JPH11118686A - Creation method for refractory test body for fluorescent x-ray analysis - Google Patents

Creation method for refractory test body for fluorescent x-ray analysis

Info

Publication number
JPH11118686A
JPH11118686A JP9299415A JP29941597A JPH11118686A JP H11118686 A JPH11118686 A JP H11118686A JP 9299415 A JP9299415 A JP 9299415A JP 29941597 A JP29941597 A JP 29941597A JP H11118686 A JPH11118686 A JP H11118686A
Authority
JP
Japan
Prior art keywords
refractory
specimen
ray fluorescence
heated
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9299415A
Other languages
Japanese (ja)
Inventor
Toshihiro Suzuki
俊宏 鈴木
Masakatsu Itakura
正勝 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP9299415A priority Critical patent/JPH11118686A/en
Publication of JPH11118686A publication Critical patent/JPH11118686A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a creation method in which a glass-bead test body for fluorescent X-ray analysis is created safely and easily by a method wherein an oxidized and molten substance which is obtained by indirectly heating a mixture of a ceramic refractory and a lithium borate-based flux is induction-heated and a uniform molten liquid is formed so as to be changed into glass beads. SOLUTION: A ceramic refractory sample which is oxidized and treated at a high temperature is broken into pieces until it is passed wholly through a sieve of 100 μm. The sample in a prescribed amount is sampled so as to be mixed well with lithium metaborate (a lithium borate-based flux) whose weight is about 10 times and which is dried and treated, and it is spread all over uniformly in a flat-bottom evaporating dish which is composed of a platinum alloy containing gold. Then, a vertical electric furnace is heated preliminarily. The flat-bottom evaporating dish is put into the furnace, and a temperature is set at about 1100 deg.C. The sample is heated for about 30 minutes, it is oxidized and melted, and a molten substance in a turbid state is obtained. After that, the molten substance is moved to a deep pan whose material is identical to that of the flat-bottom dish, it is put into an induction heating-type vertical electric furnace so as to be heated at about 1200 deg.C, and it is melted completely. A uniform molten liquid is obtained, and it is then cooled so as to be changed into glass beads.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐火物組成を蛍光X
線分析法により測定する方法に関し、特にセラミック耐
火物の組成を分析するにあたって、その組成の如何に関
わらず蛍光X線分析用に適したガラスビード試験体を作
成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for measuring by X-ray analysis, and particularly to a method for preparing a glass bead specimen suitable for X-ray fluorescence analysis regardless of the composition in analyzing the composition of a ceramic refractory.

【0002】[0002]

【従来の技術】従来、セラミック耐火物の組成を分析す
るために基準となる分析法として、湿式化学分析法(例
えばJIS R 2212「耐火れんが及び耐火モルタ
ルの化学分析方法」など)が採用されている。しかしこ
の化学分析法は、試薬を添加して加熱溶融させるなどの
方法で水に可溶な物質に変換し、水に溶解して濾過、中
和、希釈、沈殿分離、溶剤抽出、分液、試薬添加、比
色、等の多種の要素技術を組み合わせて、含有する成分
金属の量を算出する湿式分析が主流である。このため
に、分析に多くの時間を必要とし、また正確な測定値を
得るには熟練を要するなどの問題点がある。
2. Description of the Related Art Conventionally, a wet chemical analysis method (for example, JIS R 2212 "Chemical analysis method of refractory brick and refractory mortar") has been adopted as a standard analytical method for analyzing the composition of ceramic refractories. I have. However, in this chemical analysis method, it is converted into a water-soluble substance by a method such as adding a reagent and heating and melting, then dissolving in water, filtration, neutralization, dilution, precipitation separation, solvent extraction, liquid separation, The mainstream is wet analysis in which various elemental techniques such as reagent addition, colorimetry, etc. are combined to calculate the amount of contained component metals. For this reason, there are problems that a lot of time is required for the analysis and skill is required to obtain an accurate measurement value.

