JPH11118822A - Triaxial acceleration sensor - Google Patents

Triaxial acceleration sensor

Info

Publication number
JPH11118822A
JPH11118822A JP9275829A JP27582997A JPH11118822A JP H11118822 A JPH11118822 A JP H11118822A JP 9275829 A JP9275829 A JP 9275829A JP 27582997 A JP27582997 A JP 27582997A JP H11118822 A JPH11118822 A JP H11118822A
Authority
JP
Japan
Prior art keywords
electrodes
acceleration
axis direction
axis
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9275829A
Other languages
Japanese (ja)
Inventor
Hideki Kobayashi
英樹 小林
Megumi Takahashi
めぐみ 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP9275829A priority Critical patent/JPH11118822A/en
Priority to TW087115901A priority patent/TW425478B/en
Priority to CN98119591A priority patent/CN1218910A/en
Priority to US09/161,805 priority patent/US6148671A/en
Publication of JPH11118822A publication Critical patent/JPH11118822A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a triaxial acceleration sensor capable of suppressing a variation and dispersion in the peak value of a spontaneous polarization charge due to an error of the fixed position of a weight. SOLUTION: Detecting electrodes DX1, DX2, DY1, DY2, and DZ1 to DZ4 are formed so that they constitute an annular row of electrodes surrounding those areas opposed to a weight 5A. Also each of the detecting electrodes DX1... is formed so that a virtual line extending through a center point of a piezoelectric ceramic substrate 5 in the area opposed to the weight 5A and an middle point positioned at the middle of a pair of sides (K3, K4) of each of the detecting electrodes DX1... and the pair of sides (K3, K4) are extended in parallel with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電セラミックス
を利用して相互に直交するX軸方向,Y軸方向及びZ軸
方向の三軸の加速度を検出する三軸加速度センサに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-axis acceleration sensor for detecting three-axis accelerations in mutually orthogonal X-axis, Y-axis, and Z-axis directions using piezoelectric ceramics.

【0002】[0002]

【従来の技術】一方の面上にX軸方向加速度検出用電
極,Y軸方向加速度検出用電極及びZ軸方向加速度検出
用電極を含む検出用電極パターンを形成し、他方の面上
に検出用電極パターンと対向する対向電極パターンを形
成した圧電セラミックス基板に分極処理を施し、加速度
を受けて圧電セラミックス内に生じる応力により各方向
の加速度検出用電極に発生する自発分極電荷に基づいて
X軸,Y軸及びZ軸方向の加速度成分に対応した信号を
出力する三軸加速度センサが知られている。この三軸加
速センサの基本原理及び基本技術は、国際公開WO93
/02342(PCT/JP92/00882)に詳し
く開示されている。
2. Description of the Related Art A detection electrode pattern including an X-axis direction acceleration detection electrode, a Y-axis direction acceleration detection electrode, and a Z-axis direction acceleration detection electrode is formed on one surface, and a detection electrode pattern is formed on the other surface. A polarization process is performed on the piezoelectric ceramic substrate on which the counter electrode pattern facing the electrode pattern is formed, and the X-axis and the X-axis are determined based on spontaneous polarization charges generated in the acceleration detecting electrode in each direction due to stress generated in the piezoelectric ceramic by receiving acceleration. A three-axis acceleration sensor that outputs a signal corresponding to acceleration components in the Y-axis and Z-axis directions is known. The basic principle and basic technology of this three-axis acceleration sensor are described in International Publication WO93.
/ 02342 (PCT / JP92 / 00882).

【0003】図4は、この基本技術に基づいて出願人が
開発した従来の三軸加速度センサで用いる圧電セラミッ
クス基板101の表面上に形成する基本電極パターンを
示している。この図において、X1及びX2はX軸方向
加速度検出用電極であり、Y1及びY2はY軸方向加速
度検出用電極であり、Z1〜Z4はZ軸方向加速度検出
用電極である。また、一対のX,XはX軸方向加速度出
力電極、一対のY,YはY軸方向加速度出力電極、Zは
Z軸加方向速度出力電極である。そして、一対のX1
0,X10は、X軸方向加速度検出用電極X1及びX2
とX軸方向加速度出力電極X,Xをそれぞれ接続する第
1の配線パターンであり、一対のY10,Y10は、Y
軸方向加速度検出用電極Y1及びY2とY軸方向加速度
出力電極Y,Yを接続する第2の配線パターンであり、
Z10は、Z軸方向加速度検出用電極Z1〜Z4とZ軸
方向加速度出力電極Z…を接続する第3の配線パターン
である。圧電セラミックス基板101の裏面上にはこれ
らの電極パターンに対向する対向電極パターンが形成さ
れている。また、圧電セラミックス基板101の裏面に
は接着剤層を介してダイアフラムが接合されており、こ
のダイアフラムの裏面側の中央部分には円柱形または円
筒形の重錘が固定されている。圧電セラミックス基板1
01の重錘と対向する部分には円形の重錘対向領域10
1Aが形成される。そして、加速度が重錘に作用したと
きに、圧電セラミックス基板の重錘対向領域の外側に応
力が発生する応力発生領域(中間領域)101Bが形成
されるように圧電セラミックス基板は台座に支持されて
いる。
FIG. 4 shows a basic electrode pattern formed on the surface of a piezoelectric ceramic substrate 101 used in a conventional three-axis acceleration sensor developed by the applicant based on this basic technology. In this figure, X1 and X2 are X-axis direction acceleration detecting electrodes, Y1 and Y2 are Y-axis direction acceleration detecting electrodes, and Z1 to Z4 are Z-axis direction acceleration detecting electrodes. Further, a pair of X, X is an X-axis direction acceleration output electrode, a pair of Y, Y is a Y-axis direction acceleration output electrode, and Z is a Z-axis additional direction speed output electrode. And a pair of X1
0 and X10 are X-axis direction acceleration detecting electrodes X1 and X2.
And a first wiring pattern for connecting the X-axis direction acceleration output electrodes X and X, respectively.
A second wiring pattern for connecting the axial acceleration detection electrodes Y1 and Y2 and the Y-axis acceleration output electrodes Y and Y;
Z10 is a third wiring pattern for connecting the Z-axis direction acceleration detecting electrodes Z1 to Z4 and the Z-axis direction acceleration output electrodes Z. On the back surface of the piezoelectric ceramic substrate 101, a counter electrode pattern facing these electrode patterns is formed. A diaphragm is bonded to the back surface of the piezoelectric ceramic substrate 101 via an adhesive layer, and a columnar or cylindrical weight is fixed to a central portion on the back surface side of the diaphragm. Piezoelectric ceramic substrate 1
01 is a circular weight facing region 10
1A is formed. When the acceleration acts on the weight, the piezoelectric ceramic substrate is supported by the pedestal so that a stress generating region (intermediate region) 101B in which stress is generated outside the weight facing region of the piezoelectric ceramic substrate is formed. I have.

【0004】X軸方向加速度検出用電極X1,X2に対
応する圧電セラミックス基板101の各部分は、各部分
に同種類の応力が発生したときに一方のX軸方向加速度
検出用電極X1と他方のX軸方向加速度検出用電極X2
とにそれぞれ逆極性の自発分極電荷が現れるように、予
め分極処理が施されている。またY軸方向加速度検出用
電極Y1,Y2に対応する圧電セラミックス基板101
の各部分は、各部分に同種類の応力が発生したときに一
方のY軸方向加速度検出用電極Y1と他方のY軸方向加
速度検出用電極Y2とにそれぞれ逆極性の自発分極電荷
が現れるように予め分極処理が施されている。更に4つ
のZ軸方向加速度検出用電極Z1〜Z4に対応する圧電
セラミックス基板101の各部分は、各部分に同種類の
応力が発生したときにすべてのZ軸方向加速度検出用電
極に同じ極性の自発分極電荷が現れるように予め分極処
理が施されている。分極処理については、本出願人の先
願である特開平8−288080号に詳細に説明してあ
る。このように分極処理が施された三軸加速度センサで
は、重錘に各方向の加速度を作用させた場合、重錘対向
領域と中間領域との境界部に最も大きな応力が発生し、
境界部から径方向外側に離れるに従って応力は減少す
る。即ち、境界部から外側に離れるに従って、単位面積
あたりの応力量は減少し、検出用電極に現れる自発分極
電荷が減少する。そのため、境界部に仮想した境界線が
各検出用電極X1…を横切る長さに各検出用電極X1…
に現れる自発分極電荷のピーク値は比例することにな
る。
Each portion of the piezoelectric ceramic substrate 101 corresponding to the X-axis direction acceleration detecting electrodes X1 and X2 has one X-axis direction acceleration detecting electrode X1 and the other X-axis direction acceleration detecting electrode X1 when the same type of stress is generated in each portion. X-axis direction acceleration detection electrode X2
The polarization processing is performed in advance so that spontaneously polarized charges of opposite polarities appear at the time of the first and second times. A piezoelectric ceramic substrate 101 corresponding to the Y-axis direction acceleration detecting electrodes Y1 and Y2.
Are such that spontaneously polarized charges of opposite polarities appear on one Y-axis direction acceleration detecting electrode Y1 and the other Y-axis direction acceleration detecting electrode Y2 when the same type of stress is generated in each part. Has been subjected to a polarization treatment in advance. Further, each part of the piezoelectric ceramic substrate 101 corresponding to the four Z-axis direction acceleration detecting electrodes Z1 to Z4 has the same polarity to all the Z-axis direction acceleration detecting electrodes when the same type of stress is generated in each part. The polarization processing is performed in advance so that spontaneous polarization charges appear. The polarization processing is described in detail in Japanese Patent Application Laid-Open No. 8-288080, which is a prior application of the present applicant. In the triaxial acceleration sensor subjected to the polarization processing as described above, when an acceleration in each direction is applied to the weight, the largest stress is generated at the boundary between the weight facing area and the intermediate area,
The stress decreases radially outward from the boundary. That is, as the distance from the boundary part increases, the amount of stress per unit area decreases, and the spontaneous polarization charge appearing on the detection electrode decreases. Therefore, each of the detection electrodes X1... Has a length imaginary across the detection electrode X1.
Is proportional to the peak value of the spontaneously polarized charge.

【0005】この種の三軸加速度センサでは、通常、重
錘対向領域101Aを囲む環状の電極列が構成するよう
に各検出用電極X1…は形成されている。そして、検出
用電極X1に用いた符号を用いて説明すると、従来の三
軸加速度センサでは、各検出用電極X1…は、環状の電
極列が延びる方向に位置する一対の辺X20,X30
が、重錘対向領域の中心点から圧電セラミックス基板1
01の外側に向かって放射状に広がるように形成されて
いる。
In this type of three-axis acceleration sensor, the detection electrodes X1... Are usually formed so as to form a ring-shaped electrode row surrounding the weight facing region 101A. To explain using the reference numerals used for the detection electrodes X1, in the conventional three-axis acceleration sensor, each of the detection electrodes X1 is a pair of sides X20, X30 located in a direction in which the annular electrode row extends.
Is the piezoelectric ceramic substrate 1 from the center point of the counterweight region.
It is formed so as to radially expand toward the outside of 01.

