B2 JP2506833 B2 JP 2506833B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
adhesive
cell
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62272501A
Other languages
Japanese (ja)
Other versions
JPH01114823A (en
Inventor
誠一 谷口
和夫 横山
整宏 南出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62272501A priority Critical patent/JP2506833B2/en
Publication of JPH01114823A publication Critical patent/JPH01114823A/en
Application granted granted Critical
Publication of JP2506833B2 publication Critical patent/JP2506833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、文字あるいは画像表示用の液晶表示装置の
製造方法に関し、特に液晶セルの中に液晶を充填後接着
剤を吸入させ封止させる液晶表示装置の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal display device for displaying characters or images, and more particularly to a liquid crystal display in which a liquid crystal cell is filled with liquid crystal and then an adhesive is sucked and sealed. The present invention relates to a method for manufacturing a device.

従来の技術 従来の技術としては、例えば特開昭60−24518号公報
に示されているように第8図のような構造の液晶表示装
置の製造方法があった。第8図aは液晶セル断面図であ
り、第8図bは液晶セルの平面図である。これらの図に
おいて、19および20は可撓性基板であり、プラスチック
のフィルム又はシートからなるものであり、21は基板周
囲に設けた接着剤層、22はセル厚制御材で、種々の物
質、例えば、グラスファイバー、高分子微粒子、フィル
ム等があるが、高分子微粒子の使用が特に好ましいとさ
れている。23は液晶を収容すべき空間である。この構造
の液晶セル内に液晶注入口24から液晶を注入する場合、
この液晶の注入法としては、例えば、液晶セルを真空系
内に放置してセル内を減圧した後、セルの液晶注入口を
液晶内に導入し、液晶を大気圧にして、その液晶圧と液
晶セル内圧との圧力差及び毛細管現象を利用して、液晶
セル内に液晶を余剰液晶分が生じるように注入し、充満
させる。液晶セル内に液晶が充満したら、液晶セル面を
均一に加圧して、余剰液晶分を液晶セルの液晶注入口か
ら系外に除去し、次いで液晶注入口を封止する。この場
合、液晶セル面の加圧は、ローラ,押圧板等の平滑表面
を有するものであれば任意に用いることができ、セルの
液相注入口の封止は超音波ウェルダー等を用いて行うこ
とができるというものである。しかしながらこの方法で
は液晶セルを加圧した状態で封止するため封止に用いた
接着剤を液晶セル内に吸入させる時間がかなり必要であ
り、量産に適さないと思われる。短時間で封止した場
合、接着剤を液晶セル内に吸入させる量は少なく、耐湿
の点と画質の点で信頼性に不利であると思われる また他の方法によれば、液晶セルをガラス板等の表面
平滑な板の間に挟んで押圧固定化した後、液晶セルの液
晶注入口から液晶を液晶セル内に注入する。液晶を注入
する場合、液晶セルの両面は平滑表面により押圧されて
いることから、過不足なく行われ、従ってセル内に液晶
の注入後には、そのまま注入口を封止すればよいという
ものである。この方法によれば封止に必要な接着剤のパ
ネル内吸入において液晶の体積の変化がないため、液晶
注入口に塗布した接着剤は毛細管現象により液晶セル内
に吸入させるのみであり接着剤の吸入時間はかなり必要
であり、量産に適さないという欠点を有する。
2. Description of the Related Art As a conventional technique, there is a method of manufacturing a liquid crystal display device having a structure as shown in FIG. 8 as disclosed in Japanese Patent Laid-Open No. 24518/1985. FIG. 8a is a sectional view of the liquid crystal cell, and FIG. 8b is a plan view of the liquid crystal cell. In these figures, 19 and 20 are flexible substrates, which are made of a plastic film or sheet, 21 is an adhesive layer provided around the substrate, 22 is a cell thickness control material, various substances, For example, there are glass fibers, polymer fine particles, films and the like, but it is said that the use of polymer fine particles is particularly preferable. 23 is a space for accommodating the liquid crystal. When injecting liquid crystal from the liquid crystal inlet 24 into the liquid crystal cell of this structure,
As a method for injecting this liquid crystal, for example, the liquid crystal cell is left in a vacuum system to depressurize the inside of the cell, then the liquid crystal injection port of the cell is introduced into the liquid crystal, and the liquid crystal is brought to atmospheric pressure. By utilizing the pressure difference from the internal pressure of the liquid crystal cell and the capillary phenomenon, liquid crystal is injected and filled in the liquid crystal cell so that an excessive liquid crystal content is generated. When the liquid crystal is filled in the liquid crystal cell, the surface of the liquid crystal cell is uniformly pressed to remove the excess liquid crystal component from the liquid crystal inlet of the liquid crystal cell to the outside of the system, and then the liquid crystal inlet is sealed. In this case, the liquid crystal cell surface can be pressed with any pressure as long as it has a smooth surface such as a roller or a pressing plate, and the liquid phase injection port of the cell is sealed using an ultrasonic welder or the like. You can do it. However, in this method, since the liquid crystal cell is sealed under pressure, a considerable amount of time is required to suck the adhesive used for the sealing into the liquid crystal cell, which is not suitable for mass production. When sealing in a short time, the amount of adhesive to be sucked into the liquid crystal cell is small, which is considered to be unfavorable for reliability in terms of moisture resistance and image quality. After sandwiched between plates having a smooth surface, such as plates, and pressing and fixing, liquid crystal is injected into the liquid crystal cell from the liquid crystal injection port of the liquid crystal cell. When the liquid crystal is injected, both sides of the liquid crystal cell are pressed by the smooth surfaces, so that the liquid crystal cell is filled with the liquid, and therefore, after the liquid crystal is injected into the cell, the injection port may be sealed as it is. . According to this method, since there is no change in the volume of the liquid crystal during inhalation of the adhesive required for sealing in the panel, the adhesive applied to the liquid crystal inlet is only sucked into the liquid crystal cell by the capillary phenomenon. Inhalation time is considerably required, and it has a drawback that it is not suitable for mass production.

