JP3584620B2 - Sample preparation method and analysis method - Google Patents

Sample preparation method and analysis method Download PDF

Info

Publication number
JP3584620B2
JP3584620B2 JP19062896A JP19062896A JP3584620B2 JP 3584620 B2 JP3584620 B2 JP 3584620B2 JP 19062896 A JP19062896 A JP 19062896A JP 19062896 A JP19062896 A JP 19062896A JP 3584620 B2 JP3584620 B2 JP 3584620B2
Authority
JP
Japan
Prior art keywords
sample
solution
metal foil
foil
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19062896A
Other languages
Japanese (ja)
Other versions
JPH1038773A (en
Inventor
勉 井上
可浩 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP19062896A priority Critical patent/JP3584620B2/en
Publication of JPH1038773A publication Critical patent/JPH1038773A/en
Application granted granted Critical
Publication of JP3584620B2 publication Critical patent/JP3584620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、試料の調整方法および分析方法に関し、特に酸やアルカリに難溶な試料を調整する方法とその調整された測定試料を定性、定量する分析方法に関する。
【0002】
【従来の技術】
一般に試料中の成分を定量分析する方法として、原子吸光法やICP発光分光法などがある。これらの分析方法に用いる試料は、溶液にする必要があり、大概の固体状試料は、酸やアルカリ処理により溶液化できるが、セラミックやガラスや有機物などには、酸やアルカリ処理のみでは溶液化できないものがある。これらのセラミックやガラスなどは試薬を加えて加熱融解する融解法を用い、有機物などは加熱により炭化、灰化し、この炭化、灰化したものを酸やアルカリにより溶液化する乾式分解法が用いられている。
上記融解法や乾式分解法ではるつぼを用いることが多く、るつぼには白金製、石英製、アルミナ製などがあり、試料によって使い分けられる。
【0003】
【発明が解決しようとする課題】
しかし、上記るつぼには下記のような問題がある。白金製るつぼでは、試料中の金属成分が白金と反応して合金化し、合金化したものが酸やアルカリで処理しても溶解せず、正確な定量分析が行えないという問題があった。
また、石英製やアルミナ製のるつぼでは、試料中の酸化物が石英やアルミナと反応し酸やアルカリに不溶性となるため、正確な定量分析が行えないという問題があった。
【0004】
この発明の目的は、るつぼと反応する成分を含んだ試料や酸やアルカリに難溶性の有機物を含む試料を溶解して溶液化する試料の調整方法および分析方法である。
【0005】
【課題を解決するための手段】
すなわち、第1の発明は、試料を定性、定量分析するための試料の調整方法であって、前記試料を金属箔に載せて金属箔とともに加熱分解し、さらに溶液化する試料の調整方法である。
【0006】
また、第2の発明は、前記金属箔が純度99.9%以上の銅箔またはアルミニウム箔からなる試料の調整方法である。
【0007】
さらに、第3の発明は、試料を金属箔に載せて金属箔とともに加熱分解し、さらに溶液化して測定用試料溶液を準備し、該測定用試料溶液をICP発光分光法、ICP質量分析法、原子吸光法、吸光光度法、滴定法、容量法または重量法のいずれかにより分析する分析方法である。
【0008】
【発明の実施の形態】
(実施例1)
純度99.9%以上、厚さ0.1mmの銅箔を約3cm角に切り出し、この銅箔の重さをあらかじめ秤量しておく。次に、前記銅箔上に銀ペースト約0.5gを正確に秤量し、銅箔ごと電気加熱炉に入れ、室温から徐々に温度を上げて500〜700℃で60分間加熱する。冷却後、前記電気加熱炉から前記銅箔を取り出し、ビーカーに入れ、硝酸約20mlを添加して、ホットプレート上で銅箔ごと加熱溶解する。完全に溶解した溶液を100mlメスフラスコにいれ、純水で定容とする。測定試料中のAgとSiの濃度が範囲内に入るように作製した検量線液と測定試料とを同時にICP発光分光法で測定した。銅箔の量と試料の秤量値と測定結果から計算により試料中の元素濃度を求めた。この測定を5回繰り返し変動係数を求めた。その結果を表1に示す。
【0009】
【表1】