【0006】[0006]

【発明が解決しようとする課題】三軸加速度センサにお
いて、加速度を正確に検出するには、圧電セラミックス
基板101の中心と重錘の中心とが一致するように重錘
をダイアフラムに対して正確な位置に固定することが望
まれる。しかしながら、重錘をダイアフラムに対して常
に正確な位置に固定するのは、技術的に困難であり、わ
ずかではあるが、固定位置に誤差が生じる。従来の三軸
加速度センサでは、検出用電極X1の一対の辺X20,
X30が、放射状に広がるように形成されているため、
重錘の固定位置がずれると、重錘対向領域と中間領域と
の境界部に仮想した境界線(以下、単に境界線という)
が各検出用電極X1…を横切る長さが変化する。例え
ば、図5に示すように、重錘の固定位置がX軸の検出用
電極X2から検出用電極X1に向う方向に長さhだけず
れると、境界線が横切る長さはL1からL2に変化して
長くなる。また、この場合、検出用電極X1以外の検出
用電極においても、境界線が横切る長さはそれぞれ変化
する。そのため、各検出用電極X1…に現れる自発分極
電荷のピーク値のバラツキが大きくなり、加速度の検出
精度が低下するという問題があった。また、このように
重錘の固定位置がずれた状態でZ軸方向に加速度が加わ
ると、検出用電極X1において大きな自発分極電荷が現
れ、検出用電極X2において小さな自発分極電荷が現れ
ることになる。そのため、X軸方向に誤った加速度が検
出されてしまう。
In the triaxial acceleration sensor, in order to accurately detect the acceleration, the weight is accurately adjusted with respect to the diaphragm so that the center of the piezoelectric ceramic substrate 101 and the center of the weight match. It is desired to fix in position. However, it is technically difficult to fix the weight at the correct position with respect to the diaphragm at all times, and there is a slight error in the fixed position. In a conventional three-axis acceleration sensor, a pair of sides X20,
Since X30 is formed to spread radially,
If the fixed position of the weight shifts, a virtual boundary line (hereinafter simply referred to as a boundary line) is formed at the boundary between the weight-facing region and the intermediate region.
Vary across the detection electrodes X1. For example, as shown in FIG. 5, when the fixed position of the weight shifts by the length h in the direction from the X-axis detection electrode X2 toward the detection electrode X1, the length across the boundary line changes from L1 to L2. It will be longer. Further, in this case, the length of the detection electrode other than the detection electrode X1 also varies across the boundary line. For this reason, there is a problem that the dispersion of the peak values of the spontaneous polarization charges appearing on the respective detection electrodes X1... Increases, and the detection accuracy of the acceleration decreases. When acceleration is applied in the Z-axis direction in such a state that the fixed position of the weight is shifted, a large spontaneous polarization charge appears on the detection electrode X1, and a small spontaneous polarization charge appears on the detection electrode X2. . Therefore, an incorrect acceleration is detected in the X-axis direction.

【0007】本発明の目的は、重錘の固定位置の誤差に
よる自発分極電荷のピーク値のバラツキを小さくできる
三軸加速度センサを提供することにある。
It is an object of the present invention to provide a three-axis acceleration sensor capable of reducing the variation in the peak value of spontaneous polarization charge due to an error in the fixed position of the weight.

【0008】本発明の他の目的は、加速度信号の信号レ
ベルをほぼ等しくできる三軸加速度センサを提供するこ
とにある。
Another object of the present invention is to provide a three-axis acceleration sensor capable of making the signal levels of acceleration signals substantially equal.

【0009】本発明の他の目的は、増幅器を用いて信号
レベルの調整をする必要がないか、または調整作業が僅
かですむ三軸加速度センサを提供することにある。
It is another object of the present invention to provide a three-axis acceleration sensor which does not require adjustment of a signal level using an amplifier or requires only a small adjustment operation.

【0010】[0010]

【課題を解決するための手段】本発明の対象とする三軸
加速度センサは、X軸方向加速度を検出する1以上のX
軸方向加速度検出用電極、Y軸方向加速度を検出する1
以上のY軸方向加速度検出用電極、Z軸方向加速度を検
出する1以上のZ軸方向加速度検出用電極、1以上のX
軸方向加速度出力電極、1以上のY軸方向加速度出力電
極、1以上のZ軸方向加速度出力電極、1以上のX軸方
向加速度検出用電極と1以上のX軸方向加速度出力電極
を接続する第1の配線パターン、1以上のY軸方向加速
度検出用電極と1以上のY軸方向加速度出力電極を接続
する第2の配線パターン及び1以上のZ軸方向加速度検
出用電極と1以上のZ軸方向加速度出力電極を接続する
第3の配線パターンを含む電極パターンが表面上に形成
され、裏面上に少なくとも各検出用電極と対向する対向
電極パターンが形成され、1以上のX軸方向加速度検出
用電極、1以上のY軸方向加速度検出用電極及び1以上
のZ軸方向加速度検出用電極と対向電極パターンとの間
の部分が分極処理されている圧電セラミックス基板と、
表面に接着剤層を介して圧電セラミックス基板の前記裏
面が接合されたダイアフラムと、ダイアフラムの裏面側
に突出するようにダイアフラムに対して固定された円柱
状または円筒形の重錘と、重錘の変位を許容するように
ダイアフラムの外周部を支持する台座とを具備してい
る。そして、1以上のX軸方向加速度検出用電極、1以
上のY軸方向加速度検出用電極及び1以上のZ軸方向加
速度検出用電極は、重錘と対向する圧電セラミックス基
板の円形の重錘対向領域と該重錘対向領域と外周部との
間に位置する中間領域とに跨がり且つ互いに間隔をあけ
て重錘対向領域を囲む環状の電極列を構成するように形
成されている。
According to the present invention, there is provided a three-axis acceleration sensor for detecting at least one X-axis acceleration which detects X-axis direction acceleration.
Axial acceleration detection electrode, 1 for detecting Y-axis acceleration
The above-described electrodes for detecting acceleration in the Y-axis direction, one or more electrodes for detecting acceleration in the Z-axis direction for detecting acceleration in the Z-axis direction, and one or more X electrodes for detecting acceleration in the Z-axis direction.
An axial acceleration output electrode, one or more Y-axis acceleration output electrodes, one or more Z-axis acceleration output electrodes, one or more X-axis acceleration detection electrodes, and one or more X-axis acceleration output electrodes One wiring pattern, a second wiring pattern for connecting one or more Y-axis direction acceleration detection electrodes and one or more Y-axis direction acceleration output electrodes, one or more Z-axis direction acceleration detection electrodes, and one or more Z-axis An electrode pattern including a third wiring pattern connecting the direction acceleration output electrodes is formed on the front surface, and a counter electrode pattern facing at least each detection electrode is formed on the back surface, and one or more X-axis direction acceleration detection electrodes are formed. A piezoelectric ceramic substrate in which a portion between the electrode, one or more electrodes for Y-axis acceleration detection, and one or more electrodes for Z-axis acceleration detection and the counter electrode pattern is polarized;
A diaphragm in which the back surface of the piezoelectric ceramic substrate is bonded to the front surface via an adhesive layer, a columnar or cylindrical weight fixed to the diaphragm so as to protrude to the back surface side of the diaphragm, And a pedestal for supporting the outer peripheral portion of the diaphragm so as to allow displacement. The one or more electrodes for detecting acceleration in the X-axis direction, the one or more electrodes for detecting acceleration in the Y-axis direction, and the one or more electrodes for detecting acceleration in the Z-axis are opposed to a circular weight of the piezoelectric ceramic substrate facing the weight. It is formed so as to form a ring-shaped electrode array that straddles the region and the intermediate region located between the weight facing region and the outer peripheral portion and surrounds the weight facing region at intervals.

【0011】本発明では、環状の電極列が延びる方向に
位置する一対の辺がほぼ平行になるように、X軸方向加
速度検出用電極、Y軸方向加速度検出用電極及びZ軸方
向加速度検出用電極を形成する。言い換えるならば、環
状の電極列を構成する各検出用電極が並ぶ方向に位置す
る一対の辺が、ほぼ平行になるように、各検出用電極を
形成する。
In the present invention, the X-axis direction acceleration detection electrode, the Y-axis direction acceleration detection electrode, and the Z-axis direction acceleration detection electrode are arranged such that a pair of sides located in the direction in which the annular electrode row extends are substantially parallel. Form electrodes. In other words, each detection electrode is formed such that a pair of sides located in a direction in which the detection electrodes constituting the annular electrode row are arranged are substantially parallel.

【0012】本発明のように、各検出用電極を形成する
と、境界線が各検出用電極の平行な一対の辺上を横切る
ことになる。そのため、重錘の固定位置が多少ずれて、
圧電セラミックス基板の重錘対向領域が変位しても、境
界線が各検出用電極を横切る長さは大きく変わることが
ない。そのため、製造上の誤差範囲で重錘の固定位置が
ずれても、各検出用電極に現れる自発分極電荷のピーク
値の変動またはバラツキは少なく、加速度の検出精度が
低下するのを抑制することができる。また、重錘の固定
位置がずれた状態でZ軸方向に加速度が加わっても、複
数のX軸方向の検出用電極にそれぞれ現れる自発分極電
荷の量はほぼ等しくなる。また、複数のY軸方向の検出
用電極にそれぞれ現れる自発分極電荷の量もほぼ等しく
なる。そのため、X軸方向またはY軸方向に誤って加速
度が検出されるのを防ぐことができる。
When each detecting electrode is formed as in the present invention, a boundary line crosses over a pair of parallel sides of each detecting electrode. Therefore, the fixing position of the weight is slightly shifted,
Even if the weight-facing region of the piezoelectric ceramic substrate is displaced, the length of the boundary line across each detection electrode does not change significantly. Therefore, even if the fixed position of the weight is displaced within the manufacturing error range, the fluctuation or variation of the peak value of the spontaneous polarization charge appearing on each detection electrode is small, and it is possible to suppress a decrease in acceleration detection accuracy. it can. Further, even if acceleration is applied in the Z-axis direction in a state where the fixed position of the weight is displaced, the amounts of spontaneously polarized charges appearing on the plurality of detection electrodes in the X-axis direction become substantially equal. Further, the amounts of spontaneously polarized charges appearing on the plurality of detection electrodes in the Y-axis direction are also substantially equal. Therefore, it is possible to prevent the acceleration from being erroneously detected in the X-axis direction or the Y-axis direction.