さらに他の従来の技術としては、例えば特開昭59−21
8424号公報に示されているように第9図のような液晶表
示装置の製造方法がある。第9図aはその第1の製造方
法を示す断面図であり、第9図bはその第2の製造方法
を示す断面図とその製造方法による接着剤溜めの平面図
である。第9図aにおいて25はスキージ,26はスクリー
ン,27はスクリーン26のパターン,28は液晶セル,29は液
晶セルの封止口,30は印刷ステージ,31は封止用の接着剤
である。使用したスクリーンは50メッシュ、乳剤厚40μ
m、印刷条件は、スキージ圧約5kg/cm2、スキージスピ
ード約5mm/secであった。この時、封止用の接着剤とし
て約200poiseの樹脂を用いた所、セル厚が均一で、封止
用の接着剤も適度にセル注入口内に侵入した液晶セルが
できたというものである。また他の第2の製造方法によ
れば、第9図bに示すように、25はスキージ,32はパタ
ーン無しのスクリーン,28は液晶セル,29は液晶セルの封
止口,30は印刷ステージ,33は封止用の接着剤溜め33′を
設けたフィルムである。第9図bに示すように、パター
ンの無いスクリーン32を用い、その下に、封止用の接着
剤溜め33′を設けたポリエステル製のフィルム33を置
き、接着剤溜め33′に接着剤を溜めて上記実施例と同様
に行ったところ、上記実施例と同様なセルができたとい
うものである。しかしながらこの方法によれば、スキー
ジの移動にともない液晶の移動が起こるだろうが、スキ
ージの移動跡はガラス基板のそりの復元やスペーサの弾
性変形等により液晶セルのギャップが正確に出ないとい
う欠点を有しており、さらに液晶セルの液晶注入口から
液晶が流出する速度とスキージの移動速度をほぼ等しく
する必要があるが、非常に困難であり、かつ構成から察
すると、スキージが液晶セルを通過すると同時に液晶注
入口への接着剤塗布を行うところから封止用の接着剤を
液晶セル内に吸入させる量は少なく、耐湿の点で劣って
おり画質に著しく劣った影響を与え、信頼性に不備があ
るという欠点を有するものであると思われる。
Still another conventional technique is, for example, JP-A-59-21.
As shown in Japanese Patent No. 8424, there is a manufacturing method of a liquid crystal display device as shown in FIG. 9a is a sectional view showing the first manufacturing method thereof, and FIG. 9b is a sectional view showing the second manufacturing method thereof and a plan view of an adhesive reservoir by the manufacturing method. In FIG. 9A, 25 is a squeegee, 26 is a screen, 27 is a pattern of the screen 26, 28 is a liquid crystal cell, 29 is a liquid crystal cell sealing port, 30 is a printing stage, and 31 is a sealing adhesive. The screen used is 50 mesh, emulsion thickness 40μ
The printing conditions were a squeegee pressure of about 5 kg / cm 2 and a squeegee speed of about 5 mm / sec. At this time, when a resin of about 200 poise was used as a sealing adhesive, the cell thickness was uniform, and a liquid crystal cell in which the sealing adhesive appropriately penetrated into the cell injection port was formed. According to another second manufacturing method, as shown in FIG. 9B, 25 is a squeegee, 32 is a screen without a pattern, 28 is a liquid crystal cell, 29 is a liquid crystal cell sealing port, and 30 is a printing stage. Reference numerals 33 are films provided with an adhesive reservoir 33 'for sealing. As shown in FIG. 9b, a screen 32 having no pattern is used, and a polyester film 33 provided with a sealing adhesive reservoir 33 'is placed below the screen 32, and the adhesive is stored in the adhesive reservoir 33'. It is said that the same cells as in the above-mentioned embodiment were formed when the same cells as in the above-mentioned embodiment were stored. However, according to this method, the movement of the liquid crystal will occur with the movement of the squeegee, but the movement trace of the squeegee is the drawback that the gap of the liquid crystal cell does not appear accurately due to the restoration of the warp of the glass substrate and the elastic deformation of the spacer. In addition, it is necessary to make the speed at which the liquid crystal flows out from the liquid crystal inlet of the liquid crystal cell and the moving speed of the squeegee almost equal, but it is extremely difficult, and from the viewpoint of the configuration, the squeegee can prevent the liquid crystal cell from moving. Since the adhesive is applied to the liquid crystal injection port at the same time as it passes, the amount of the sealing adhesive that is sucked into the liquid crystal cell is small, and it is inferior in terms of moisture resistance, which significantly affects the image quality, resulting in reliability. It seems to have a defect that there is a defect in.

発明が解決しようとする問題点 このように従来の方法は、液晶セルの液晶注入口に塗
布した接着剤を毛細管現象により液晶セルに吸入させる
方法であり、接着剤の吸入に時間が必要であり、量産に
適さないばかりか、時間効率を重視すると接着剤は液晶
セル内に吸入する量が少なくなり吸湿等により画質に悪
影響を与え、信頼性の点で不備があるという欠点を有
し、完全な液晶封止を行うことが困難である。
Problems to be Solved by the Invention As described above, the conventional method is a method of sucking the adhesive applied to the liquid crystal injection port of the liquid crystal cell into the liquid crystal cell by a capillary phenomenon, and it takes time to suck the adhesive. Not only is it not suitable for mass production, but if time efficiency is emphasized, the amount of adhesive taken into the liquid crystal cell will be small, which will adversely affect the image quality due to moisture absorption, etc. It is difficult to perform proper liquid crystal sealing.