【0003】これに対して、工程が少なくて比較的に短
時間で分析ができるという利点を持つ蛍光X線分析法
(例えばJIS R 2216「耐火れんが及び耐火モ
ルタルの蛍光X線分析方法」など)が、簡便な方法とし
て多用されるに至っている。この方法は、分析しようと
する耐火物の粉末を、例えば四硼酸リチウムやメタ硼酸
リチウムなどの硼酸リチウム系融剤と混合して白金容器
などに入れ、誘導加熱炉内で溶融してガラスビードを作
成し、これを蛍光X線分析装置にかけて成分金属の相対
量を求め、組成を算出する手順で実施される。
On the other hand, an X-ray fluorescence analysis method having an advantage that analysis can be performed in a relatively short time with a small number of steps (for example, JIS R 2216 "Method for X-ray fluorescence analysis of refractory brick and refractory mortar") However, it has been used frequently as a simple method. According to this method, a refractory powder to be analyzed is mixed with a lithium borate flux such as lithium tetraborate or lithium metaborate and placed in a platinum container or the like, and then melted in an induction heating furnace to form a glass bead. It is carried out in the procedure of preparing, applying this to a fluorescent X-ray analyzer, determining the relative amounts of the component metals, and calculating the composition.

【0004】[0004]

【発明が解決しようとする課題】前記した蛍光X線分析
法は簡便であって精度の良い測定結果を与えるが、黒鉛
などの炭素系成分は蛍光X線分析法では十分な精度が期
待できない。このため、炭素系成分を含む試料の場合
は、1050℃で酸化処理したものを分析用試料とす
る。しかし酸化処理した試料であっても炭化珪素などの
金属炭化物あるいは金属珪素などの遊離金属は完全には
酸化されず、未酸化部と白金が反応し、ガラスビード化
することが困難である。このために、時間のかかる前記
した化学分析に頼らざるを得ないというのが実情であっ
た。
Although the above-mentioned X-ray fluorescence analysis method is simple and gives accurate measurement results, carbon-based components such as graphite cannot be expected to have sufficient accuracy by the X-ray fluorescence analysis method. For this reason, in the case of a sample containing a carbon-based component, a sample that has been oxidized at 1050 ° C. is used as an analysis sample. However, even in an oxidized sample, a metal carbide such as silicon carbide or a free metal such as metal silicon is not completely oxidized, and an unoxidized portion reacts with platinum, making it difficult to form a glass bead. For this reason, the fact is that it is necessary to rely on the above-mentioned chemical analysis which takes time.

【0005】そこで本発明は、炭素や金属炭化物、或い
は遊離の金属元素などを含むセラミックスの組成を、蛍
光X線分析法によって正確に測定しようとするものであ
り、その目的とするところは、セラミックスの組成の如
何に関わらず、蛍光X線分析用の試験体として用いるガ
ラスビードを、安全且つ容易に作成することができる、
改良された組成分析用の試験体作成方法を提供すること
にある。
The present invention is intended to accurately measure the composition of ceramics containing carbon, metal carbide, or free metal elements by X-ray fluorescence spectroscopy. Irrespective of the composition of, a glass bead used as a specimen for X-ray fluorescence analysis can be safely and easily prepared.
It is an object of the present invention to provide an improved method for preparing a specimen for composition analysis.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成できる
本発明の蛍光X線分析用耐火物試験体の作成方法は、蛍
光X線分析法によりセラミック耐火物の組成分析を行う
ための試験体を作成するに際して、前記セラミック耐火
物と硼酸リチウム系融剤との粉末混合物を、貴金属平形
容器中で間接加熱することにより酸化し且つ溶融物と
し、次いで該溶融物を誘導加熱することにより均一な融
液としたのち、ガラスビード化して分析用試験体を得る
ことを特徴とする。
According to the present invention, there is provided a method for preparing a refractory specimen for X-ray fluorescence analysis which can achieve the above-mentioned object. In preparing, a powder mixture of the ceramic refractory and the lithium borate-based flux is oxidized and melted by indirect heating in a noble metal flat container, and then the melt is uniformly heated by induction heating. It is characterized in that after being made into a melt, it is made into a glass bead to obtain a test specimen for analysis.