【0013】X軸方向加速度検出用電極の一対の辺は、
圧電セラミックス基板の重錘対向領域の中心点とX軸方
向加速度検出用電極の前記一対の辺の中間に位置する中
間点とを通って延びる仮想線とほぼ平行にし、Y軸方向
加速度検出用電極の一対の辺は、圧電セラミックス基板
の重錘対向領域の中心点とY軸方向加速度検出用電極の
一対の辺の中間に位置する中間点とを通って延びる仮想
線とほぼ平行にし、Z軸方向加速度検出用電極の一対の
辺は、圧電セラミックス基板の重錘対向領域の中心点と
Z軸方向加速度検出用電極の一対の辺の中間に位置する
中間点とを通って延びる仮想線とほぼ平行にするのが好
ましい。このようにすれば、各検出用電極を仮想線に対
して左右線対称に形成でき、各方向に生じる加速度を正
確に検出することができる。
A pair of sides of the X-axis direction acceleration detecting electrode are:
The electrode for Y-axis direction acceleration detection is made substantially parallel to an imaginary line extending through the center point of the weight-facing region of the piezoelectric ceramic substrate and an intermediate point located between the pair of sides of the X-axis direction acceleration detection electrode. Are substantially parallel to an imaginary line extending through a center point of the weight-facing region of the piezoelectric ceramic substrate and an intermediate point located between the pair of sides of the Y-axis direction acceleration detecting electrode, The pair of sides of the direction acceleration detecting electrode are substantially imaginary lines extending through the center point of the weight-facing region of the piezoelectric ceramic substrate and an intermediate point located between the pair of sides of the Z-axis direction acceleration detecting electrode. Preferably, they are parallel. With this configuration, the detection electrodes can be formed symmetrically with respect to the virtual line in the left-right direction, and the acceleration occurring in each direction can be accurately detected.

【0014】また、圧電セラミックス基板の重錘対向領
域と中間領域との境界部に仮想した境界線が1以上のX
軸方向加速度検出用電極を横切る長さの合計値と、境界
線が1以上のY軸方向加速度検出用電極を横切る長さの
合計値と境界線が1以上のZ軸方向加速度検出用電極を
横切る長さの合計値とを実質的に等しくし、1以上のX
軸方向加速度検出用電極の面積の合計値と、1以上のY
軸方向加速度検出用電極の面積の合計値と1以上のZ軸
方向加速度検出用電極の面積の合計値とを実質的に等し
くするのが好ましい。このようにすれば、各検出用電極
から発生する自発分極電荷のピーク値をほぼ等しくする
ことができ、しかも各方向の検出用電極から発生する自
発分極電荷の発生分布状態を近付けることができる。そ
のため、各検出用電極に現れる自発分極電荷をより等し
くできる。
In addition, a virtual boundary line between the counterweight region and the intermediate region of the piezoelectric ceramic substrate has one or more X lines.
The total value of the length traversing the electrode for detecting the acceleration in the axial direction, the total value of the length traversing the electrode for detecting the acceleration in the Y-axis direction having one or more boundaries, and the electrode for detecting the acceleration in the Z-axis direction having one or more boundary lines The total value of the traversing lengths is substantially equal to one or more X
The total value of the areas of the electrodes for detecting the axial acceleration and one or more Y
It is preferable that the total value of the area of the electrodes for detecting the acceleration in the axial direction is substantially equal to the total value of the area of the electrodes for detecting the acceleration in the Z-axis direction of one or more. With this configuration, the peak values of the spontaneous polarization charges generated from the detection electrodes can be made substantially equal, and the generation distribution state of the spontaneous polarization charges generated from the detection electrodes in each direction can be approximated. Therefore, spontaneous polarization charges appearing on the respective detection electrodes can be made more equal.

【0015】また、対向電極パターンは、1以上のX軸
方向加速度検出用電極、1以上のY軸方向加速度検出用
電極及び1以上のZ軸方向加速度検出用電極と対向する
ように環状に形成するのが好ましい。言い換えるなら
ば、各出力電極及び各配線パターンと直接対向しないよ
うに対向電極パターンを形成するのが好ましい。このよ
うにすると、各出力電極及び各配線パターンと対向電極
パターンとの間では、大きな静電容量が発生しないの
で、各検出用電極から各出力電極までの間に蓄積される
電荷の量(別の見方をすると各検出用電極から各出力電
極に至るまでに低下する自発分極電荷の量)を小さくで
きる。
The counter electrode pattern is formed in an annular shape so as to face one or more electrodes for detecting acceleration in the X-axis direction, one or more electrodes for detecting acceleration in the Y-axis direction, and one or more electrodes for detecting acceleration in the Z-axis direction. Is preferred. In other words, it is preferable to form a counter electrode pattern so as not to directly face each output electrode and each wiring pattern. In this case, since a large capacitance does not occur between each output electrode and each wiring pattern and the counter electrode pattern, the amount of charge accumulated between each detection electrode and each output electrode (separately). From the viewpoint of (1), the amount of spontaneous polarization charge that decreases from each detection electrode to each output electrode) can be reduced.

【0016】このように、重錘の固定位置がずれても、
各検出用電極に現れる自発分極電荷のピーク値の変動を
少なくできるように構成した上で、各検出用電極に現れ
る自発分極電荷をより等しくしたり、各検出用電極から
各出力電極までの間に蓄積される電荷の量を小さくする
と、各出力電極から出力される加速度信号の信号レベル
をほぼ等しくすることができる。そのため、増幅器を用
いて信号レベルの調整をする必要がないか、または調整
作業が僅かですむ三軸加速度センサを得ることができ
る。
As described above, even if the fixing position of the weight is shifted,
After configuring so that the fluctuation of the peak value of the spontaneous polarization charge appearing on each detection electrode can be reduced, the spontaneous polarization charge appearing on each detection electrode can be made more equal, or between each detection electrode and each output electrode. When the amount of charge stored in the electrodes is reduced, the signal levels of the acceleration signals output from the output electrodes can be made substantially equal. Therefore, it is possible to obtain a three-axis acceleration sensor that does not require signal level adjustment using an amplifier or requires only a small adjustment operation.

【0017】本発明の具体的な実施例としては、X軸方
向加速度を検出する一対のX軸方向加速度検出用電極、
一対のX軸方向加速度検出用電極を結ぶ線と直交する線
上に配置されてY軸方向加速度を検出する一対のY軸方
向加速度検出用電極、一対のX軸方向加速度検出用電極
及び一対のY軸方向加速度検出用電極の隣接する2つの
電極間に配置されてZ軸方向加速度を検出する4つのZ
軸方向加速度検出用電極、1以上のX軸方向加速度出力
電極、1以上のY軸方向加速度出力電極、1以上のZ軸
方向加速度出力電極、一対のX軸方向加速度検出用電極
と1以上のX軸方向加速度出力電極を接続する第1の配
線パターン、一対のY軸方向加速度検出用電極と1以上
のY軸方向加速度出力電極を接続する第2の配線パター
ン及び4つのZ軸方向加速度検出用電極と1以上のZ軸
方向加速度出力電極を接続する第3の配線パターンを含
む電極パターンが表面上に形成され、裏面上に少なくと
も各検出用電極と対向する対向電極パターンが形成さ
れ、一対のX軸方向加速度検出用電極、一対のY軸方向
加速度検出用電極及び4つのZ軸方向加速度検出用電極
と対向電極パターンとの間の部分が分極処理されている
圧電セラミックス基板と、表面に接着剤層を介して圧電
セラミックス基板の裏面が接合されたダイアフラムと、
ダイアフラムの裏面側に突出するようにダイアフラムに
対して固定された重錘と、重錘の変位を許容するように
ダイアフラムの外周部を支持する台座とを具備し、一対
のX軸方向加速度検出用電極、一対のY軸方向加速度検
出用電極及び4つのZ軸方向加速度検出用電極が、重錘
と対向する圧電セラミックス基板の円形の重錘対向領域
と該重錘対向領域と外周部との間に位置する中間領域と
に跨がり且つ互いに間隔をあけて重錘対向領域を囲む環
状の電極列を構成するように形成されている三軸加速度
センサを対象にする。そして、X軸方向加速度検出用電
極の環状の電極列が延びる方向に位置する一対の辺は、
圧電セラミックス基板の重錘対向領域の中心点とX軸方
向加速度検出用電極の一対の辺の中間に位置する中間点
とを通って延びる仮想線とほぼ平行にし、Y軸方向加速
度検出用電極の環状の電極列が延びる方向に位置する一
対の辺は、圧電セラミックス基板の重錘対向領域の中心
点とY軸方向加速度検出用電極の一対の辺の中間に位置
する中間点とを通って延びる仮想線とほぼ平行にし、Z
軸方向加速度検出用電極の環状の電極列が延びる方向に
位置する一対の辺は、圧電セラミックス基板の重錘対向
領域の中心点とZ軸方向加速度検出用電極の一対の辺の
中間に位置する中間点とを通って延びる仮想線とほぼ平
行にする。
As a specific embodiment of the present invention, a pair of electrodes for detecting X-axis direction acceleration for detecting X-axis direction acceleration,
A pair of Y-axis direction acceleration detecting electrodes arranged on a line orthogonal to a line connecting the pair of X-axis direction acceleration detecting electrodes to detect Y-axis direction acceleration, a pair of X-axis direction acceleration detecting electrodes, and a pair of Y Four Zs which are arranged between two adjacent electrodes of the axial acceleration detecting electrode and detect Z-axial acceleration.
An axial acceleration detection electrode, one or more X-axis acceleration output electrodes, one or more Y-axis acceleration output electrodes, one or more Z-axis acceleration output electrodes, a pair of X-axis acceleration detection electrodes and one or more A first wiring pattern for connecting the X-axis direction acceleration output electrodes, a second wiring pattern for connecting a pair of Y-axis direction acceleration detection electrodes and one or more Y-axis direction acceleration output electrodes, and four Z-axis direction acceleration detections; An electrode pattern including a third wiring pattern for connecting the first electrode and one or more Z-axis direction acceleration output electrodes is formed on the front surface, and a counter electrode pattern facing at least each of the detection electrodes is formed on the rear surface. A piezoelectric ceramic substrate in which portions between the X-axis direction acceleration detecting electrode, the pair of Y-axis direction acceleration detecting electrodes, the four Z-axis direction acceleration detecting electrodes, and the counter electrode pattern are polarized. When the diaphragm rear surface of the piezoelectric ceramic substrate is bonded through an adhesive layer on the surface,
A pair of weights fixed to the diaphragm so as to protrude to the back side of the diaphragm, and a pedestal supporting the outer peripheral portion of the diaphragm so as to allow displacement of the weight; An electrode, a pair of Y-axis direction acceleration detecting electrodes, and four Z-axis direction acceleration detecting electrodes are provided between the circular weight facing region of the piezoelectric ceramic substrate facing the weight and the weight facing region and the outer peripheral portion. And a three-axis acceleration sensor formed so as to form a ring-shaped electrode array that straddles the intermediate region located at and surrounds the weight-facing region with an interval therebetween. A pair of sides located in a direction in which the annular electrode row of the X-axis direction acceleration detection electrode extends
The piezoelectric ceramic substrate is substantially parallel to an imaginary line extending through the center point of the weight-facing region of the piezoelectric ceramic substrate and an intermediate point located between a pair of sides of the X-axis direction acceleration detection electrode. A pair of sides located in the direction in which the annular electrode row extends extends through a center point of the weight-facing region of the piezoelectric ceramic substrate and an intermediate point located between the pair of sides of the Y-axis direction acceleration detection electrode. Almost parallel to the imaginary line, Z
A pair of sides of the axial acceleration detection electrode located in the direction in which the annular electrode row extends is located between the center point of the weight-facing region of the piezoelectric ceramic substrate and the pair of sides of the Z-axis acceleration detection electrode. It is almost parallel to an imaginary line extending through the intermediate point.