本発明はかかる点に鑑みてなされたもので、簡易な構
成で量産に適した液晶表示装置を製造でき、かつ完全な
液晶封止を行うことができる。
The present invention has been made in view of the above points, and it is possible to manufacture a liquid crystal display device suitable for mass production with a simple configuration, and perform complete liquid crystal sealing.

問題点を解決するための手段 本発明は上記問題点を解決するため、1組の電極付基
板と前記基板間に介在する第1の接着剤とからなる液晶
セルに液晶を注入封止し液晶表示装置を製造する際、常
温にて前記液相セルを加圧することなく真空中で前記液
晶セルに前記液晶を注入する工程と、加熱状態にて前記
液晶セルを加圧体により加圧する工程と、加熱状態にて
加圧した状態でt1秒間静置する工程と、加熱状態にて前
記液晶セルの液晶注入口に第2の接着剤を塗布する工程
と、加熱状態にて前記液晶セルの前記加圧体を除去した
秒間静置し前記液晶注入口から前記液相セル内に一定量
の前記第2の接着剤を吸入させる工程と、前記第2の接
着剤を硬化させる工程とからなることを特徴とする液晶
表示装置の製造方法を得るものである。
Means for Solving the Problems In order to solve the above problems, the present invention fills and seals a liquid crystal in a liquid crystal cell consisting of a pair of substrates with electrodes and a first adhesive interposed between the substrates. When manufacturing a display device, a step of injecting the liquid crystal into the liquid crystal cell in a vacuum without pressurizing the liquid phase cell at room temperature, and a step of pressurizing the liquid crystal cell with a pressurizing body in a heated state. , A step of standing still for 1 second under pressure in a heated state, a step of applying a second adhesive to the liquid crystal inlet of the liquid crystal cell in a heated state, and a step of applying the second adhesive to the liquid crystal cell in a heated state. It consists of a step of allowing the pressurized body to stand still for a second and then sucking a certain amount of the second adhesive into the liquid phase cell from the liquid crystal inlet, and a step of curing the second adhesive. A method for manufacturing a liquid crystal display device is obtained.

作用 上記の製造方法によると常温にて液晶セルを加圧する
ことなく液晶を注入した後、以降加熱状態にて液晶セル
を加圧体により加圧し余剰液晶を液晶セル外に除去し、
封止用の接着剤を液晶注入口に塗布し、液晶セルの加圧
体を除去し、液晶セルのガラス基板の弾性変形等により
液晶注入口から液晶セル内に一定量の接着剤を吸入さ
せ、硬化させるものであり、侵入時間が極めて短かく、
しかも接着剤の量を制御しやすく、量産に適するという
効果を有するものである。
Action According to the above-mentioned manufacturing method, after injecting liquid crystal without pressurizing the liquid crystal cell at room temperature, the liquid crystal cell is pressed by a pressurizing body in a heated state thereafter to remove excess liquid crystal outside the liquid crystal cell,
Apply a sealing adhesive to the liquid crystal inlet, remove the pressure body of the liquid crystal cell, and suck a certain amount of adhesive into the liquid crystal cell from the liquid crystal inlet due to elastic deformation of the glass substrate of the liquid crystal cell. , It cures, and the penetration time is extremely short,
Moreover, the amount of the adhesive can be easily controlled, and it has an effect of being suitable for mass production.

実施例 以下、本発明の一実施例について図面に基づいて説明
する。液晶表示装置の基本構成は、一対の電極基板間に
液晶を充填したパネルに偏光板を組合せたもので、初期
配向した液晶分子と電極に電圧を印加した状態で再配列
した液晶分子との複屈折性の差により濃淡を表示するも
のである。本発明の製造方法に基づいて製造した液晶表
示装置を第6図と第7図に示す。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. The basic structure of a liquid crystal display device is a combination of a panel filled with liquid crystal between a pair of electrode substrates and a polarizing plate, and is composed of liquid crystal molecules that are initially aligned and rearranged with voltage applied to the electrodes. The light and shade are displayed by the difference in refraction. A liquid crystal display device manufactured based on the manufacturing method of the present invention is shown in FIGS. 6 and 7.

第6図において、液晶表示装置は透明電極7とその上
に配向膜8が付いた前面ガラス板9と、TFT素子(薄膜
トランジスタで構成され画素電極の印加電圧のスイッチ
ングに用いるトランジスタ素子)部10および画素部11と
その上に配向膜12が付いた液晶表示用基板13との間に、
周辺部には予め所定のスペーサが混合されたシール剤14
があり、シール剤14に囲まれたパネル中に液晶15、多数
のスペーサ16が存在している。そして偏光板17,18が前
面ガラス板9と液晶表示用基板13の両面に貼り付けられ
ることにより構成される。
In FIG. 6, the liquid crystal display device includes a transparent electrode 7, a front glass plate 9 having an alignment film 8 formed thereon, a TFT element (transistor element formed of a thin film transistor and used for switching a voltage applied to a pixel electrode) section 10, Between the pixel portion 11 and the liquid crystal display substrate 13 having the alignment film 12 thereon,
A sealant 14 with a predetermined spacer mixed in the periphery
The liquid crystal 15 and many spacers 16 are present in the panel surrounded by the sealant 14. Then, the polarizing plates 17 and 18 are formed by being attached to both surfaces of the front glass plate 9 and the liquid crystal display substrate 13.