【0007】[0007]

【発明の実施の形態】本発明の蛍光X線分析用耐火物試
験体の作成方法を適用するのに、特に有利なセラミック
耐火物としては、JIS R 2216「耐火れんが及
び耐火モルタルの蛍光X線分析方法」に記載されている
ような、従来の試験体の作成方法によってはガラスビー
ド化することが不可能であった遊離の炭素等の炭素成分
を含有しているセラミック耐火物、または金属珪素等の
金属成分を含有しているセラミック耐火物、或いは炭化
珪素等の金属炭化物成分を含有しているセラミック耐火
物などがある。しかしこれらに限らず、従来の作成方法
によってガラスビード化できたセラミック耐火物であっ
ても、全く同様に適用することが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION A particularly advantageous ceramic refractory for applying the method for preparing a refractory specimen for X-ray fluorescence analysis of the present invention is JIS R 2216 "Fluorescent X-ray of refractory brick and refractory mortar". As described in "Analysis method", a ceramic refractory containing a carbon component such as free carbon or metal silicon which could not be glass-beaded by a conventional method of preparing a test piece, or metallic silicon And the like, or a ceramic refractory containing a metal carbide component such as silicon carbide. However, the present invention is not limited to these, and it is possible to apply ceramic refractories which can be made into a glass bead by a conventional production method in exactly the same manner.

【0008】すなわち本発明の蛍光X線分析用耐火物試
験体の作成方法は、セラミックスがどのような成分を含
むものであっても、全く同じ操作によって何らの支障を
起こすことなく、蛍光X線分析用の試験体であるガラス
ビードを作成することができるので、従来方法より更に
汎用性が高いものとなる。
That is, the method of preparing a refractory specimen for X-ray fluorescence analysis according to the present invention can be performed without any trouble by exactly the same operation, regardless of what component the ceramic contains. Since a glass bead, which is a specimen for analysis, can be prepared, the versatility is higher than that of the conventional method.

【0009】本発明の試験体の作成方法において用いら
れる硼酸リチウム系融剤としては、メタ硼酸リチウムや
四硼酸リチウム等の融剤を使用できるが、ガラス化する
ときの操作の容易さから、メタ硼酸リチウムがより好ま
しく用い得る。分析対象のセラミック耐火物に対するか
かる硼酸リチウム系融剤の使用量は、重量で10倍程度
とすることが好ましい。
As the lithium borate-based flux used in the method of preparing a test piece of the present invention, fluxes such as lithium metaborate and lithium tetraborate can be used. Lithium borate can be more preferably used. The amount of the lithium borate-based flux used for the ceramic refractory to be analyzed is preferably about 10 times in weight.

【0010】本発明の蛍光X線分析用耐火物試験体の作
成方法を実施するに用いられる加熱装置としては、例え
ば抵抗発熱体などを備えた電気炉などの、約1100℃
程度まで間接加熱することができる加熱装置と、例えば
誘導コイルなどを備えた電気炉などの、約1200℃程
度まで誘導加熱することができる加熱装置とが必要であ
る。
The heating apparatus used for carrying out the method for preparing a refractory specimen for X-ray fluorescence analysis of the present invention is, for example, an electric furnace equipped with a resistance heating element or the like at about 1100 ° C.
A heating device capable of performing indirect heating to about 200 ° C. and a heating apparatus capable of performing induction heating to about 1200 ° C., such as an electric furnace equipped with an induction coil, are required.

【0011】また、セラミック耐火物と硼酸リチウム系
融剤との混合物を溶融するに用いる貴金属容器は、例え
ば平型の皿であることが好ましく、またその材質は強
度、耐熱性並びにガラスとの剥離性の点から、5重量%
程度の金を含む白金合金であることが好ましい。
The noble metal container used for melting the mixture of the ceramic refractory and the lithium borate flux is preferably, for example, a flat dish, and its material is strength, heat resistance and peeling off from glass. 5% by weight
It is preferably a platinum alloy containing about gold.