Figure 0003584620
【0010】
(従来例1)
また、実施例1と同じ測定試料を用い、白金るつぼを用いる以外は、実施例1と同じ方法で試料を調整した。この試料についても実施例1と同じ方法で変動係数を求めた。その結果も表1に示す
表1より、実施例1ではAgの変動係数が1.6〜2.1、SiOの変動係数が0.6〜0.9と小さい値を示すが、従来例1ではAgの変動係数が3.2〜5.1、SiOの変動係数が5.1〜6.0となり、実施例1が従来例1よりも2〜10倍精度が向上している。この精度の向上は、銅箔を用いて銅箔ごと溶解するため、AgやSiOが白金やガラスと反応して定量できない量を減らすことができるからである。
精度が向上するのはAgとSiOに限ったものではなくその他の元素でも同様に向上する。
【0011】
(実施例2)
純度99.9%以上、厚さ0.1mmのアルミニウム箔を約3cm角に切り出し、このアルミニウム箔の重さをあらかじめ秤量しておく。次に、前記アルミニウム箔上に銅ペースト約0.5gを正確に秤量し、アルミニウム箔ごと電気加熱炉に入れ、室温から徐々に温度を上げて500℃で60分間加熱する。冷却後、前記電気加熱炉から前記アルミニウム箔を取り出し、ビーカーに入れ、硝酸約20mlを添加して、ホットプレート上でアルミニウム箔ごと加熱溶解する。完全に溶解した溶液を100mlメスフラスコにいれ、純水で定容とする。測定試料中のCuとNaの濃度が範囲内に入るように作製した検量線液と測定試料とを同時にCuはICP発光分光法で、Naは原子吸光法で測定した。アルミニウム箔の量と試料の秤量値と測定結果から計算により試料中の元素濃度を求めた。この測定を5回繰り返し変動係数を求めた。その結果を表2に示す。
【0012】
【表2】
Figure 0003584620
【0013】
(従来例2)
また、実施例2と同じ測定試料を用い、白金るつぼを用いる以外は、実施例2と同じ方法で試料を調整した。この試料について実施例2と同じ方法で変動係数を求めた。その結果を表2に示す
表2より、実施例2ではCuの変動係数が1.8、NaOの変動係数が1.8〜1.9と小さい値を示すが、従来例2ではCuの変動係数が3.2、NaOの変動係数が3.5〜5.2となり、実施例2が従来例2よりも2〜10倍精度が向上している。この精度の向上は、アルミニウム箔を用いてアルミニウム箔ごと溶解するため、Cu、NaOが白金と反応して定量できない量を減らすことができるからである。
精度が向上するのはCuとNaOに限ったものではなくその他の元素でも同様と考えられる。
【0014】
実施例において、ICP発光分光法を用いて説明してきたが、溶液中の濃度等を測定する分析方法なら他に、ICP質量分析法、吸光光度法、原子吸光法、滴定法、容量法または質量法などを用いてもよい。
また、実施例で用いた銅箔やアルミニウム箔の厚みは0.1mmであったが、厚みはこれに限らない。しかし、金属箔の厚みが厚ければ、金属箔を溶解するための溶解液の量が多くなり、溶解液の量が多くなればその中に含まれる不純物の量も多くなるため、およそ0.5mm以下の厚みのものがよい。
【0015】
また、実施例では、硝酸を用いて金属箔や試料を溶解したが、試料により塩酸、硫酸、フッ化水素酸などを用いてもよく、それぞれの混合液にしてもよい。
さらに、金属箔や試料を溶解するのに水酸化ナトリウムや水酸化カリウムなどのアルカリ溶液を用いてよい。
【0016】
【発明の効果】
この発明の測定試料の調整方法によれば、金属成分と酸化物成分と有機物が混合された測定試料でも、それぞれの成分についての分析精度を向上させることができる。
また、微量成分を含んだ測定試料でも、高精度な分析結果が得られる。
さらに、金属箔をるつぼのようにして用いるため、金属箔と試料が反応しても金属箔全体が溶解でき、あらかじめ金属箔の量が判明しているので試料中の成分濃度を高精度に測定できる。
さらにまた、この発明の分析方法によれば、微量成分の定量、定性分析が精度良くできる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for preparing and analyzing a sample, and more particularly to a method for preparing a sample that is hardly soluble in acids and alkalis, and an analytical method for qualitatively and quantitatively measuring the adjusted measurement sample.
[0002]
[Prior art]
In general, methods for quantitatively analyzing components in a sample include an atomic absorption method and an ICP emission spectroscopy. Samples used in these analytical methods need to be in solution, and most solid samples can be made into solution by acid or alkali treatment.However, ceramic, glass, organic substances, etc. can be made into solution only by acid or alkali treatment. Some things cannot be done. For these ceramics and glasses, etc., a melting method is used in which a reagent is added and heated and melted.Organic substances are carbonized and incinerated by heating, and a dry decomposition method is used in which the carbonized or incinerated solution is converted into a solution with an acid or alkali. ing.
A crucible is often used in the melting method or the dry decomposition method, and the crucible is made of platinum, quartz, alumina, or the like, and is used properly depending on the sample.
[0003]
[Problems to be solved by the invention]
However, the crucible has the following problems. The platinum crucible has a problem in that the metal component in the sample reacts with platinum to form an alloy, and the alloyed product does not dissolve even when treated with an acid or alkali, so that accurate quantitative analysis cannot be performed.
Further, in a crucible made of quartz or alumina, there is a problem that an accurate quantitative analysis cannot be performed because an oxide in a sample reacts with quartz or alumina and becomes insoluble in acid or alkali.
[0004]
An object of the present invention is a method for preparing and analyzing a sample in which a sample containing a component that reacts with a crucible or a sample containing an organic substance that is hardly soluble in acid or alkali is dissolved to form a solution.
[0005]
[Means for Solving the Problems]
That is, the first invention is a method for preparing a sample for qualitatively and quantitatively analyzing the sample, which is a method for preparing a sample which is placed on a metal foil, thermally decomposed together with the metal foil, and further turned into a solution. .
[0006]
Further, a second invention is a method for preparing a sample in which the metal foil is made of a copper foil or an aluminum foil having a purity of 99.9% or more.
[0007]
Further, in the third invention, a sample is placed on a metal foil, decomposed by heating together with the metal foil, and further made into a solution to prepare a sample solution for measurement. The sample solution for measurement is subjected to ICP emission spectroscopy, ICP mass spectrometry, This is an analysis method in which analysis is performed by any of atomic absorption method, absorption method, titration method, volume method and gravimetric method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
A copper foil having a purity of 99.9% or more and a thickness of 0.1 mm is cut into about 3 cm squares, and the weight of the copper foil is weighed in advance. Next, about 0.5 g of the silver paste is accurately weighed on the copper foil, put into an electric heating furnace together with the copper foil, and gradually heated from room temperature to heated at 500 to 700 ° C. for 60 minutes. After cooling, the copper foil is taken out of the electric heating furnace, put into a beaker, and about 20 ml of nitric acid is added, followed by heating and melting together with the copper foil on a hot plate. The completely dissolved solution is placed in a 100 ml volumetric flask, and the volume is made up with pure water. The calibration curve solution and the measurement sample prepared so that the concentrations of Ag and Si in the measurement sample were within the range were simultaneously measured by ICP emission spectroscopy. The element concentration in the sample was determined by calculation from the amount of copper foil, the weighed value of the sample, and the measurement result. This measurement was repeated five times to obtain a coefficient of variation. Table 1 shows the results.