第7図は、基板13側の構造を示すもので、GはTFT素
子のゲート電極、Iは絶縁膜、Aはアモルファスシリコ
ンよりなるチャンネル活性部、Mはソース,ドレイン電
極である。
FIG. 7 shows the structure on the substrate 13 side, where G is the gate electrode of the TFT element, I is the insulating film, A is the channel active portion made of amorphous silicon, and M is the source and drain electrodes.

ここで本発明の液晶表示装置の製造方法について述べ
る。本発明の液晶表示装置は上記したように、1組のガ
ラス板と、その間に介在する接着剤により液晶セルを組
立てて、その液晶セル内で接着剤の一部を開放し液晶注
入口を形成し、液晶を注入封止し製造されるものであ
る。
Here, a method for manufacturing the liquid crystal display device of the present invention will be described. As described above, in the liquid crystal display device of the present invention, a liquid crystal cell is assembled by a pair of glass plates and an adhesive agent interposed therebetween, and a part of the adhesive agent is opened in the liquid crystal cell to form a liquid crystal injection port. Then, it is manufactured by injecting and sealing liquid crystal.

またガラス基板上にゼラチン膜,透明電極,金属,絶
縁膜,配向膜等を形成することにより、ガラス基板のそ
りが生じるが、液晶セルを組立てた状態で、単一波長光
源下で観察すると液晶セル中央付近が1μm程度の中高
の状態になることが分っている。この状態で常温にて液
晶セルを加圧することなく真空中で液晶セルに液晶を注
入する。液晶セルを加圧することで空隙ギャップ厚の大
さが約6μmで体積が約18mm3の液晶セルに液晶が充填
される時間が約30分を要すること実験的に分っている。
しかしこの液晶セルに中高の状態のままで真空中にて液
晶を注入すると5分以内に充填されることが分った。し
たがってこの液晶表示装置の製造方法は時間的に有利で
あり、量産の効率を上げることを得るものである。第1
図aは液晶1を充填した状態の液晶セル2の液晶注入口
3付近の平面図である。第1図bは液晶セル2を封止用
の接着剤4で封止した液晶セルの平面図である。また常
温で液晶を注入することにより、真空中で液晶に含まれ
る揮発成分の液晶が加熱した場合と比較して揮発しにく
くなり、粘度も変わることがないのでフィルタを通過さ
せれば再利用できコストに有利である。
Also, by forming a gelatin film, a transparent electrode, a metal, an insulating film, an alignment film, etc. on the glass substrate, warpage of the glass substrate occurs, but when the liquid crystal cell is assembled and observed under a single wavelength light source, the liquid crystal It is known that the vicinity of the center of the cell is in a medium-high state of about 1 μm. In this state, the liquid crystal is injected into the liquid crystal cell in vacuum without pressurizing the liquid crystal cell at room temperature. It has been experimentally found that it takes about 30 minutes to fill a liquid crystal cell having a gap gap thickness of about 6 μm and a volume of about 18 mm 3 with liquid crystal by pressurizing the liquid crystal cell.
However, it was found that when the liquid crystal was injected into this liquid crystal cell in a vacuum while keeping the medium and high state, the liquid crystal was filled within 5 minutes. Therefore, this method of manufacturing a liquid crystal display device is advantageous in terms of time and can improve the efficiency of mass production. First
FIG. A is a plan view of the vicinity of the liquid crystal inlet 3 of the liquid crystal cell 2 filled with the liquid crystal 1. FIG. 1b is a plan view of a liquid crystal cell in which the liquid crystal cell 2 is sealed with a sealing adhesive 4. Also, by injecting the liquid crystal at room temperature, the volatile component of the liquid crystal contained in the liquid crystal does not evaporate more easily than when heated in a vacuum, and the viscosity does not change, so it can be reused by passing it through the filter. It is advantageous in cost.

次に液晶を充填した状態の液晶セルに加圧体を用いて
加圧し、液晶セルのそりを是正し均一な液晶セルのギャ
ップを得たので第2図に基づいて説明する。液晶層の厚
みが6μmで体積が18mm3程度の液晶セルでは40℃の加
熱状態で約2分後液晶の流出が止まることを確認した。
常温の場合では約5分を要した。このことは液晶セルを
加熱することにより液晶の粘度が低下し流出しやすくな
ったものと思われる。ここで用いる加圧体5の材質はア
ルミニウムやステンレス等の金属またはテフロン等の樹
脂等の剛体や、シリコンゴム等の柔構造体が考えられ
る。ただし剛体の場合、液晶セル6と加圧体5の間に固
いゴムやガラスチッピングが介在すると液晶セル内に局
部的なギャップ不良を生じさせる不備がある。そこでシ
リコンゴムのみの加圧体または、液晶セルの画面部分の
みシリコンゴムで周辺をアルミニウム等の金属の構成に
する等の工夫が必要になる。実験的にシリコンゴムで液
晶セルの画面部分を押圧する加圧体を用いたところ均一
な液晶層の厚みが得られ、懸念される不良もなく画質も
良好であった。
Next, pressure is applied to the liquid crystal cell filled with the liquid crystal using a pressure member to correct the warpage of the liquid crystal cell and to obtain a uniform gap of the liquid crystal cell, which will be described with reference to FIG. It was confirmed that in a liquid crystal cell having a liquid crystal layer having a thickness of 6 μm and a volume of about 18 mm 3 , the outflow of the liquid crystal stopped after about 2 minutes in a heated state at 40 ° C.
It took about 5 minutes at room temperature. It is considered that this is because when the liquid crystal cell was heated, the viscosity of the liquid crystal was lowered and the liquid crystal easily flowed out. The material of the pressurizing body 5 used here may be a metal such as aluminum or stainless steel, a rigid body such as resin such as Teflon, or a flexible structure such as silicon rubber. However, in the case of a rigid body, if a hard rubber or glass chipping is interposed between the liquid crystal cell 6 and the pressing body 5, there is a defect that a local gap defect occurs in the liquid crystal cell. Therefore, it is necessary to devise such as a pressurizing body made of only silicon rubber, or silicon rubber only at the screen portion of the liquid crystal cell and a metal such as aluminum at the periphery. Experimentally, when a pressure member that presses the screen portion of the liquid crystal cell with silicon rubber was used, a uniform liquid crystal layer thickness was obtained, and there was no concern about defects and the image quality was good.

本発明の加圧体はアルミニウム等の剛体5aとシリコン
ゴム等の柔構造の部材5bからできており、アルミニウム
の内部に中ぐりを形成しシリコンゴムをはめ込んだもの
である。
The pressurizing body of the present invention is made up of a rigid body 5a such as aluminum and a flexible member 5b such as silicon rubber, in which a boring is formed inside aluminum and silicon rubber is fitted therein.

第3図に本発明の実施例の加圧体の断面図を示す。第
3図aに示すようにシリコンゴムaから出来ている柔構
造の部材の片方の面bは平坦に加工しており、内部に中
ぐりを形成したアルミニウムcの面に接触させるとはが
れにくくなる。また他方の面に円すい状の凸部dを設
け、第3図bは加圧体間に液晶セルを挟み加圧した状態
を示したもので、液晶セル6に接触させると凸部間に空
気層eを形成しシリコンゴム液晶セルからはがれやすく
なる。さらに加圧することにより凸部が変形し液晶セル
に一様の圧力を加えることになり、理想的に押圧できる
ものである。
FIG. 3 shows a sectional view of the pressurizing body of the embodiment of the present invention. As shown in FIG. 3a, one surface b of the flexible member made of silicon rubber a is processed to be flat, and it is difficult to peel it off when it is brought into contact with the surface of aluminum c having a boring inside. . Further, a cone-shaped convex portion d is provided on the other surface, and FIG. 3b shows a state in which a liquid crystal cell is sandwiched between pressurizing bodies to apply pressure. A layer e is formed so that the layer is easily peeled off from the silicone rubber liquid crystal cell. When the pressure is further applied, the convex portion is deformed and a uniform pressure is applied to the liquid crystal cell, which can be ideally pressed.

また加圧体で液晶セル加圧した後液晶注入口から液晶
が流出する間、加圧した状態において、液晶注入口の断
面積と液晶セルの体積・基板のそり・加圧体による押圧
力等により静置する時間t1秒はばらつきが生じることが
分っている。実験的に押圧力を5kgから20kgの間で検討
し、液晶注入口の大きさが1mmから3mmのばらつきのある
もの、基板のそりが液晶層の間隙より5μm程度大きい
ものまでの間で液晶流出時間を測定したところ、約2分
であった。ただし一個の液晶注入口を有する液晶セルに
おいて、その液晶注入口の断面積が2×10-2mm2程度の
場合の液晶流出時間と押圧力の関係を第4図aに示し、
また液晶流出時間と基板のそりの関係を第4図bに示
す。条件として押圧力は5kgとし液晶セルには約0.6kg/c
m2の圧力がかかるものである。この圧力の大きさのもと
で、剛体と柔構造の組合せによる加圧体を用いた場合、
画質に致命的な欠点となる液晶セルの局部的なギャップ
不良等の不良は生じなかった。斜線部分は実験で得られ
た測定値の範囲を示したものである。また液晶注入口が
複数個の場合、液晶流出時間は短かくなると思われる。
Also, after the liquid crystal cell is pressurized by the pressure body, while the liquid crystal is flowing out from the liquid crystal inlet, in the pressurized state, the sectional area of the liquid crystal inlet, the volume of the liquid crystal cell, the warpage of the substrate, the pressing force by the pressure body, etc. Therefore, it is known that there is a variation in the stationary time t 1 second. Experimentally, the pressing force was examined between 5kg and 20kg, and the liquid crystal leaked out when the size of the liquid crystal inlet varied from 1mm to 3mm, and when the warpage of the substrate was larger than the gap of the liquid crystal layer by about 5μm. When the time was measured, it was about 2 minutes. However, in a liquid crystal cell having one liquid crystal inlet, the relationship between the liquid crystal outflow time and the pressing force when the cross-sectional area of the liquid crystal inlet is about 2 × 10 -2 mm 2 is shown in FIG.
The relationship between the liquid crystal outflow time and the warpage of the substrate is shown in FIG. 4b. As a condition, the pressing force is 5 kg and the liquid crystal cell is about 0.6 kg / c.
A pressure of m 2 is applied. When a pressure body with a combination of a rigid body and a flexible structure is used under this pressure level,
No defects such as a local gap defect of the liquid crystal cell, which is a fatal defect in image quality, occurred. The shaded area indicates the range of measured values obtained in the experiment. Further, when there are a plurality of liquid crystal inlets, the liquid crystal outflow time seems to be short.

次に液晶セルを加圧した状態で液晶注入口から液晶の
流出が止まった後、液晶セルの液晶注入口に封止用の接
着剤を塗布する。さらに加圧体を除去し基板のそりの弾
性変形等により封止用の接着剤を液晶セル内に吸入させ
る。実験的に加熱温度を室温から120℃程度まで検討し
たところ、100℃程度から封止に用いる接着剤の粘度が
低下し瞬時に侵入し量産に適さないことが分った。封止
用の接着剤を制御よくパネル内に吸入させるのに室温か
ら80℃程度が適していることが実験的に分った。この封
止用の接着剤の吸入に要する時間t2秒は、液晶層の厚み
が6μm、体積が18mm3程度の液晶セルでは、t2=20程
度であることが実験的に分った。またA4サイズの大型基
板の場合、液晶層の厚みが6μmの場合、封止用の接着
剤は10秒で吸入した。また小型基板の場合、そりが1μ
m程度で液晶層の厚みが6μm、体積が8mm3の液晶セル
では約45秒を要した。以上の実験結果から液晶セルの加
圧体を除去し封止用の接着剤を硬化するまでの静置時間
t2は、 0t260 の範囲であると思われる。
Next, after the liquid crystal has stopped flowing out of the liquid crystal inlet while the liquid crystal cell is under pressure, a sealing adhesive is applied to the liquid crystal inlet of the liquid crystal cell. Further, the pressurizing body is removed, and the adhesive for sealing is sucked into the liquid crystal cell by elastic deformation of the warp of the substrate. When the heating temperature was experimentally examined from room temperature to about 120 ° C, it was found that from about 100 ° C, the viscosity of the adhesive used for encapsulation decreased, and the adhesive invaded instantaneously, making it unsuitable for mass production. It has been experimentally found that a room temperature to about 80 ° C is suitable for allowing the sealing adhesive to be sucked into the panel in a controlled manner. It was experimentally found that the time t 2 seconds required for inhaling the sealing adhesive is t 2 = 20 in a liquid crystal cell having a liquid crystal layer having a thickness of 6 μm and a volume of about 18 mm 3 . In the case of a large A4 size substrate, when the thickness of the liquid crystal layer was 6 μm, the sealing adhesive was inhaled in 10 seconds. In case of small board, warpage is 1μ
A liquid crystal cell having a liquid crystal layer thickness of 6 μm and a volume of 8 mm 3 took about 45 seconds. From the above experimental results, the standing time until the liquid crystal cell pressure body is removed and the sealing adhesive is cured
t 2 appears to be in the range of 0t 2 60.

第5図aに液晶層の厚みが6μm、体積が18mm3の場
合における封止用の接着剤の液晶セル内吸入の時間と基
板のそりの関係図を示し、第5図bに封止用の接着剤の
液晶セル内吸入の時間と押圧力の関係図を示す。上記し
た関係を満たしていることが分る。斜線部分で実験で得
られた測定値の範囲を示したものである。
Fig. 5a shows the relationship between the inhalation time of the sealing adhesive in the liquid crystal cell and the warpage of the substrate when the thickness of the liquid crystal layer is 6 µm and the volume is 18 mm 3 . FIG. 3 is a diagram showing the relationship between the time taken for the adhesive of FIG. It turns out that the above relationships are met. The shaded area shows the range of measurement values obtained in the experiment.

最後に封止用の接着剤を硬化するのに、液晶セルの加
圧体の加圧を除荷してからの時間管理に充分対応しうる
こととして瞬時に固まることが必要である。その条件を
満たすものとして紫外線硬化型樹脂を用いた。実験的に
紫外線照射条件25mw/cm2で180秒間において、完全硬化
する紫外線硬化型樹脂を用いたところ充分に良好な結果
を得た。
Finally, in order to cure the sealing adhesive, it is necessary to instantly solidify the liquid crystal cell as it can sufficiently cope with the time management after the pressure of the pressure body of the liquid crystal cell is unloaded. An ultraviolet curable resin was used as one satisfying the conditions. Experimentally, a sufficiently good result was obtained by using an ultraviolet curable resin that completely cures under an ultraviolet irradiation condition of 25 mw / cm 2 for 180 seconds.

液晶セルの加熱方法として、ヒータによる伝熱加熱、
加熱炉による輻射加熱、赤外線による輻射加熱がある。
実験的に40℃を保つように各方法を試み、液晶セル表面
に熱電対を固定し温度測定を行ったところ、ヒータによ
る伝達加熱において、ヒータの大きさを液晶セルの大き
さにし、ヒータの設定温度を50℃にすることにより液晶
セル表面温度を40℃に保つことができた。また加熱炉に
よる輻射加熱において、加熱炉を40℃に設定し10分以上
加熱することにより液晶セル表面の温度を40℃に保つこ
とができた。
As a method of heating the liquid crystal cell, heat transfer heating by a heater,
There are radiant heating by a heating furnace and radiant heating by infrared rays.
When each method was experimentally tried to keep 40 ° C and the thermocouple was fixed on the surface of the liquid crystal cell and the temperature was measured, the size of the heater was set to the size of the liquid crystal cell in the transfer heating by the heater. The liquid crystal cell surface temperature could be kept at 40 ° C by setting the set temperature to 50 ° C. Moreover, in the radiant heating by the heating furnace, the temperature of the liquid crystal cell surface could be kept at 40 ° C by setting the heating furnace to 40 ° C and heating for 10 minutes or more.

赤外線による輻射加熱において、100Wの赤外線ランプ
の高さを液晶セルから30cm離した位置にし照射させたと
ころ約5分で40℃に達することが分った。
In radiant heating by infrared rays, it was found that when the height of an infrared lamp of 100 W was moved to a position 30 cm away from the liquid crystal cell and irradiation was performed, it reached 40 ° C. in about 5 minutes.

実験的に容易な加熱炉を用いて以上の工程により液晶
表示装置を製造したところ均一な液晶層厚の液相表示装
置が得られ、画質も良好であった。
When a liquid crystal display device was manufactured by the above process using an experimentally easy heating furnace, a liquid crystal display device with a uniform liquid crystal layer thickness was obtained, and the image quality was good.

このように本実施例によれば、液晶注入時間が従来よ
り短縮でき、封止用の接着剤が従来より短時間で液晶セ
ル内に均一に吸入封止でき、液晶表示装置の液晶層の均
一な厚みを保持でき、画質が良好であるという効果を有
することが分った。
As described above, according to the present embodiment, the liquid crystal injection time can be shortened as compared with the conventional case, and the sealing adhesive can be uniformly sucked and sealed in the liquid crystal cell in a shorter time than the conventional case, and the liquid crystal layer of the liquid crystal display device can be uniformly formed. It has been found that it has the effect of maintaining various thicknesses and having good image quality.

発明の効果 以上のように本発明によれば次の効果を得ることがで
きる。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1) 実用上問題のない程度に液晶表示装置の液晶層
の均一な厚みを保持できる。
(1) The uniform thickness of the liquid crystal layer of the liquid crystal display device can be maintained to the extent that there is no practical problem.

(2) 液晶表示装置の液晶封止を比較的短時間で安定
にかつ均一に実施できる。
(2) Liquid crystal sealing of a liquid crystal display device can be carried out stably and uniformly in a relatively short time.

(3) 表示品質の優れた液晶表示が得られる。(3) A liquid crystal display with excellent display quality can be obtained.

(4) 比較的安定に大量の処理を行うことができる。(4) A large amount of processing can be performed relatively stably.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の液晶表示装置の製造方法を実施した液
晶表示装置の平面図、第2図は本発明の液晶表示装置の
製造方法を示す斜視図、第3図は加圧体の構成を示す断
面図、第4図は液晶流出時間を示す関係図、第5図は封
口剤吸入時間を示す関係図、第6図は本発明の液晶表示
装置の製造方法を用いて製造した液晶表示装置の断面
図、第7図は同液晶表示装置のTFT素子部および画素部
の断面図、第8図は従来例における液晶表示装置の製造
方法を示す平面図、第9図は他の従来例の製造方法を示
す説明図である。 1……液晶、2……液晶セル、3……液晶注入口、4…
…封止用の接着剤、5a,5b……加圧体、6……液晶セ
ル、7……透明電極、8……配向膜、9……前面ガラ
ス、10……TFT素子部、11……画素部、12……配向膜、1
3……液晶表示用基板、14……シール剤、15……液晶、1
6……スペーサ、17……偏光板、18……偏光板、19,20…
…可撓性基板、21……接着剤層、22……セル厚制御材、
23……液晶を収容すべき空間、24……液晶注入口、G…
…ゲート電極、I……絶縁膜、A……アモルファスシリ
コンよりなるチャンネル活性部、M……ソース・ドレイ
ン電極、25……スキージ、26……スクリーン、27……ス
クリーンパターン、28……液晶セル、29……液晶セルの
封止口、30……印刷ステージ、31……封止用の接着剤、
32……パターン無スクリーン、33……フィルム、33′…
…封止用の接着剤。
FIG. 1 is a plan view of a liquid crystal display device that has been subjected to the method for manufacturing a liquid crystal display device of the present invention, FIG. 2 is a perspective view showing the method of manufacturing a liquid crystal display device of the present invention, and FIG. FIG. 4 is a relational diagram showing the liquid crystal outflow time, FIG. 5 is a relational view showing the sealing agent inhalation time, and FIG. 6 is a liquid crystal display manufactured using the method for manufacturing a liquid crystal display device of the present invention. FIG. 7 is a sectional view of the device, FIG. 7 is a sectional view of a TFT element portion and a pixel portion of the liquid crystal display device, FIG. 8 is a plan view showing a manufacturing method of the liquid crystal display device in a conventional example, and FIG. 9 is another conventional example. FIG. 6 is an explanatory view showing a manufacturing method of. 1 ... Liquid crystal, 2 ... Liquid crystal cell, 3 ... Liquid crystal inlet, 4 ...
... Sealing adhesive, 5a, 5b ... Pressurizing body, 6 ... Liquid crystal cell, 7 ... Transparent electrode, 8 ... Alignment film, 9 ... Front glass, 10 ... TFT element section, 11 ... … Pixel part, 12 …… Alignment film, 1
3 …… Liquid crystal display substrate, 14 …… Sealant, 15 …… Liquid crystal, 1
6 …… Spacer, 17 …… Polarizer, 18 …… Polarizer, 19,20…
… Flexible substrate, 21 …… Adhesive layer, 22 …… Cell thickness control material,
23: Space for accommodating liquid crystal, 24: Liquid crystal inlet, G ...
... Gate electrode, I ... Insulating film, A ... Channel active part made of amorphous silicon, M ... Source / drain electrode, 25 ... Squeegee, 26 ... Screen, 27 ... Screen pattern, 28 ... Liquid crystal cell , 29 …… liquid crystal cell sealing port, 30 …… printing stage, 31 …… sealing adhesive,
32 …… Screen without pattern, 33 …… Film, 33 ′…
... Adhesive for sealing.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1組の電極付基板と前記基板間に介在する
第1の接着剤とからなる液晶セルに液晶を注入封止し液
晶表示装置を製造する際、常温にて前記液晶セルを加圧
することなく真空中で前記液晶セルに前記液晶を注入す
る工程と、加熱状態にて前記液晶セルを加圧体により加
圧する工程と、加熱状態にて加圧した状態で所定時間静
置する工程と、加熱状態にて前記液晶セルの液晶注入口
に第2の接着剤を塗布する工程と、加熱状態にて前記液
晶セルの前記液晶セルの前記加圧体を除去し所定時間静
置し前記液晶注入口から前記液晶セル内にほぼ一定量の
前記第2の接着剤を吸入させる工程と、前記第2の接着
剤を硬化させる工程とからなることを特徴とした液晶表
示装置の製造方法。
1. When manufacturing a liquid crystal display device by injecting and sealing a liquid crystal into a liquid crystal cell consisting of a pair of substrates with electrodes and a first adhesive interposed between the substrates, the liquid crystal cell is kept at room temperature. A step of injecting the liquid crystal into the liquid crystal cell in a vacuum without applying pressure, a step of pressurizing the liquid crystal cell with a pressurizing body in a heated state, and a standing state for a predetermined time in the heated state A step of applying a second adhesive to the liquid crystal injection port of the liquid crystal cell in a heated state; A method of manufacturing a liquid crystal display device, which comprises a step of sucking a substantially constant amount of the second adhesive from the liquid crystal inlet into the liquid crystal cell, and a step of curing the second adhesive. .
【請求項2】加圧体が剛体と柔構造の部材からなり、か
つ前記剛体は中ぐりを有し、前記柔構造の部材は第1の
面が平坦であり、第2の面が所定の数の凸部を有するも
のであり、かつ前記凸部が円すい状でかつ所定の間隔で
形成され、前記第2の面が液晶セルに当接する面であ
り、前記第1の面が前記剛体の前記中ぐりに当接する面
であり、前記加圧体が液晶注入後の液晶セルを加圧する
ことを特徴とした特許請求の範囲第1項記載の液晶表示
装置の製造方法。
2. The pressing body comprises a rigid body and a member having a flexible structure, the rigid body has a boring, and the member having the flexible structure has a flat first surface and a predetermined second surface. A plurality of convex portions, the convex portions are formed in a conical shape and are arranged at predetermined intervals, the second surface is a surface contacting the liquid crystal cell, and the first surface is the rigid body. The method for manufacturing a liquid crystal display device according to claim 1, wherein the pressure member presses the liquid crystal cell after the liquid crystal is injected, the surface being in contact with the boring.
JP62272501A 1987-10-28 1987-10-28 Liquid crystal display manufacturing method Expired - Lifetime JP2506833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62272501A JP2506833B2 (en) 1987-10-28 1987-10-28 Liquid crystal display manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272501A JP2506833B2 (en) 1987-10-28 1987-10-28 Liquid crystal display manufacturing method

Publications (2)

Publication Number Publication Date
JPH01114823A JPH01114823A (en) 1989-05-08
JP2506833B2 true JP2506833B2 (en) 1996-06-12

Family

ID=17514787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272501A Expired - Lifetime JP2506833B2 (en) 1987-10-28 1987-10-28 Liquid crystal display manufacturing method

Country Status (1)

Country Link
JP (1) JP2506833B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2903136B2 (en) * 1991-11-18 1999-06-07 株式会社半導体エネルギー研究所 Manufacturing method of liquid crystal electro-optical device
JP2001290161A (en) 2000-04-04 2001-10-19 Advanced Display Inc Liquid crystal display device and its manufacturing method
JP5030725B2 (en) * 2007-09-25 2012-09-19 パナソニック株式会社 Mirror cabinet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139019A (en) * 1983-01-28 1984-08-09 Sharp Corp Production of flexible liquid crystal display element
JPS60129728A (en) * 1983-12-17 1985-07-11 Sharp Corp Production of liquid crystal display element
JP2552108B2 (en) * 1985-09-19 1996-11-06 セイコーエプソン株式会社 Liquid crystal display element manufacturing method

Also Published As

Publication number Publication date
JPH01114823A (en) 1989-05-08

Similar Documents

Publication Publication Date Title
JPH034888B2 (en)
JPH05107531A (en) Ferroelectric liquid crystal panel and display device
JPH10115833A (en) Production of liquid crystal display element
JP3007812B2 (en) Liquid crystal display device and method of manufacturing the same
JP2506833B2 (en) Liquid crystal display manufacturing method
KR100533661B1 (en) METHOD FOR FABRICATING a LIQUID CRYSTAL DISPLAY CELL
JPH07318957A (en) Liquid crystal display device and its production
JPH01114822A (en) Manufacture of liquid crystal display device
JPH01195421A (en) Manufacture of liquid crystal display device
JPS61145586A (en) Manufacture of liquid crystal display unit
JPS62267720A (en) Manufacture of liquid crystal element
JPH07128626A (en) Production of liquid crystal display device
JP2005128415A (en) Method and equipment for manufacturing optoelectronic device, and optoelectronic device
JP2903136B2 (en) Manufacturing method of liquid crystal electro-optical device
JPH11249152A (en) Manufacture of liquid crystal panel
JP3347341B2 (en) Liquid crystal display manufacturing method
KR100847809B1 (en) Method For Fabricating Liquid Crystal Display Device
JP2815822B2 (en) Liquid crystal panel manufacturing method
JPS6132035A (en) Production of liquid crystal display element
JPS62267721A (en) Manufacture of liquid crystal element
JPH11167119A (en) Production of electrode substrate and production of liquid crystal element
JPH0527210A (en) Production of liquid crystal display device
JPH04106526A (en) Manufacture of liquid crystal display element
JPH07104255A (en) Polymer dispersion type liquid crystal display element and its production
JP3888104B2 (en) Liquid crystal device and manufacturing method thereof