【0012】[0012]

【実施例】以下本発明を実施例によって説明する。高温
(1050℃)で酸化処理したセラミック耐火物試料A
〜Cを用意した。そして、これらの試料を100μmの
篩を全通するまで粉砕し、0.4gを採って、乾燥処理
したメタ硼酸リチウム4.0gと良く混合して、5重量
%の金を含む白金合金からなる径50mmの平底蒸発皿
中に、平均に敷きつめた。この時の粉末層の厚さは約7
mm程度であった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. Ceramic refractory sample A oxidized at high temperature (1050 ° C)
~ C were prepared. Then, these samples are pulverized until they pass through a 100 μm sieve, 0.4 g is taken, mixed well with 4.0 g of dried lithium metaborate, and made of a platinum alloy containing 5% by weight of gold. In a flat-bottomed evaporating dish with a diameter of 50 mm, it was spread evenly. The thickness of the powder layer at this time is about 7
mm.

【0013】次いで、容量5kWの抵抗加熱式の縦型電
気炉を900℃に予備加熱しておき、これに上記の平底
蒸発皿を入れて温度を1050℃に設定し直し、30分
間加熱して空気による酸化を行わせると共に溶融させ、
濁った状態の溶融物を得た。その後この溶融物を、5重
量%の金を含む白金合金からなる径30mmの深皿に移
し、容量3kWの誘導加熱式の縦型電気炉に入れて、1
150℃にて13分間加熱することにより完全に溶融さ
せて均一な融液とし、その後冷却させることによりガラ
スビード化した。
Next, a resistance heating type vertical electric furnace having a capacity of 5 kW is preheated to 900 ° C., and the above flat bottom evaporating dish is put therein, the temperature is reset to 1050 ° C., and heating is performed for 30 minutes. Oxidized by air and melted,
A cloudy melt was obtained. Thereafter, the melt was transferred to a 30 mm deep dish made of a platinum alloy containing 5% by weight of gold, and placed in a 3 kW capacity induction heating type vertical electric furnace.
The mixture was completely melted by heating at 150 ° C. for 13 minutes to form a uniform melt, and then cooled to form a glass bead.

【0014】こうして得たガラスビードを用いて、JI
S R 2216に記載された蛍光X線分析方法に従っ
て測定を行い、求めた分析値を表1に示した。一方、耐
火物試料A〜Cについて、JIS R 2212に記載
された化学分析方法(湿式法)によって別途求めた分析
値も、表1に対比して示した。
Using the glass bead thus obtained, JI
The measurement was performed according to the fluorescent X-ray analysis method described in SR 2216, and the obtained analysis values are shown in Table 1. On the other hand, the analysis values separately obtained by the chemical analysis method (wet method) described in JIS R 2212 for the refractory samples A to C are also shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】上記の結果を見ると、本発明の蛍光X線分
析用耐火物試験体の作成方法によれば、従来のガラスビ
ード試験体の作成方法、すなわち誘導加熱式の縦型電気
炉のみによる方法では、ガラスビード化が不可能であっ
たような耐火物でも、容易にガラスビード化した試験体
を得ることができ、従って正確な分析結果が得られるこ
とが分かる。
According to the above results, according to the method for producing a refractory specimen for X-ray fluorescence analysis of the present invention, a conventional method for producing a glass bead specimen, that is, only using an induction heating type vertical electric furnace. It can be seen that the method can easily obtain a glass-beaded test specimen even with a refractory that cannot be glass-beaded, and thus can obtain an accurate analysis result.

【0017】[0017]

【発明の効果】本発明の蛍光X線分析用耐火物試験体の
作成方法は、セラミック耐火物と硼酸リチウム系融剤と
の粉末混合物を、間接加熱することにより酸化し且つ溶
融物とし、次いでこの溶融物を誘導加熱により均一な融
液としたのちに、ガラスビード化するもので、遊離の金
属や炭素のような還元性物質などを含むセラミックスで
あっても、ガラスビード化するに使用される貴金属容器
を侵したり、組成分析結果に誤差を与えたりすることが
ない。従って、セラミック耐火物の組成に配慮すること
なく蛍光X線分析用のガラスビード試験体を容易に作成
することができ、正確な分析結果を求めることができる
という効果がある。また、例えば従来の湿式分析方法に
おいては、1つの試料を処理するために6日間を必要と
するのに対して、本発明を用いた蛍光X線分析方法によ
ると2日程度の分析時間で済むという結果が得られ、そ
の分析時間を大幅に短縮させることも可能となる。
According to the method for preparing a refractory specimen for X-ray fluorescence analysis of the present invention, a powder mixture of a ceramic refractory and a lithium borate flux is oxidized and melted by indirect heating, This melt is made into a uniform bead by induction heating and then formed into a glass bead.Even ceramics containing free metals and reducing substances such as carbon are used to form a glass bead. It does not damage the precious metal containers or give errors in the composition analysis results. Therefore, it is possible to easily prepare a glass bead specimen for X-ray fluorescence analysis without considering the composition of the ceramic refractory, and it is possible to obtain an accurate analysis result. Also, for example, in the conventional wet analysis method, six days are required to process one sample, whereas in the fluorescent X-ray analysis method using the present invention, the analysis time is about two days. Is obtained, and the analysis time can be greatly reduced.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 蛍光X線分析法によりセラミック耐火物
の組成分析を行うための試験体を作成するに際して、前
記セラミック耐火物と硼酸リチウム系融剤との粉末混合
物を、貴金属容器中で間接加熱することにより酸化し且
つ溶融物とし、次いで該溶融物を誘導加熱することによ
り均一な融液としたのち、ガラスビード化して分析用試
験体を得ることを特徴とする蛍光X線分析用耐火物試験
体の作成方法。
When preparing a specimen for performing composition analysis of a ceramic refractory by X-ray fluorescence analysis, an indirect heating of a powder mixture of the ceramic refractory and a lithium borate flux in a noble metal container is performed. A refractory for X-ray fluorescence analysis, wherein the refractory is oxidized and melted, and then the melt is induction-heated to form a uniform melt, which is then beaded to obtain a test specimen for analysis. How to make a specimen.
【請求項2】 セラミック耐火物が炭素成分を含有して
いる請求項1に記載の蛍光X線分析用耐火物試験体の作
成方法。
2. The method for preparing a refractory specimen for X-ray fluorescence analysis according to claim 1, wherein the ceramic refractory contains a carbon component.
【請求項3】 炭素成分が遊離の炭素である請求項2に
記載の蛍光X線分析用耐火物試験体の作成方法。
3. The method for preparing a refractory specimen for X-ray fluorescence analysis according to claim 2, wherein the carbon component is free carbon.
【請求項4】 セラミック耐火物が遊離の金属成分を含
有している請求項1に記載の蛍光X線分析用耐火物試験
体の作成方法。
4. The method for producing a refractory specimen for X-ray fluorescence analysis according to claim 1, wherein the ceramic refractory contains a free metal component.
【請求項5】 遊離の金属成分が金属珪素である請求項
4に記載の蛍光X線分析用耐火物試験体の作成方法。
5. The method for preparing a refractory specimen for X-ray fluorescence analysis according to claim 4, wherein the free metal component is metallic silicon.
【請求項6】 セラミック耐火物が金属炭化物成分を含
有している請求項1に記載の蛍光X線分析用耐火物試験
体の作成方法。
6. The method for producing a refractory specimen for X-ray fluorescence analysis according to claim 1, wherein the ceramic refractory contains a metal carbide component.
【請求項7】 金属炭化物成分が炭化珪素である請求項
6に記載の蛍光X線分析用耐火物試験体の作成方法。
7. The method for preparing a refractory specimen for X-ray fluorescence analysis according to claim 6, wherein the metal carbide component is silicon carbide.
JP9299415A 1997-10-16 1997-10-16 Creation method for refractory test body for fluorescent x-ray analysis Pending JPH11118686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9299415A JPH11118686A (en) 1997-10-16 1997-10-16 Creation method for refractory test body for fluorescent x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9299415A JPH11118686A (en) 1997-10-16 1997-10-16 Creation method for refractory test body for fluorescent x-ray analysis

Publications (1)

Publication Number Publication Date
JPH11118686A true JPH11118686A (en) 1999-04-30

Family

ID=17872272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9299415A Pending JPH11118686A (en) 1997-10-16 1997-10-16 Creation method for refractory test body for fluorescent x-ray analysis

Country Status (1)

Country Link
JP (1) JPH11118686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361525A1 (en) * 2003-12-23 2005-08-04 Umicore Ag & Co. Kg Process for the preparation of orodispersible tablets for the determination of the content of ceramic powders on platinum group metals by means of RFA
CN105675636A (en) * 2016-01-21 2016-06-15 济南大学 XRD (X-ray diffraction) quantitative analysis method based on gypsum minerals in cement-based materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361525A1 (en) * 2003-12-23 2005-08-04 Umicore Ag & Co. Kg Process for the preparation of orodispersible tablets for the determination of the content of ceramic powders on platinum group metals by means of RFA
CN105675636A (en) * 2016-01-21 2016-06-15 济南大学 XRD (X-ray diffraction) quantitative analysis method based on gypsum minerals in cement-based materials

Similar Documents

Publication Publication Date Title
Yanagisawa et al. Thermal decomposition of barium sulfate-vanadium pentoxide-silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements
US10107551B2 (en) Preparation of samples for XRF using flux and platinum crucible
CN104034722B (en) Content of material assay method in a kind of complex silicon carbide
CN103149074A (en) Molten sample preparation method of molybdenum, manganese, vanadium or chromium iron alloy sample for X-ray fluorescence spectroscopy
CN105806865A (en) Melting flaking method of copper concentrate for X-ray fluorescent spectrometry
CN109444197A (en) The rapid analysis method of aluminium, iron, silicone content suitable for alfer
CN106501044A (en) Fire assaying dispensing, the method for quantitatively determining of precious metal element and pre-treating method
CN108680530A (en) Free Carbon analysis method in titanium carbide slag
JPH11118686A (en) Creation method for refractory test body for fluorescent x-ray analysis
CN106290438B (en) A kind of method that X-ray fluorescence spectra fusion method measures Calcium Fluoride Content in fluorite
CN106338534B (en) The method of Calcium Fluoride Content in fluorite is quickly measured using Xray fluorescence spectrometer
JP2004069413A (en) Method for determining the quantity of silicon in organic silicon compound
CN110133025A (en) The fusion preparation method of vanadium iron fuse piece
CN115753662A (en) Method for detecting element content in transition metal boride
JPH05273132A (en) Composition analyzing method for ceramic
CN112051290B (en) Ferromolybdenum sample, preparation method thereof and method for measuring component content in ferromolybdenum alloy
CN109211712B (en) Method for measuring water content of boric anhydride
JPS6362695B2 (en)
JP3550666B2 (en) Analysis method of iridium alloy
CN111239172A (en) Method for determining phosphorus content in coal
CN114486968B (en) Method for measuring contents of titanium, silicon, manganese, phosphorus, aluminum and copper in ferrotitanium by using dissolution-melting method sample-X-ray fluorescence spectrometry
JP3584620B2 (en) Sample preparation method and analysis method
CN112461878B (en) Method for measuring content of ferronickel in carbonyl ferronickel alloy powder
CN108956259B (en) Method for detecting free carbon in continuous casting mold flux
CN113866143B (en) Quick detection of SiO in resource samples 2 And/or CaO content