[0009]
[Table 1]
Figure 0003584620
[0010]
(Conventional example 1)
Further, a sample was prepared in the same manner as in Example 1 except that the same measurement sample as in Example 1 was used and a platinum crucible was used. The variation coefficient of this sample was determined in the same manner as in Example 1. The results also show that in Example 1, the variation coefficient of Ag is as small as 1.6 to 2.1, and the variation coefficient of SiO 2 is as small as 0.6 to 0.9. In Example 1, the variation coefficient of Ag was 3.2 to 5.1, and the variation coefficient of SiO 2 was 5.1 to 6.0, and Example 1 was 2 to 10 times more accurate than Conventional Example 1. This improvement in accuracy is due to the fact that Ag or SiO 2 reacts with platinum or glass and cannot be quantified because the copper foil is dissolved together with the copper foil.
The improvement in accuracy is not limited to Ag and SiO 2 , but also improves with other elements.
[0011]
(Example 2)
An aluminum foil having a purity of 99.9% or more and a thickness of 0.1 mm is cut into about 3 cm squares, and the weight of the aluminum foil is weighed in advance. Next, about 0.5 g of the copper paste is accurately weighed on the aluminum foil, put into an electric heating furnace together with the aluminum foil, and gradually heated from room temperature to 500 ° C. for 60 minutes. After cooling, the aluminum foil is taken out of the electric heating furnace, put into a beaker, and about 20 ml of nitric acid is added, followed by heating and melting together with the aluminum foil on a hot plate. The completely dissolved solution is placed in a 100 ml volumetric flask, and the volume is made up with pure water. The calibration curve solution and the measurement sample prepared so that the concentrations of Cu and Na in the measurement sample fall within the range were simultaneously measured for Cu by ICP emission spectroscopy and Na by atomic absorption spectroscopy. The element concentration in the sample was determined by calculation from the amount of aluminum foil, the weighed value of the sample, and the measurement result. This measurement was repeated five times to obtain a coefficient of variation. Table 2 shows the results.
[0012]
[Table 2]
Figure 0003584620
[0013]
(Conventional example 2)
Further, a sample was prepared in the same manner as in Example 2 except that the same measurement sample as in Example 2 was used and a platinum crucible was used. The coefficient of variation of this sample was determined in the same manner as in Example 2. The results are shown in Table 2. As shown in Table 2, the coefficient of variation of Cu is 1.8 and the coefficient of variation of Na 2 O is as small as 1.8 to 1.9 in Example 2. Is 3.2, the variation coefficient of Na 2 O is 3.5 to 5.2, and the precision of the second embodiment is 2 to 10 times higher than that of the second conventional example. This improvement in accuracy is due to the fact that Cu and Na 2 O react with platinum and cannot be quantified, because the aluminum foil is dissolved together with the aluminum foil.
The improvement in accuracy is not limited to Cu and Na 2 O, and it is considered that other elements are similar.
[0014]
In the examples, the description has been made using ICP emission spectroscopy. However, in addition to the analysis method for measuring the concentration and the like in a solution, ICP mass spectrometry, absorption spectrophotometry, atomic absorption spectrometry, titration, volumetric analysis, or mass spectrometry can be used. Method or the like may be used.
Further, the thickness of the copper foil or the aluminum foil used in the examples was 0.1 mm, but the thickness is not limited to this. However, if the thickness of the metal foil is large, the amount of the dissolving solution for dissolving the metal foil increases, and if the amount of the dissolving solution increases, the amount of impurities contained therein also increases. Those having a thickness of 5 mm or less are preferred.
[0015]
In the examples, the metal foil and the sample were dissolved using nitric acid. However, hydrochloric acid, sulfuric acid, hydrofluoric acid, or the like may be used depending on the sample, or a mixture of each may be used.
Further, an alkali solution such as sodium hydroxide or potassium hydroxide may be used to dissolve the metal foil or the sample.
[0016]
【The invention's effect】
According to the method for preparing a measurement sample of the present invention, even for a measurement sample in which a metal component, an oxide component, and an organic substance are mixed, the analysis accuracy of each component can be improved.
In addition, a highly accurate analysis result can be obtained even with a measurement sample containing a trace component.
Furthermore, since the metal foil is used like a crucible, the entire metal foil can be dissolved even if the metal foil reacts with the sample, and the amount of the metal foil is known in advance, so the component concentration in the sample can be measured with high accuracy. it can.
Furthermore, according to the analysis method of the present invention, the quantification and qualitative analysis of trace components can be performed with high accuracy.