【0018】[0018]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態の一例を説明する。図1は、本発明の実施の形態
の三軸加速度センサ1の平面図であり、図2は取付部材
2に取付けられた状態の三軸加速度センサ1の断面図で
ある。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of a three-axis acceleration sensor 1 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the three-axis acceleration sensor 1 mounted on a mounting member 2.

【0019】両図に示すように、三軸加速度センサ1は
センサ本体3とこのセンサ本体3の外周部を支持する筒
形の金属製の台座(支持部材)4とから構成されてい
る。台座4が重錘7の変位を許容するように接着剤によ
り金属製の取付部材2に接合されることにより、三軸加
速度センサ1は取付部材2に取付けられている。センサ
本体3は、圧電セラミックス基板5と、この圧電セラミ
ックス基板5に接合された金属製ダイアフラム6と、こ
の金属製ダイアフラム6に接合された重錘7とから構成
されている。圧電セラミックス基板5は、内部に応力が
加わると自発分極電荷が発生するように分極処理が施さ
れている圧電セラミックス基板であり、この圧電セラミ
ックス基板5は輪郭形状が四角形をなしている。分極処
理については後に詳細に説明する。また、圧電セラミッ
クス基板5の一方の面(表面)には電極パターンE1が
形成され、圧電セラミックス基板5の他方の面(裏面)
には、対向電極E0が形成されている。
As shown in FIGS. 1 and 2, the three-axis acceleration sensor 1 comprises a sensor body 3 and a cylindrical metal base (support member) 4 for supporting an outer peripheral portion of the sensor body 3. The triaxial acceleration sensor 1 is mounted on the mounting member 2 by joining the pedestal 4 to the metal mounting member 2 with an adhesive so as to allow the displacement of the weight 7. The sensor main body 3 includes a piezoelectric ceramic substrate 5, a metal diaphragm 6 joined to the piezoelectric ceramic substrate 5, and a weight 7 joined to the metal diaphragm 6. The piezoelectric ceramic substrate 5 is a piezoelectric ceramic substrate that has been subjected to a polarization process so that a spontaneous polarization charge is generated when a stress is applied to the inside. The piezoelectric ceramic substrate 5 has a quadrangular contour. The polarization process will be described later in detail. An electrode pattern E1 is formed on one surface (front surface) of the piezoelectric ceramic substrate 5, and the other surface (back surface) of the piezoelectric ceramic substrate 5 is formed.
Is formed with a counter electrode E0.

【0020】圧電セラミックス基板5は、重錘対向領域
5Aと中間領域5Bとを有している。重錘対向領域5A
は、圧電セラミックス基板1の中心部において円形の形
状を有している。この重錘対向領域5Aには、対向電極
E0及び金属製ダイアフラム6を介して重錘7がエポキ
シ系接着剤により接合されている。この重錘7はアルミ
合金、銅合金、鉄合金により円柱状に形成されている。
重錘7は、静止状態においてその重心を通る軸線が重錘
対向領域5Aの中心を通って圧電セラミックス基板5の
面と直交するように、金属製ダイアフラム6に固定され
ている。
The piezoelectric ceramic substrate 5 has a weight facing region 5A and an intermediate region 5B. Weight facing area 5A
Has a circular shape at the center of the piezoelectric ceramic substrate 1. The weight 7 is joined to the weight-facing region 5A with an epoxy-based adhesive via a counter electrode E0 and a metal diaphragm 6. The weight 7 is formed in a cylindrical shape from an aluminum alloy, a copper alloy, or an iron alloy.
The weight 7 is fixed to the metal diaphragm 6 such that an axis passing through the center of gravity passes through the center of the weight facing region 5A and is orthogonal to the surface of the piezoelectric ceramic substrate 5 in a stationary state.

【0021】中間領域5Bは、重錘対向領域5Aを囲む
環状の形状を有しており、重錘対向領域5Aとダイアフ
ラム6の外周部との間に位置している。中間領域5B
は、重錘7に対して圧電セラミックス基板1と平行な方
向に加速度が作用すると、重錘7の重心を中心として点
対称に異なった状態(引っ張り応力が加わった状態と、
圧縮応力が加わった状態と)に変形する領域である。ま
た、重錘7に対して圧電セラミックス基板1と直交する
方向に加速度が作用すると、中間領域5Bの各部は同じ
状態(引っ張り応力が加った状態)に変形する。
The intermediate region 5B has an annular shape surrounding the weight facing region 5A, and is located between the weight facing region 5A and the outer periphery of the diaphragm 6. Middle area 5B
When an acceleration acts on the weight 7 in a direction parallel to the piezoelectric ceramic substrate 1, a point-symmetrically different state about the center of gravity of the weight 7 (the state where a tensile stress is applied,
And a state where a compressive stress is applied). When acceleration acts on the weight 7 in a direction orthogonal to the piezoelectric ceramic substrate 1, each part of the intermediate region 5B is deformed to the same state (state in which a tensile stress is applied).

【0022】圧電セラミックス基板5の表面及び裏面に
形成された電極パターンE1及び対向電極E0は、いず
れも銀ペーストを用いてスクリーン印刷により形成され
ており、電極パターンE1の環状の電極列を構成する検
出用電極DX1,DX2,DY1,DY2,DZ1〜D
Z4と対向電極E0との間に発生する自発分極電荷の変
化により、重錘7に加わった三軸(X軸,Y軸,Z軸)
方向の加速度が測定される。なお、ここでいうX軸,Y
軸,Z軸は互いに直交する方向に延びる軸であり、X軸
及びY軸は圧電セラミックス基板5の面方向に延びてお
り、Z軸は圧電セラミックス基板5の面方向と直交する
方向に延びている。対向電極E0は、電極パターンE1
の検出用電極DX1,DX2,DY1,DY2,DZ1
〜DZ4と対向するように、円環状に形成されており、
10μmの厚みを有している。圧電セラミックス基板5
の裏面には、金属製ダイアフラム6が接合されている。
具体的には、対向電極E0が形成されていない部分で
は、圧電セラミックス基板5は接着層Sにより金属製ダ
イアフラム6と接合されている。また、対向電極E0が
形成されている部分では、対向電極E0を介して、接着
剤により圧電セラミックス基板5は金属製ダイアフラム
6と接合されている。なお、図示していないが、対向電
極E0の裏面には凹凸があり、接着剤は、対向電極E0
の裏面の凹部に入り込んで対向電極E0と金属製ダイア
フラム6とを接合している。そして、対向電極E0の凸
部は、金属製ダイアフラム6と接合している。これによ
り、対向電極E0は、金属製ダイアフラム6及び台座
(支持部材)4を介して取付部材2に接地される。な
お、接地用パターンを別に設け、接地用パターンを導電
性接着剤を介して金属製ダイアフラム6に接合すること
により、接地をより確実なものとしてもよい。電極パタ
ーンE1は、三軸(X軸,Y軸,Z軸)方向のそれぞれ
の電極パターン部を有しており、対向電極E0と同様に
10μmの厚みを有している。電極パターンE1のX軸
方向の電極パターン部は、2つのX軸方向加速度検出用
電極DX1,DX2と2つのX軸加速度出力電極OX
1,OX2とがそれぞれ2つのパターン部LX1,LX
2に接続された構造を有している。本例では、2つのパ
ターン部LX1,LX2により第1の配線パターンが構
成されている。なお、パターン部LX1,LX2は、検
出用電極DX1,DX2と接続される端部に銀ペースト
からなる接続部を有している。
Each of the electrode pattern E1 and the counter electrode E0 formed on the front and back surfaces of the piezoelectric ceramic substrate 5 is formed by screen printing using silver paste, and forms an annular electrode row of the electrode pattern E1. Detection electrodes DX1, DX2, DY1, DY2, DZ1 to DZ
Three axes (X axis, Y axis, Z axis) added to the weight 7 due to a change in spontaneous polarization charge generated between Z4 and the counter electrode E0
The acceleration in the direction is measured. Note that the X axis, Y
The axis and the Z axis are axes extending in directions orthogonal to each other, the X axis and the Y axis extend in the surface direction of the piezoelectric ceramic substrate 5, and the Z axis extends in the direction orthogonal to the surface direction of the piezoelectric ceramic substrate 5. I have. The opposing electrode E0 has an electrode pattern E1.
Detection electrodes DX1, DX2, DY1, DY2, DZ1
~ DZ4, it is formed in an annular shape,
It has a thickness of 10 μm. Piezoelectric ceramic substrate 5
Is joined to a metal diaphragm 6.
Specifically, the piezoelectric ceramic substrate 5 is bonded to the metal diaphragm 6 by the adhesive layer S in a portion where the counter electrode E0 is not formed. In a portion where the counter electrode E0 is formed, the piezoelectric ceramic substrate 5 is bonded to the metal diaphragm 6 by an adhesive via the counter electrode E0. Although not shown, the back surface of the counter electrode E0 has irregularities, and the adhesive is applied to the counter electrode E0.
And the metal electrode 6 is joined to the counter electrode E0 by entering the concave portion on the back surface of the substrate. The convex portion of the counter electrode E0 is joined to the metal diaphragm 6. Thereby, the counter electrode E0 is grounded to the mounting member 2 via the metal diaphragm 6 and the pedestal (support member) 4. Note that the grounding pattern may be provided separately, and the grounding pattern may be joined to the metal diaphragm 6 via a conductive adhesive, so that the grounding may be further ensured. The electrode pattern E1 has three electrode pattern portions in three axes (X-axis, Y-axis, and Z-axis), and has a thickness of 10 μm, like the counter electrode E0. The X-axis direction electrode pattern portion of the electrode pattern E1 includes two X-axis direction acceleration detection electrodes DX1 and DX2 and two X-axis acceleration output electrodes OX.
1 and OX2 are two pattern portions LX1 and LX, respectively.
2 is connected. In this example, a first wiring pattern is configured by the two pattern portions LX1 and LX2. The pattern portions LX1 and LX2 have connection portions made of silver paste at the ends connected to the detection electrodes DX1 and DX2.