Claims (3)

試料を定性、定量分析するための試料の調整方法であって、前記試料を金属箔に載せて金属箔とともに加熱分解し、さらに溶液化することを特徴とする試料の調整方法。A method for preparing a sample for qualitatively and quantitatively analyzing the sample, wherein the sample is placed on a metal foil, thermally decomposed together with the metal foil, and further converted to a solution. 前記金属箔は純度99.9%以上の銅箔またはアルミニウム箔からなることを特徴とする請求項1に記載の試料の調整方法。The method according to claim 1, wherein the metal foil is made of a copper foil or an aluminum foil having a purity of 99.9% or more. 試料を金属箔に載せて金属箔とともに加熱分解し、さらに溶液化して測定用試料溶液を準備し、該測定用試料溶液をICP発光分光法、ICP質量分析法、原子吸光法、吸光光度法、滴定法、容量法または重量法のいずれかにより分析することを特徴とする分析方法。The sample is placed on a metal foil, thermally decomposed together with the metal foil, and further made into a solution to prepare a sample solution for measurement. An analysis method characterized by performing analysis by any of a titration method, a volume method, and a gravimetric method.
JP19062896A 1996-07-19 1996-07-19 Sample preparation method and analysis method Expired - Fee Related JP3584620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19062896A JP3584620B2 (en) 1996-07-19 1996-07-19 Sample preparation method and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19062896A JP3584620B2 (en) 1996-07-19 1996-07-19 Sample preparation method and analysis method