【0023】検出用電極DX1及びDX2は、矩形に近
い形状をなしている。検出用電極DX1に付した符号を
用いて具体的に説明すると、検出用電極DX1は、環状
の中間領域5Bの外周に沿って延びる円弧状の湾曲辺K
1と、環状の中間領域5Bの内周に沿って延び且つ重錘
対向領域5A内に位置する湾曲辺K2と、2つの湾曲辺
K1,K2の間を相互に平行に延びる2つの直線の辺K
3,K4とを有している。言い換えるならば、各検出用
電極DX1,DZ1…により形成される環状の電極列が
延びる方向に位置する一対の辺K3,K4がほぼ平行に
なるように、検出用電極DX1は形成されている。ま
た、一対の辺K3,K4は、圧電セラミックス基板5の
重錘対向領域5Aの中心点とX軸方向加速度検出用電極
DX1の一対の辺K3,K4の中間に位置する中間点と
を通って延びる仮想線(XL)ともほぼ平行に延びてい
る。このように、検出用電極DX1,DX2は、大部分
が中間領域5Bに位置する面上に形成され、しかも一部
が重錘対向領域5Aと中間領域5Bとに跨がるように形
成されている。そして、検出用電極DX1及びDX2
は、圧電セラミックス基板5の面上を延びる仮想X軸直
線XL上に位置し且つ重錘対向領域5Aを間に挟むよう
に対称的に配置されている。
The detection electrodes DX1 and DX2 have a substantially rectangular shape. Specifically, the detection electrode DX1 will be described in detail. The detection electrode DX1 has an arcuate curved side K extending along the outer circumference of the annular intermediate region 5B.
1, a curved side K2 extending along the inner periphery of the annular intermediate area 5B and located in the weight counter area 5A, and two straight sides extending parallel to each other between the two curved sides K1 and K2. K
3 and K4. In other words, the detection electrode DX1 is formed such that the pair of sides K3, K4 located in the direction in which the annular electrode row formed by the detection electrodes DX1, DZ1,. The pair of sides K3 and K4 pass through the center point of the weight-facing region 5A of the piezoelectric ceramic substrate 5 and an intermediate point located between the pair of sides K3 and K4 of the X-axis direction acceleration detection electrode DX1. It also extends substantially parallel to the extending virtual line (XL). As described above, the detection electrodes DX1 and DX2 are mostly formed on the surface located in the intermediate region 5B, and partially formed so as to straddle the weight facing region 5A and the intermediate region 5B. I have. Then, the detection electrodes DX1 and DX2
Are positioned on a virtual X-axis straight line XL extending on the surface of the piezoelectric ceramic substrate 5, and are symmetrically arranged so as to sandwich the weight facing region 5A therebetween.

【0024】一対の出力電極OX1,OX2は、ほぼ正
方形の形状を有している。出力電極OX1,OX2及び
パターン部LX1,LX2は、出力電極OX1,OX2
が圧電セラミックス基板5の外周部に位置するように、
中間領域5Bの外側に形成されている。
The pair of output electrodes OX1 and OX2 have a substantially square shape. The output electrodes OX1, OX2 and the pattern portions LX1, LX2 are connected to the output electrodes OX1, OX2.
Is located on the outer peripheral portion of the piezoelectric ceramic substrate 5,
It is formed outside the intermediate region 5B.

【0025】Y軸方向の電極パターン部は、2つのY軸
方向加速度検出用電極DY1,DY2と2つのY軸加速
度出力電極OY1,OY2とがそれぞれ2つのパターン
部LY1,LY2により接続された構造を有している。
本例では、パターン部LY1,LY2により第2の配線
パターンが構成されている。なお、パターン部LY1,
LY2も銀ペーストからなる接続部を有している。
The electrode pattern section in the Y-axis direction has a structure in which two Y-axis direction acceleration detecting electrodes DY1 and DY2 and two Y-axis acceleration output electrodes OY1 and OY2 are connected by two pattern sections LY1 and LY2, respectively. have.
In this example, a second wiring pattern is configured by the pattern portions LY1 and LY2. The pattern portions LY1,
LY2 also has a connection made of silver paste.

【0026】Y軸方向加速度検出用電極DY1及びDY
2は、X軸方向加速度検出用電極DX1及びDX2と同
様に矩形に近い形状をなしている。即ち各検出用電極D
X1,DZ1…により形成される環状の電極列が延びる
方向に位置する一対の辺がほぼ平行になるように、検出
用電極DY1及びDY2は形成されている。また、一対
の辺は、圧電セラミックス基板5の重錘対向領域5Aの
中心点とY軸方向加速度検出用電極DY1,DY2の一
対の辺の中間に位置する中間点とを通って延びる仮想線
(YL)ともほぼ平行に延びている。そして、検出用電
極DY1及びDY2は、大部分が中間領域5Bに位置す
る面上に形成され、しかも一部が重錘対向領域5Aと中
間領域5Bとに跨がるように形成されている。また、Y
軸方向加速度検出用電極DY1及びDY2は、一対のX
軸方向加速度検出用電極DX1,DX2を結ぶ仮想X軸
直線XLと直交して圧電セラミックス基板5の面と水平
に延びる仮想Y軸直線YL上に位置し且つ重錘対向領域
5Aを間に挟むようにして対称的に配置されている。仮
想Y軸直線YLと仮想X軸直線XLとは互いに直交する
ので、検出用電極DX1,DY1,DX2及びDY2は
それぞれ90度の角度間隔をあけて配置されることにな
る。
Electrodes DY1 and DY for detecting acceleration in the Y-axis direction
2 has a shape close to a rectangle like the X-axis direction acceleration detection electrodes DX1 and DX2. That is, each detection electrode D
The detection electrodes DY1 and DY2 are formed such that a pair of sides located in a direction in which an annular electrode row formed by X1, DZ1,... In addition, the pair of sides are imaginary lines extending through the center point of the weight facing region 5A of the piezoelectric ceramic substrate 5 and an intermediate point located between the pair of sides of the Y-axis direction acceleration detecting electrodes DY1 and DY2. YL) extend substantially in parallel. Most of the detection electrodes DY1 and DY2 are formed on the surface located in the intermediate region 5B, and partly formed so as to straddle the weight facing region 5A and the intermediate region 5B. Also, Y
The electrodes DY1 and DY2 for axial acceleration detection are a pair of X
It is positioned on a virtual Y-axis straight line YL extending horizontally to the surface of the piezoelectric ceramic substrate 5 orthogonally to a virtual X-axis straight line XL connecting the axial acceleration detection electrodes DX1 and DX2, and sandwiching the weight facing region 5A therebetween. They are arranged symmetrically. Since the virtual Y-axis straight line YL and the virtual X-axis straight line XL are orthogonal to each other, the detection electrodes DX1, DY1, DX2, and DY2 are arranged at an angular interval of 90 degrees.

【0027】一対の出力電極OY1,OY2は出力電極
OX1,OX2と同様にほぼ正方形の形状を有してい
る。出力電極OY1,OY2及びパターン部LY1,L
Y2も出力電極OY1,OY2が圧電セラミックス基板
5の外周部に位置するように、中間領域5Bの外側に形
成されている。
The pair of output electrodes OY1 and OY2 have a substantially square shape like the output electrodes OX1 and OX2. Output electrodes OY1, OY2 and pattern parts LY1, L
Y2 is also formed outside the intermediate region 5B so that the output electrodes OY1 and OY2 are located on the outer peripheral portion of the piezoelectric ceramic substrate 5.

【0028】Z軸方向の電極パターン部は、4つのZ軸
方向加速度検出用電極DZ1〜DZ4が第1のパターン
部LZ1により相互に接続され、1つの検出用電極DZ
3が第2のパターン部LZ2によりZ軸加速度出力電極
OZに接続された構造を有している。本例では、第1の
パターン部LZ1及び第2のパターン部LZ2により第
3の配線パターンが構成されている。なお、パターン部
LZ1,LZ2もその端部に銀ペーストからなる接続部
を有している。
In the electrode pattern portion in the Z-axis direction, four Z-axis direction acceleration detecting electrodes DZ1 to DZ4 are connected to each other by a first pattern portion LZ1, and one detecting electrode DZ
3 has a structure connected to the Z-axis acceleration output electrode OZ by the second pattern portion LZ2. In the present example, a third wiring pattern is formed by the first pattern portion LZ1 and the second pattern portion LZ2. The pattern portions LZ1 and LZ2 also have connection portions made of silver paste at their ends.

【0029】Z軸方向加速度検出用電極DZ1〜DZ4
もX軸方向加速度検出用電極DX1及びDX2と同様に
矩形に近い形状をなしている。即ち各検出用電極DX
1,DZ1…により形成される環状の電極列が延びる方
向に位置する一対の辺がほぼ平行になるように、検出用
電極DZ1〜DZ4は形成されている。また、一対の辺
は、圧電セラミックス基板5の重錘対向領域5Aの中心
点とZ軸方向加速度検出用電極DZ1〜DZ4の一対の
辺の中間に位置する中間点とを通って延びる仮想線とも
ほぼ平行に延びている。そして、検出用電極DZ1〜D
Z4は、大部分が中間領域5Bに位置する面上に形成さ
れ、しかもその一部が重錘対向領域5Aと中間領域5B
とに跨がるように形成されている。また、4つのZ軸方
向加速度検出用電極DZ1〜DZ4は、検出用電極DX
1と検出用電極DY1との間、検出用電極DY1と検出
用電極DX2との間、検出用電極DX2と検出用電極D
Y2との間、検出用電極DY2と検出用電極DX1との
間の各中央部にそれぞれ配置されている。したがって、
検出用電極DZ1〜DZ4は、それぞれ90度の角度間
隔をあけて配置されている。また、このような配置によ
り、検出用電極DX1,DX2,DY1,DY2,DZ
1〜DZ4は、重錘対向領域5Aを囲む環状の電極列を
構成している。
Z-axis direction acceleration detecting electrodes DZ1 to DZ4
Similarly, the X-axis direction acceleration detection electrodes DX1 and DX2 have a shape close to a rectangle. That is, each detection electrode DX
The detection electrodes DZ1 to DZ4 are formed such that a pair of sides located in a direction in which the annular electrode row formed by the electrodes 1, DZ1,. Further, the pair of sides is also a virtual line extending through the center point of the weight facing region 5A of the piezoelectric ceramic substrate 5 and an intermediate point located between the pair of sides of the Z-axis direction acceleration detecting electrodes DZ1 to DZ4. They extend almost parallel. The detection electrodes DZ1 to DZ1
Z4 is mostly formed on the surface located in the intermediate region 5B, and a part of the Z4 is formed between the weight facing region 5A and the intermediate region 5B.
It is formed so as to straddle. Further, the four Z-axis direction acceleration detecting electrodes DZ1 to DZ4 are
1 and the detection electrode DY1, between the detection electrode DY1 and the detection electrode DX2, between the detection electrode DX2 and the detection electrode D.
Y2 and at the center between the detection electrode DY2 and the detection electrode DX1. Therefore,
The detection electrodes DZ1 to DZ4 are arranged at 90 degree intervals. Also, with such an arrangement, the detection electrodes DX1, DX2, DY1, DY2, DZ
1 to DZ4 constitute an annular electrode row surrounding the weight facing region 5A.

【0030】1つの出力電極OZは、ほぼ長方形の形状
を有している。そして、この出力電極OZ及びパターン
部LZ2は、出力電極OZが圧電セラミックス基板5の
外周部に位置するように、中間領域5Bの外側に形成さ
れている。この出力電極OZ及び各出力電極OX1,O
X2,OY1,OY2は、図示しない演算回路に接続さ
れており、各出力電極からは演算回路に加速度信号が送
られる。また、パターン部LZ1は、重錘対向領域5A
内に形成されており、検出用電極DZ1と検出用電極D
Z2とを接続する配線部LZ11と、検出用電極DZ3
と検出用電極DZ4とを接続する配線部LZ12と、配
線部LZ11と配線部LZ12とを接続する配線部LZ
13とにより構成されている。
One output electrode OZ has a substantially rectangular shape. The output electrode OZ and the pattern portion LZ2 are formed outside the intermediate region 5B such that the output electrode OZ is located on the outer peripheral portion of the piezoelectric ceramic substrate 5. This output electrode OZ and each output electrode OX1, O
X2, OY1 and OY2 are connected to an arithmetic circuit (not shown), and an acceleration signal is sent from each output electrode to the arithmetic circuit. Further, the pattern portion LZ1 is formed in the weight facing region 5A.
The detection electrode DZ1 and the detection electrode D
A wiring portion LZ11 for connecting Z2 with the detection electrode DZ3;
LZ12 connecting the wiring LZ12 and the detection electrode DZ4, and the wiring LZ connecting the wiring LZ11 and the wiring LZ12
13.

【0031】また、本実施の形態では、圧電セラミック
ス基板5の重錘対向領域5Aと中間領域5Bとの境界部
に仮想した境界線が検出用電極DX1を横切る長さl1
と境界線が検出用電極DX2を横切る長さl2 との合計
値(l1 +l2 )と、境界線が検出用電極DY1を横切
る長さl3 と境界線が検出用電極DY2を横切る長さl
4 との合計値(l3 +l4 )と、境界線が検出用電極D
Z1を横切る長さl5と境界線が検出用電極DZ2を横
切る長さl6 と境界線が検出用電極DZ3を横切る長さ
l7 と境界線が検出用電極DZ4を横切る長さl8 との
合計値(l5 +l6 +l7 +l8 )とが等しく(3.0
8mm)なるように各方向の検出用電極は形成されてい
る。また、一対の検出用電極DX1,DX2の面積の合
計値と、一対の検出用電極DY1,DY2の面積の合計
値と、4つの検出用電極DZ1〜DZ4の面積の合計値
とが等しく(4.4mm2 )なるように各方向の検出用
電極は形成してある。そのため、重錘7に等量のX軸方
向加速度、Y軸方向加速度またはZ軸方向加速度が単独
で加わったときに、検出用電極DX1と検出用電極DX
2の両者に発生する自発分極電荷と、検出用電極DY1
と検出用電極DY2の両者に発生する自発分極電荷と、
検出用電極DZ1〜DZ4に発生する自発分極電荷のピ
ーク値がほぼ等しくなり、また発生分布もほぼ等しくな
る。その結果、各方向の検出用電極から発生する自発分
極電荷の量を実質的に等しくすることができる。
Further, in this embodiment, the length l1 of the imaginary boundary line between the counterweight region 5A and the intermediate region 5B of the piezoelectric ceramic substrate 5 crosses the detection electrode DX1.
And the length l2 of the boundary line crossing the detection electrode DX2 (l1 + l2), the length l3 of the boundary line crossing the detection electrode DY1, and the length l of the boundary line crossing the detection electrode DY2.
4 and the boundary line is the detection electrode D.
The total value of the length l5 crossing Z1 and the length l6 of the boundary line crossing the detection electrode DZ2, the length l7 of the boundary line crossing the detection electrode DZ3, and the length l8 of the boundary line crossing the detection electrode DZ4 ( l5 + l6 + l7 + l8) is equal to (3.0
8 mm), the detection electrodes in each direction are formed. Further, the sum of the areas of the pair of detection electrodes DX1 and DX2, the sum of the areas of the pair of detection electrodes DY1 and DY2, and the sum of the areas of the four detection electrodes DZ1 to DZ4 are equal (4 The detection electrodes in each direction are formed so as to be 0.4 mm 2 ). Therefore, when an equal amount of acceleration in the X-axis direction, Y-axis direction, or Z-axis direction is independently applied to the weight 7, the detection electrode DX1 and the detection electrode DX
2 and the detection electrode DY1
And spontaneous polarization charges generated on both the detection electrode DY2 and
The peak values of the spontaneously polarized charges generated in the detection electrodes DZ1 to DZ4 are substantially equal, and the generation distributions are also substantially equal. As a result, the amounts of spontaneously polarized charges generated from the detection electrodes in each direction can be made substantially equal.

【0032】X軸方向加速度検出用電極DX1,DX2
に対応する圧電セラミックス基板5の各部分には、各部
分に同種類の応力が発生したとき(Y軸方向またはZ軸
方向にのみ加速度が発生したとき)に重錘対向領域5A
の一方の側に位置するX軸方向加速度検出用電極DX1
と他方の側に位置するX軸方向加速度検出用電極DX2
とにそれぞれ逆極性の自発分極電荷が現れるように分極
処理が施されている。この例では、X軸方向加速度検出
用電極DX1,DX2に対応する圧電セラミックス基板
5の各部分に引っ張り応力が発生したときに、X軸方向
加速度検出用電極DX1にプラスの自発分極電荷が現
れ、X軸方向加速度検出用電極DX2にマイナスの自発
分極電荷が現れるように分極処理が施されている。
X-axis direction acceleration detecting electrodes DX1, DX2
When the same type of stress is generated in each portion of the piezoelectric ceramic substrate 5 (when acceleration is generated only in the Y-axis direction or the Z-axis direction), the weight facing region 5A
X-axis direction acceleration detection electrode DX1 located on one side of
And X-axis direction acceleration detection electrode DX2 located on the other side
The polarization process is performed so that spontaneous polarization charges of opposite polarities appear at the time. In this example, when a tensile stress is generated in each portion of the piezoelectric ceramic substrate 5 corresponding to the X-axis direction acceleration detection electrodes DX1, DX2, a positive spontaneous polarization charge appears on the X-axis direction acceleration detection electrode DX1, The polarization processing is performed so that a negative spontaneous polarization charge appears on the X-axis direction acceleration detection electrode DX2.

【0033】また、Y軸方向加速度検出用電極DY1,
DY2に対応する圧電セラミックス基板5の各部分もX
軸方向加速度検出用電極DX1,DX2に対応する圧電
セラミックス基板5の各部分と同様に、各部分に同種類
の応力が発生したとき(X軸方向またはZ軸方向にのみ
加速度が発生したとき)に重錘対向領域5Aの一方の側
に位置するY軸方向加速度検出用電極DY1と他方の側
に位置するY軸方向加速度検出用電極DY2とにそれぞ
れ逆極性の自発分極電荷が現れるように分極処理が施さ
れている。この例では、Y軸方向加速度検出用電極DY
1,DY2に対応する圧電セラミックス基板5の各部分
に引っ張り応力が発生したときに、Y軸方向加速度検出
用電極DY1にプラスの自発分極電荷が現れ、Y軸方向
加速度検出用電極DY2にマイナスの自発分極電荷が現
れるように分極処理を施した。
The electrodes DY1 and DY1 for detecting the acceleration in the Y-axis direction are provided.
Each part of the piezoelectric ceramic substrate 5 corresponding to DY2 is also X
When the same kind of stress is generated in each part as in each part of the piezoelectric ceramic substrate 5 corresponding to the axial acceleration detecting electrodes DX1 and DX2 (when acceleration is generated only in the X-axis direction or the Z-axis direction) Polarized so that spontaneously polarized charges of opposite polarities appear on the Y-axis direction acceleration detecting electrode DY1 located on one side of the weight facing region 5A and the Y-axis direction acceleration detecting electrode DY2 located on the other side. Processing has been applied. In this example, the Y-axis direction acceleration detection electrode DY
1 and DY2, when a tensile stress is generated in each portion of the piezoelectric ceramic substrate 5, a positive spontaneous polarization charge appears on the Y-axis direction acceleration detecting electrode DY1 and a negative spontaneous polarization charge appears on the Y-axis direction acceleration detecting electrode DY2. Polarization treatment was performed so that spontaneous polarization charges appeared.

【0034】また、Z軸方向加速度検出用電極DZ1〜
DZ4に対応する圧電セラミックス基板5の各部分は、
各部分に同種類の応力が発生したとき(Z軸方向にのみ
加速度が発生したとき)にすべてのZ軸方向加速度検出
用電極DZ1〜DZ4に同じ極性の自発分極電荷が現れ
るように分極処理が施されている。この例では、Z軸方
向加速度検出用電極DZ1〜DZ4に対応する圧電セラ
ミックス基板5の部分に引っ張り応力が生じた際にZ軸
方向加速度検出用電極DZ1〜DZ4にプラスの自発分
極電荷が現れるように分極処理を施した。これらの分極
処理は、電極パターンE1の各検出用電極DX1…及び
対向電極E0を形成した後に圧電セラミックス基板5に
直流電圧を印加することにより行った。
The Z-axis direction acceleration detecting electrodes DZ1 to DZ1
Each part of the piezoelectric ceramic substrate 5 corresponding to DZ4
When the same type of stress is generated in each portion (when acceleration is generated only in the Z-axis direction), the polarization process is performed so that spontaneously polarized charges of the same polarity appear in all the Z-axis direction acceleration detection electrodes DZ1 to DZ4. It has been subjected. In this example, when a tensile stress is generated in a portion of the piezoelectric ceramic substrate 5 corresponding to the Z-axis direction acceleration detecting electrodes DZ1 to DZ4, a positive spontaneous polarization charge appears on the Z-axis direction acceleration detecting electrodes DZ1 to DZ4. Was subjected to a polarization treatment. These polarization treatments were performed by applying a DC voltage to the piezoelectric ceramic substrate 5 after forming the detection electrodes DX1... And the counter electrode E0 of the electrode pattern E1.

【0035】前述したように、本実施の形態の三軸加速
度センサでは各検出用電極DX1,DZ1…により形成
される環状の電極列が延びる方向に位置する一対の辺が
ほぼ平行になるように、各検出用電極DX1…は形成さ
れている。言い換えるならば、環状の電極列を構成する
各検出用電極DX1…が並ぶ一対の辺が、ほぼ平行にな
るように、各検出用電極DX1…は形成されている。そ
のため、図3に示すように、重錘の固定位置がX軸の検
出用電極DX2から検出用電極DX1に向う方向に長さ
h10だけずれても、検出用電極DX1を横切る境界線
の長さ(L10及びL20)は実質的に変わることがな
い。また、この場合、検出用電極DX1以外の検出用電
極においても、境界線が横切る長さはあまり大きく変化
することはない。そのため、製造上の誤差の範囲で重錘
の固定位置がずれても、各検出用電極DX1…に現れる
自発分極電荷のピーク値の変動またはバラツキは少な
く、加速度の検出精度が低下するのを抑制できる。ま
た、このように重錘の固定位置がずれた状態でZ軸方向
に加速度が加わっても、検出用電極DX1に現れる自発
分極電荷と、検出用電極DX2に現れる自発分極電荷に
は大きな差は生じない。そのため、X軸方向に誤って加
速度が検出されるのを防ぐことができる。
As described above, in the three-axis acceleration sensor of the present embodiment, a pair of sides located in the direction in which the annular electrode row formed by the detection electrodes DX1, DZ1,. , Are formed. In other words, the detection electrodes DX1... Are formed such that a pair of sides on which the detection electrodes DX1. Therefore, as shown in FIG. 3, even if the fixing position of the weight is shifted by the length h10 in the direction from the X-axis detection electrode DX2 toward the detection electrode DX1, the length of the boundary line that crosses the detection electrode DX1. (L10 and L20) do not substantially change. In addition, in this case, the length of the detection electrode other than the detection electrode DX1 does not change much. Therefore, even if the fixed position of the weight is displaced within the range of manufacturing error, the fluctuation or variation of the spontaneous polarization charge peak value appearing on each of the detection electrodes DX1. it can. Further, even if acceleration is applied in the Z-axis direction in such a state that the fixed position of the weight is shifted, there is a large difference between the spontaneous polarization charge appearing on the detection electrode DX1 and the spontaneous polarization charge appearing on the detection electrode DX2. Does not occur. Therefore, it is possible to prevent the acceleration from being erroneously detected in the X-axis direction.

【0036】なお、上記例においては、ダイアフラム6
は金属製であるが、ダイフラムは金属に限られるもので
はない。ダイフラムをガラス等の非金属で形成する場合
には、対向電極E0は、図示しない演算回路に直接接続
すればよい。また上記例では、重錘7とダイフラム6を
別体に構成しているが、これらを一体に構成してもよい
のは勿論である。
In the above example, the diaphragm 6
Is made of metal, but the diaphragm is not limited to metal. When the diaphragm is formed of a non-metal such as glass, the counter electrode E0 may be directly connected to an arithmetic circuit (not shown). Further, in the above example, the weight 7 and the diaphragm 6 are formed separately, but they may be formed integrally.

【0037】[0037]

【発明の効果】本発明によれば、環状の電極列が延びる
方向に位置する一対の辺がほぼ平行になるように各検出
用電極を形成するので、重錘の固定位置がずれて、圧電
セラミックス基板の重錘対向領域が変位しても、境界線
が各検出用電極を横切る長さは大きく変わることがな
い。そのため、製造上の誤差範囲で重錘の固定位置がず
れても、各検出用電極に現れる自発分極電荷のピーク値
の変動及びバラツキは少なく、加速度の検出精度が低下
するのを抑制することができる。また、重錘の固定位置
がずれた状態でZ軸方向に加速度が加わっても、X軸方
向及びY軸方向に誤って加速度が検出されるのを防ぐこ
とができる。
According to the present invention, since each detection electrode is formed so that a pair of sides located in the direction in which the annular electrode row extends are substantially parallel, the fixed position of the weight is shifted, and Even if the weight-facing region of the ceramic substrate is displaced, the length of the boundary line across each detection electrode does not change significantly. Therefore, even if the fixed position of the weight shifts within the manufacturing error range, the fluctuation and variation in the peak value of the spontaneous polarization charge appearing on each detection electrode are small, and it is possible to suppress a decrease in the accuracy of acceleration detection. it can. Further, even if acceleration is applied in the Z-axis direction with the fixed position of the weight shifted, it is possible to prevent the acceleration from being erroneously detected in the X-axis direction and the Y-axis direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の三軸加速度センサの平
面図である。
FIG. 1 is a plan view of a three-axis acceleration sensor according to an embodiment of the present invention.

【図2】 本発明の実施の形態の三軸加速度センサの概
略断面図である。
FIG. 2 is a schematic sectional view of the three-axis acceleration sensor according to the embodiment of the present invention.

【図3】 本発明の実施の形態の三軸加速度センサの作
用を説明するために用いる部分拡大図である。
FIG. 3 is a partially enlarged view used to explain the operation of the three-axis acceleration sensor according to the embodiment of the present invention.

【図4】 本発明の実施の形態の三軸加速度センサの平
面図である。
FIG. 4 is a plan view of the triaxial acceleration sensor according to the embodiment of the present invention.

【図5】 従来の三軸加速度センサの課題を説明するた
めに用いる部分拡大図である。
FIG. 5 is a partially enlarged view used to explain a problem of a conventional three-axis acceleration sensor.

【符号の説明】[Explanation of symbols]

4 台座 5 圧電セラミックス基板 5A 重錘対向領域 5B 中間領域 6 ダイアフラム 7 重錘 E1 電極パターン E0 対向電極 DX1,DX2 X軸方向加速度検出用電極 DY1,DY2 Y軸方向加速度検出用電極 DZ1〜DZ4 Z軸方向加速度検出用電極 OX1,OX2 X軸方向加速度出力電極 OY1,OY2 Y軸方向加速度出力電極 OZ Z軸方向加速度出力電極 LX1,LX2 第1の配線パターンのパターン部 LY1,LY2 第2の配線パターンのパターン部 LZ1,LZ2 第3の配線パターンのパターン部 K3,K4 1対の辺 4 Pedestal 5 Piezoelectric ceramic substrate 5A Weight counter area 5B Intermediate area 6 Diaphragm 7 Weight E1 Electrode pattern E0 Counter electrode DX1, DX2 X-axis direction acceleration detection electrodes DY1, DY2 Y-axis direction acceleration detection electrodes DZ1-DZ4 Z-axis Direction acceleration detection electrodes OX1, OX2 X-axis direction acceleration output electrode OY1, OY2 Y-axis direction acceleration output electrode OZ Z-axis direction acceleration output electrode LX1, LX2 Pattern portion of first wiring pattern LY1, LY2 Second wiring pattern Pattern portion LZ1, LZ2 Pattern portion of third wiring pattern K3, K4 A pair of sides

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 X軸方向加速度を検出する1以上のX軸
方向加速度検出用電極、Y軸方向加速度を検出する1以
上のY軸方向加速度検出用電極、Z軸方向加速度を検出
する1以上のZ軸方向加速度検出用電極、1以上のX軸
方向加速度出力電極、1以上のY軸方向加速度出力電
極、1以上のZ軸方向加速度出力電極、前記1以上のX
軸方向加速度検出用電極と前記1以上のX軸方向加速度
出力電極を接続する第1の配線パターン、前記1以上の
Y軸方向加速度検出用電極と前記1以上のY軸方向加速
度出力電極を接続する第2の配線パターン及び前記1以
上のZ軸方向加速度検出用電極と前記1以上のZ軸方向
加速度出力電極を接続する第3の配線パターンを含む電
極パターンが表面上に形成され、裏面上に少なくとも前
記各検出用電極と対向する対向電極パターンが形成さ
れ、前記1以上のX軸方向加速度検出用電極、前記1以
上のY軸方向加速度検出用電極及び前記1以上のZ軸方
向加速度検出用電極と前記対向電極パターンとの間の部
分が分極処理されている圧電セラミックス基板と、 表面に接着剤層を介して前記圧電セラミックス基板の前
記裏面が接合されたダイアフラムと、 前記ダイアフラムの裏面側に突出するように前記ダイア
フラムに対して固定された円柱状または円筒形の重錘
と、 前記重錘の変位を許容するように前記ダイアフラムの外
周部を支持する台座とを具備し、 前記1以上のX軸方向加速度検出用電極、前記1以上の
Y軸方向加速度検出用電極及び前記1以上のZ軸方向加
速度検出用電極が、前記重錘と対向する前記圧電セラミ
ックス基板の円形の重錘対向領域と該重錘対向領域と前
記外周部との間に位置する中間領域とに跨がり且つ互い
に間隔をあけて前記重錘対向領域を囲む環状の電極列を
構成するように形成されている三軸加速度センサであっ
て、 前記X軸方向加速度検出用電極、前記Y軸方向加速度検
出用電極及び前記Z軸方向加速度検出用電極は、前記環
状の電極列が延びる方向に位置する一対の辺が、ほぼ平
行になるように形成されていることを特徴とする三軸加
速度センサ。
1. One or more X-axis acceleration detection electrodes for detecting X-axis acceleration, one or more Y-axis acceleration detection electrodes for detecting Y-axis acceleration, and one or more Z-axis acceleration detection , One or more X-axis acceleration output electrodes, one or more Y-axis acceleration output electrodes, one or more Z-axis acceleration output electrodes, and one or more of the X electrodes.
A first wiring pattern for connecting the axial acceleration detection electrode to the one or more X-axis acceleration output electrodes; connecting the one or more Y-axis acceleration detection electrodes to the one or more Y-axis acceleration output electrodes; A second wiring pattern to be formed and an electrode pattern including a third wiring pattern connecting the at least one Z-axis direction acceleration detection electrode and the at least one Z-axis direction acceleration output electrode are formed on the front surface, and on the back surface. A counter electrode pattern facing at least each of the detection electrodes is formed, the one or more X-axis direction acceleration detection electrodes, the one or more Y-axis direction acceleration detection electrodes, and the one or more Z-axis direction acceleration detection A piezoelectric ceramics substrate in which a portion between the electrode for use and the counter electrode pattern is polarized, and a die in which the back surface of the piezoelectric ceramics substrate is bonded to the front surface via an adhesive layer. A diaphragm, a columnar or cylindrical weight fixed to the diaphragm so as to protrude to the back side of the diaphragm, and a pedestal supporting an outer peripheral portion of the diaphragm so as to allow displacement of the weight. Wherein the one or more electrodes for X-axis direction acceleration detection, the one or more electrodes for Y-axis direction acceleration detection, and the one or more Z-axis direction acceleration detection electrodes face the weight. Forming a ring-shaped electrode array that straddles a circular counterweight region of the ceramic substrate and an intermediate region located between the counterweight region and the outer peripheral portion and surrounds the counterweight region at an interval from each other; A three-axis acceleration sensor formed so that the X-axis direction acceleration detection electrode, the Y-axis direction acceleration detection electrode, and the Z-axis direction acceleration detection electrode are formed by extending the annular electrode row. A three-axis acceleration sensor characterized in that a pair of sides located in different directions are formed to be substantially parallel.
【請求項2】 前記X軸方向加速度検出用電極の前記一
対の辺は、前記圧電セラミックス基板の前記重錘対向領
域の中心点と前記X軸方向加速度検出用電極の前記一対
の辺の中間に位置する中間点とを通って延びる仮想線と
ほぼ平行になっており、 前記Y軸方向加速度検出用電極の前記一対の辺は、前記
圧電セラミックス基板の前記重錘対向領域の中心点と前
記Y軸方向加速度検出用電極の前記一対の辺の中間に位
置する中間点とを通って延びる仮想線とほぼ平行になっ
ており、 前記Z軸方向加速度検出用電極の前記一対の辺は、前記
圧電セラミックス基板の前記重錘対向領域の中心点と前
記Z軸方向加速度検出用電極の前記一対の辺の中間に位
置する中間点とを通って延びる仮想線とほぼ平行になっ
ていることを特徴とする請求項1に記載の三軸加速度セ
ンサ。
2. The pair of sides of the X-axis direction acceleration detecting electrode are located between a center point of the weight facing region of the piezoelectric ceramic substrate and the pair of sides of the X-axis direction acceleration detecting electrode. The pair of sides of the Y-axis direction acceleration detecting electrode are substantially parallel to a virtual line extending through the located intermediate point, and the pair of sides of the Y-axis direction acceleration detection electrode are located at the center of the weight-facing area of the piezoelectric ceramic substrate and the Y-axis. The pair of sides of the Z-axis direction acceleration detecting electrode are substantially parallel to an imaginary line extending through an intermediate point located between the pair of sides of the axial direction acceleration detecting electrode. A center point of the weight-facing area of the ceramic substrate and an imaginary line extending through an intermediate point located between the pair of sides of the Z-axis direction acceleration detection electrode, being substantially parallel to an imaginary line. Claim 1 Three-axis acceleration sensor.
【請求項3】 前記圧電セラミックス基板の前記重錘対
向領域と前記中間領域との境界部に仮想した境界線が前
記1以上のX軸方向加速度検出用電極を横切る長さの合
計値と、前記境界線が前記1以上のY軸方向加速度検出
用電極を横切る長さの合計値と前記境界線が前記1以上
のZ軸方向加速度検出用電極を横切る長さの合計値とが
実質的に等しく、 前記1以上のX軸方向加速度検出用電極の面積の合計値
と、前記1以上のY軸方向加速度検出用電極の面積の合
計値と前記1以上のZ軸方向加速度検出用電極の面積の
合計値とが、実質的に等しいことを特徴とする請求項1
または2に記載の三軸加速度センサ。
3. A total value of a length of a boundary line imaginary at a boundary between the weight-facing region and the intermediate region of the piezoelectric ceramic substrate crossing the one or more X-axis direction acceleration detecting electrodes, The total value of the length of the boundary line crossing the one or more Y-axis direction acceleration detecting electrodes is substantially equal to the total value of the length of the boundary line crossing the one or more Z-axis direction acceleration detecting electrodes. The total value of the area of the one or more electrodes for X-axis acceleration detection, the total value of the area of the one or more electrodes for Y-axis acceleration detection, and the area of the one or more electrodes for Z-axis acceleration detection. 2. The method according to claim 1, wherein the sum is substantially equal to the sum.
Or the three-axis acceleration sensor according to 2.
【請求項4】 前記対向電極パターンは、前記1以上の
X軸方向加速度検出用電極、前記1以上のY軸方向加速
度検出用電極及び前記1以上のZ軸方向加速度検出用電
極と対向するように環状に形成されている請求項1,2
または3に記載の三軸加速度センサ。
4. The opposing electrode pattern is opposed to the at least one X-axis direction acceleration detecting electrode, the one or more Y-axis direction acceleration detecting electrode, and the one or more Z-axis direction acceleration detecting electrode. An annular shape is formed in the ring.
Or the three-axis acceleration sensor according to 3.
【請求項5】 X軸方向加速度を検出する一対のX軸方
向加速度検出用電極、前記一対のX軸方向加速度検出用
電極を結ぶ線と直交する線上に配置されてY軸方向加速
度を検出する一対のY軸方向加速度検出用電極、前記一
対のX軸方向加速度検出用電極及び前記一対のY軸方向
加速度検出用電極の隣接する2つの電極間に配置されて
Z軸方向加速度を検出する4つのZ軸方向加速度検出用
電極、1以上のX軸方向加速度出力電極、1以上のY軸
方向加速度出力電極、1以上のZ軸方向加速度出力電
極、前記一対のX軸方向加速度検出用電極と前記1以上
のX軸方向加速度出力電極を接続する第1の配線パター
ン、前記一対のY軸方向加速度検出用電極と前記1以上
のY軸方向加速度出力電極を接続する第2の配線パター
ン及び前記4つのZ軸方向加速度検出用電極と前記1以
上のZ軸方向加速度出力電極を接続する第3の配線パタ
ーンを含む電極パターンが表面上に形成され、裏面上に
少なくとも前記各検出用電極と対向する対向電極パター
ンが形成され、前記一対のX軸方向加速度検出用電極、
前記一対のY軸方向加速度検出用電極及び前記4つのZ
軸方向加速度検出用電極と前記対向電極パターンとの間
の部分が分極処理されている圧電セラミックス基板と、 表面に接着剤層を介して前記圧電セラミックス基板の前
記裏面が接合されたダイアフラムと、 前記ダイアフラムの裏面側に突出するように前記ダイア
フラムに対して固定された重錘と、 前記重錘の変位を許容するように前記ダイアフラムの外
周部を支持する台座とを具備し、 前記一対のX軸方向加速度検出用電極、前記一対のY軸
方向加速度検出用電極及び前記4つのZ軸方向加速度検
出用電極が、前記重錘と対向する前記圧電セラミックス
基板の円形の重錘対向領域と該重錘対向領域と前記外周
部との間に位置する中間領域とに跨がり且つ互いに間隔
をあけて前記重錘対向領域を囲む環状の電極列を構成す
るように形成されている三軸加速度センサであって、 前記X軸方向加速度検出用電極の前記環状の電極列が延
びる方向に位置する一対の辺は、前記圧電セラミックス
基板の前記重錘対向領域の中心点と前記X軸方向加速度
検出用電極の前記一対の辺の中間に位置する中間点とを
通って延びる仮想線とほぼ平行になっており、 前記Y軸方向加速度検出用電極の前記環状の電極列が延
びる方向に位置する一対の辺は、前記圧電セラミックス
基板の前記重錘対向領域の中心点と前記Y軸方向加速度
検出用電極の前記一対の辺の中間に位置する中間点とを
通って延びる仮想線とほぼ平行になっており、 前記Z軸方向加速度検出用電極の前記環状の電極列が延
びる方向に位置する一対の辺は、前記圧電セラミックス
基板の前記重錘対向領域の中心点と前記Z軸方向加速度
検出用電極の前記一対の辺の中間に位置する中間点とを
通って延びる仮想線とほぼ平行になっていることを特徴
とする三軸加速度センサ。
5. A pair of X-axis direction acceleration detecting electrodes for detecting X-axis direction acceleration, and are disposed on a line orthogonal to a line connecting the pair of X-axis direction acceleration detecting electrodes to detect Y-axis direction acceleration. A pair of Y-axis acceleration detection electrodes, a pair of X-axis acceleration detection electrodes, and a pair of Y-axis acceleration detection electrodes disposed between two adjacent electrodes for detecting Z-axis acceleration. One Z-axis direction acceleration detection electrode, one or more X-axis direction acceleration output electrodes, one or more Y-axis direction acceleration output electrodes, one or more Z-axis direction acceleration output electrodes, and the pair of X-axis direction acceleration detection electrodes. A first wiring pattern that connects the one or more X-axis acceleration output electrodes, a second wiring pattern that connects the pair of Y-axis acceleration detection electrodes and the one or more Y-axis acceleration output electrodes, and Four Z axes An electrode pattern including a third wiring pattern for connecting a direction acceleration detection electrode and the one or more Z-axis direction acceleration output electrodes on a front surface, and a counter electrode pattern on a back surface facing at least the detection electrodes; Is formed, the pair of electrodes for detecting acceleration in the X-axis direction,
The pair of electrodes for detecting acceleration in the Y-axis direction and the four Z electrodes
A piezoelectric ceramics substrate in which a portion between the electrode for axial acceleration detection and the counter electrode pattern is polarized, a diaphragm having a front surface joined to the back surface of the piezoelectric ceramics substrate via an adhesive layer, A weight that is fixed to the diaphragm so as to protrude to the rear surface side of the diaphragm; and a pedestal that supports an outer peripheral portion of the diaphragm so as to allow displacement of the weight. A directional acceleration detecting electrode, the pair of Y-axis directional acceleration detecting electrodes, and the four Z-axis directional acceleration detecting electrodes, wherein the circular weight facing region of the piezoelectric ceramic substrate facing the weight and the weight; It is formed so as to form an annular electrode row which straddles an intermediate region located between an opposing region and the outer peripheral portion and surrounds the weight opposing region at an interval from each other. A three-axis acceleration sensor, wherein a pair of sides of the X-axis direction acceleration detection electrode located in a direction in which the annular electrode row extends are a center point of the weight-facing region of the piezoelectric ceramic substrate and the X-axis. A direction substantially parallel to an imaginary line extending through an intermediate point located between the pair of sides of the axial acceleration detection electrode, and a direction in which the annular electrode row of the Y-axis acceleration detection electrode extends A virtual line extending through a center point of the weight-facing area of the piezoelectric ceramic substrate and an intermediate point located between the pair of sides of the Y-axis direction acceleration detection electrode. A pair of sides that are substantially parallel to each other and are located in a direction in which the annular electrode row of the Z-axis direction acceleration detection electrode extends is a center point of the weight-facing region of the piezoelectric ceramic substrate and the Z-axis direction. acceleration Triaxial acceleration sensor, wherein a virtual line that extends through an intermediate point located in the middle of said pair of sides of the output electrode and are substantially parallel.
JP9275829A 1997-09-26 1997-10-08 Triaxial acceleration sensor Withdrawn JPH11118822A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9275829A JPH11118822A (en) 1997-10-08 1997-10-08 Triaxial acceleration sensor
TW087115901A TW425478B (en) 1997-09-26 1998-09-24 Acceleration sensor and 3-axis acceleration sensor
CN98119591A CN1218910A (en) 1997-09-26 1998-09-25 Acceleration transducer and three shaft acceleration transducer
US09/161,805 US6148671A (en) 1997-09-26 1998-09-28 Acceleration sensor and triaxial acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9275829A JPH11118822A (en) 1997-10-08 1997-10-08 Triaxial acceleration sensor

Publications (1)

Publication Number Publication Date
JPH11118822A true JPH11118822A (en) 1999-04-30

Family

ID=17561016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9275829A Withdrawn JPH11118822A (en) 1997-09-26 1997-10-08 Triaxial acceleration sensor

Country Status (1)

Country Link
JP (1) JPH11118822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890164A (en) * 2012-10-18 2013-01-23 扬州英迈克测控技术有限公司 Three-dimensional six-parameter piezoelectric accelerometer with self-check function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890164A (en) * 2012-10-18 2013-01-23 扬州英迈克测控技术有限公司 Three-dimensional six-parameter piezoelectric accelerometer with self-check function

Similar Documents

Publication Publication Date Title
WO1996038732A1 (en) Acceleration sensor
US6512364B1 (en) Testing sensor
US7231802B2 (en) Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing the apparatus
US20050217374A1 (en) Planar 3-axis intertial measurement unit
JPH08145683A (en) Acceleration/angular acceleration detector
US6148671A (en) Acceleration sensor and triaxial acceleration sensor
JPH11118822A (en) Triaxial acceleration sensor
JP3265641B2 (en) Semiconductor acceleration sensor
JP3043477B2 (en) Sensor using change in capacitance
JP2971610B2 (en) Force / acceleration / magnetism detecting device and method of manufacturing the same
JP4008594B2 (en) Acceleration sensor and triaxial acceleration sensor
JP3971823B2 (en) 3-axis acceleration sensor
JP2000346865A (en) Sensitivity adjusting method for acceleration sensor element
JP4082751B2 (en) 3-axis acceleration sensor
JP2003227845A (en) Piezoelectric acceleration sensor
JPH10170538A (en) Acceleration sensor
JP3171970B2 (en) Force / acceleration detector
JP4681701B2 (en) Acceleration sensor
JPH11248741A (en) Capacitive multiaxial accelerometer
JPH1138038A (en) Acceleration sensor
JPH075193A (en) Multiaxial acceleration detector
JP2000074938A (en) Piezoelectric three-axis acceleration sensor
JP2000065851A (en) Piezoelectric type three-axle acceleration sensor
JPH0954112A (en) Acceleration sensor device
JP2000088579A (en) Angular velocity sensor and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104