Publications (2)

Publication Number Publication Date
JPH1038773A JPH1038773A (en) 1998-02-13
JP3584620B2 true JP3584620B2 (en) 2004-11-04

Family

ID=16261242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19062896A Expired - Fee Related JP3584620B2 (en) 1996-07-19 1996-07-19 Sample preparation method and analysis method

Country Status (1)

Country Link
JP (1) JP3584620B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031365A4 (en) 2006-05-26 2012-12-05 Jx Nippon Mining & Metals Corp Zirconium crucible for analytical sample melting, method of preparing analytical sample and method of analysis
EP2413125A4 (en) 2009-03-23 2013-04-10 Jx Nippon Mining & Metals Corp Zirconium crucible
CN103512881A (en) * 2013-09-22 2014-01-15 南通新邦化工科技有限公司 Method for detecting metal ion contents in zinc stearate and calcium stearate composite salt

Also Published As

Publication number Publication date
JPH1038773A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
JP3768442B2 (en) Analytical sample preparation method and element quantification method
JP3584620B2 (en) Sample preparation method and analysis method
Brill et al. Determination of gold in gold jewellery alloys by ICP spectrometry
JP7392393B2 (en) Tungsten and element evaluation method
JP2004069413A (en) Method for determining the quantity of silicon in organic silicon compound
JP2006329687A (en) Analytical method for trace element in metal sample
Hu et al. Determination of ruthenium in photographic materials using solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry
JP6919360B2 (en) How to quantify the amount of silicon in metallic materials
CN109211712B (en) Method for measuring water content of boric anhydride
JPH05273132A (en) Composition analyzing method for ceramic
JP2616177B2 (en) Ceramic composition analysis method
Atwell et al. The Emission Spectrographic Carrier-Distillation Determination of Traces of Lead, Bismuth, and Tin in Nickel-Base Alloys
Keenan et al. Spectrochemical Determination of Trace Quantities of Cobalt in Animal Tissues
JPS622259B2 (en)
JPH09257673A (en) Analysis of vanadium oxide ceramic
Marin et al. Spectral line selection for determination of zirconium, cerium, thorium and titanium by inductively coupled plasma atomic emission spectrometry in zirconia-based ceramic materials
JPH0260978B2 (en)
Gentscheva et al. Slurry sampling electrothermal atomic absorption spectrometric determination of sodium and iron impurities in optical crystals of rubidium titanyl phosphate
Singh et al. Quantitative estimation of constituents in fly ash by lithium tetraborate fusion
Mulligan et al. X-Ray Spectrometric Analysis of Noble Metal Dental Alloys
Yokota et al. Determination of impurities in zirconium disilicide and zirconium diboride by inductively coupled plasma atomic emission spectrometry
JP2000310586A (en) Method for quantitative analysis to submaterial for steelmaking
Caraballo et al. Determination of Cd, Pb, and Zn in sediment reference materials by AAS after alkaline fusion dissolution with lithium tetraborate
JPH03218445A (en) Analysis of glass composition
CN116754500A (en) Method for measuring aluminum content by utilizing graphite furnace atomic absorption spectrum of elemental silver fusion interference

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees