JP2004069413A - Method for determining the quantity of silicon in organic silicon compound - Google Patents

Method for determining the quantity of silicon in organic silicon compound Download PDF

Info

Publication number
JP2004069413A
JP2004069413A JP2002227184A JP2002227184A JP2004069413A JP 2004069413 A JP2004069413 A JP 2004069413A JP 2002227184 A JP2002227184 A JP 2002227184A JP 2002227184 A JP2002227184 A JP 2002227184A JP 2004069413 A JP2004069413 A JP 2004069413A
Authority
JP
Japan
Prior art keywords
silicon
heating
crucible
compound
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002227184A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshida
吉田 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002227184A priority Critical patent/JP2004069413A/en
Publication of JP2004069413A publication Critical patent/JP2004069413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for analyzing a silicon in an organic silicon compound, without using pressurized decomposing processes. <P>SOLUTION: A method for determining the quantity of silicon includes the steps of first weighing the organic silicon compound in a crucible on weight basis, mixing the compound with a hydroxide alkali and an alcohol, heating to dry the mixture on a hot plate, and thereafter heating to melt the mixture by using a burner. The method further includes the steps of measuring the solution by an ICP (inductively-coupled plasma) spectrographic analyzer, a colorimetric method, and an atomic absorption method, and determining the silicon in the organic silicon compound from the measured values. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機珪素化合物中に含有されている珪素の定量方法に関するものである。
【0002】
【従来の技術】
有機珪素化合物中に含有されている珪素は、化合物として含有されている有機珪素化合物が殆どである。有機珪素化合物中の珪素の定量方法としては、珪素に結合している有機基を硫酸により切断して、生成する二酸化珪素を定量することにより珪素含有量を定量する方法がある。
【0003】
この定量方法(加圧分解法)は、密閉容器のテフロン製蓋付きるつぼ(以後密閉容器と略す)に試料を秤取り、硫酸を加え密閉後、150から170°Cで約20時間加熱分解し、さらに空気中で加熱して有機物を完全に加熱分解し、二酸化珪素を生成させる。このニ酸化珪素を重量法、比色法、原子吸光法により測定する。この方法では他の成分が共存している有機珪素化合物中の珪素だけの分析も可能である。
【0004】
加圧分解法とは、耐圧性のステンレス容器の中に、試料と分解用の試薬を入れた密閉容器を入れ、一定温度に設定した乾燥器等の加温装置内にて一定時間放置し、密閉容器温度の上昇により密閉容器内の圧力が上昇し、試料を分解する方法で、試料と試薬の入った容器は密閉されているため、揮発成分も揮発することなく分解される。
【0005】
しかし、加圧分解法を有機珪素化合物中の珪素の定量方法に使用すると、硫酸と有機珪素化合物の分解反応による圧力の上昇及び分解後の冷却による圧力の減少により、使用後の密閉容器の変形が著しく再使用が出来ない。
【0006】
密閉容器は一組約15,000円と高価であり、定常的に行なう分析方法としては不適当である。
【0007】
又、密閉容器であるため、有機珪素化合物の分解状態が確認することができず、分解不完全の場合は再度分解処理を繰り返えさなければならない。
【0008】
有機珪素化合物は、その組成や構造あるいは重合度によって分解温度が大きく違う。したがって、加圧分解法では充分に分解出来ない有機珪素化合物もある。これを解決するために分解容器としてるつぼを使用し、分解試薬を加え、まず低温で珪素に結合している有機基を切断した後、次に温度を上げて有機物を完全に分解する方法が考えられる。しかしその場合、分解時における珪素の揮発を防ぐ必要がある。
【0009】
そのための分析方法として、るつぼ(内容量30ml)に秤取った有機珪素化合物に、分解試薬として水酸化テトラアンモニウム(TMAH)、水酸化ナトリウム又は水酸化カリウムを加え、ホットプレート上で150から170°Cで加熱分解し、その後バーナーを用いて加熱融解して有機物を完全に分解し、融解塩を塩酸溶液に溶解させ、その溶液をICP(誘導結合プラズマ)発光分析装置で測定して定量する方法が考えられる。
【0010】
しかし、分解試薬にTMAHを用いた場合、TMAHの沸点が130から140°Cと低く加熱温度を高く出来ないため分解が不完全になり、正確な定量は出来ないという問題がある。
【0011】
分解試薬に水酸化ナトリウムを用いた場合、水酸化ナトリウムの融点が320°Cであるため有機珪素化合物との混合が完全に出来ず、低沸点の有機珪素化合物中の珪素が揮発するため、正確な定量は出来ないという問題がある。
【0012】
分解試薬に水酸化カリウムを用いた場合、水酸化カリウムの融点が360°Cであるため有機珪素化合物との混合が完全に出来ず、低沸点の有機珪素化合物中の珪素が揮発するため、正確な定量は出来ないという問題がある。
【0013】
【発明が解決しようとする課題】
上記の問題により、有機珪素化合物中の珪素を加圧分解法以外に分析する方法は見出されていないのが現状である。
【0014】
本発明の目的は、有機珪素化合物中に含有されている珪素を密閉容器を使わずに、珪素を揮発させることなく分析する方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明の方法は、上記の課題を解決するものとして、るつぼに有機珪素化合物0.1gを秤取り、水酸化アルカリ2gを加え、更にアルコール1mlを加え、ホットプレート上で50°Cから140°Cに徐々に加熱温度を高くし、アルコールを揮発させ乾固する。次にバーナーで徐々に加熱温度を高くして加熱融解し、融解塩を塩酸溶液に溶解させ、その溶液をICP(誘導結合プラズマ)発光分析装置で測定し、有機珪素化合物中の珪素を揮発させることなく定量する方法である。
【0016】
【発明の実施の形態】
本発明の方法において、加圧分解法との相違点は、分解容器としてるつぼを使用し、分解試薬として水酸化アルカリとアルコールを使用し、まず低温で加熱することで珪素に結合している有機基を完全に切断し、次に高温で融解して有機物を分解する際に珪素を揮発させることなく、どのような有機物でも完全に分解することが出来ることである。
【0017】
分解容器として、ニッケルるつぼ、ジルコニアるつぼ及び鉄るつぼ等が使用可能であるが、珪素の含有量が少ない高純度ニッケルるつぼの使用が好ましい。
【0018】
水酸化アルカリはアルコールに可溶であるので、有機珪素化合物は容易に水酸化アルカリのアルコール溶液に分散する。その溶液をホットプレート上で50°Cから140°Cに徐々に加熱温度を高くし、アルコール及び水分を揮発させ乾固することにより、短時間で有機基を切断することが出来る。したがって、有機物を完全に分解するためにバーナーで融解しても珪素の揮発は起こらない。
【0019】
水酸化アルカリとして水酸化カリウム及び水酸化ナトリウムが、アルコールとしてメタノール、エタノール及びプロパノールが適用出来るが、下記の表1に示したように、水酸化カリウムのメチルアルコールに対する溶解度が40%と高いため、この組み合わせが適している。
【表1】

Figure 2004069413
【0020】
ホットプレート上の加熱操作を行なわずに、始めからバーナーで加熱するとアルコール及び含有されている水分の揮発が一度に起こるため、有機珪素化合物が分散している水酸化アルカリのアルコール溶液の飛散がおこり、正しい値が得られない。
【0021】
(従来例)
シリコーンオイルA及びBについて、加圧分解法で定量した結果を以下に示す。
【0022】
密閉容器に試料0.1gを2個秤取り、97%硫酸5mlを加え、密閉後、乾燥器中160°Cで24時間加熱分解し、放冷した後、密閉容器内の溶液及び沈殿物を白金皿に移し入れ、ホットプレート上200°Cで硫酸を揮発させ乾固する。さらにバーナーで加熱して有機物を完全に分解する。次に、1200°Cの電気炉中に30分間入れ完全に焼成させる。放冷後、白金皿と生成したニ酸化珪素と共に重量を秤量(a)し、秤量後フッ化水素酸5mlと60%過塩素酸5mlを加え珪素を揮発させた後、1200°Cの電気炉中に5分間入れ焼成させた。放冷後、白金皿の重量を秤量(b)する。秤量(a)から秤量(b)を差し引き0.4674を乗じ、試料量で除した値を珪素量とする。その時の定量結果を下記の表2に示す。
【表2】
Figure 2004069413
【0023】
この結果から、シリコーンオイルAの珪素の含有率平均値は35.1%でシリコーンオイルBの珪素の含有率の平均値は19.8%であることが分かった。
【0024】
(実施例1)
以下に実施例によって本発明の方法を詳しく説明する。以下の実施例では、珪素の測定にはICP(誘導結合プラズマ)発光分析装置を用いた。定量に必要な検量線は、試料以外の試薬類をるつぼに試料と同様に取り、試料と同様に操作した溶液に珪素の標準溶液を加え上記の装置で定量して作成した。
【0025】
シリコーンオイルAとBをそれぞれ3点づつ高純度ニッケルるつぼに0.05、0.1及び0.2g秤取り、高純度水酸化カリウム(純度99.9%)2g及びメチルアルコール(純度99.9%)1mlを加え、るつぼを振って混合する。室温で1時間放置し水酸化カリウムのメタノール溶液にシリコーンオイルを分散させた。その間数回るつばを振って混合する。次にホットプレート上にるつぼを載せ50°Cから140°Cに徐々に加熱温度を上げ、約2時間加熱操作を行い、メタノール及び水分を完全に揮発させ乾固する。バーナーで約200°Cから500°Cに徐々に加熱温度を上げて融解し、有機物を完全に分解する。放冷後、水100ml及び36%塩酸20mlの溶液の中にるつぼを入れ、るつぼ内の塩を溶解する。るつぼから取り出した溶液に水を加えて一定量とし、この溶液中の珪素を定量した。測定はセイコーインスツルメンツ社製のICP発光分光分析装置(SPS4000)を用いた。得られた溶液中の濃度に測定液量を乗じ、秤取ったシリコーンオイル量で除した値を定量値とした。その定量結果を下記の表3及び4に示す。
【表3】
Figure 2004069413
【表4】
Figure 2004069413
【0026】]
この結果から、シリコーンオイルAの珪素の含有率平均値は35.3%でシリコーンオイルBの珪素の含有率の平均値20.0%であり、試料採取量を変化させた時の珪素の定量値ほぼ一致し、(実施例1)の加圧分解法で行った値とも一致することが分かった。
【0027】
(実施例2)
シリコーンオイルA0.1gで水酸化カリウム量を1、2及び3gと変化させ(実施例1)と同様に操作した。その時の定量結果を下記の表5に示す。
【表5】
Figure 2004069413
【0028】
この結果から、水酸化カリウム量を変化させても定量値は、ほぼ一致することが分かった。
【0029】
(実施例3)
シリコーンオイルAを0.1g、水酸化カリウム量を2g、メタノール量を0.5、1及び2mlと変化させ(実施例1)と同様に操作した。その時の定量結果を下記の表6に示す。
【表6】
Figure 2004069413
【0030】
この結果から、メタノール量を変化させても定量値と一致することが分かった。
【0031】
(実施例4)
シリコーンオイルAとBを高純度ニッケルるつぼに0.1g秤取り、高純度水酸化ナトリウム(純度99.9%)2g及びメタノール(純度99.9%)1mlを加え、るつばを振って混合し、室温に1時間放置後、水酸化ナトリウムメタノール溶液に試料を分散させた。以後(実施例1)と同様に操作した。その時の定量結果を下記の表7に示す。
【表7】
Figure 2004069413
【0032】
この結果から、水酸化ナトリウムを用いた場合についても、水酸化カリウムを使用したときの定量値と一致することが分かった。しかし、水酸化ナトリウム中に水分が数%含有されているため、ホットプレートでメタノール及び水分を揮発させる時に加熱時間が約3時間かかった。
【0033】
(比較例1)
シリコーンオイルAを0.1g、水酸化カリウム量を0.2、0.4、0.6及び0.8gと変化させ実施例1と同様に操作した。その時の定量結果を下記の表8に示す。
【表8】
Figure 2004069413
【0034】
この結果から、0.8g以下では定量値が32%以下と低い値であった。
【0035】
(比較例2)
シリコーンオイルAを0.1g、水酸化カリウム量を2g、メタノール量を0.2、0.3、0.4及び0.5mlと変化させ実施例2と同様に操作した。その時の定量結果を下記の表9に示す。
【表9】
Figure 2004069413
【0036】
この結果から、メタノール量0.4ml以下では34%以下と低い値であった。
【0037】
(比較例3)
シリコーンオイルA0.1gを白金皿3個に秤取り、それぞれに97%硫酸10ml及び60%硝酸10mlを加え、ホットプレート上で加熱分解し、さらに加熱して硫酸及び硝酸を揮発乾固させた後、バーナーで加熱して有機物を完全に分解する。次に、1200°Cの電気炉に30分間入れ焼成させる。放冷後、白金皿と生成したこ酸化珪素と共に重量を測量(a)し、秤量後フッ化水素酸5mlと60%過塩素酸5mlを加え珪素を揮発させた後、1200°Cの電気炉に5分間入れ焼成させた。放冷後、白金皿の重量を秤量(b)する。秤量(a)から秤量(b)を差し引き0.4674を乗じ、試料量で除した値を珪素量とする。その時の定量結果を下記の表10に示す。
【表10】
Figure 2004069413
【0038】
この結果から、開放容器で行なった場合、シリコーンオイルAは桂素の揮発により、定量値が30%以下と低い値であった。
【0039】
【発明の効果】
本発明により、シリコーンオイル中の珪素を定量する際に、高価な密閉容器を使用せずに、珪素を揮発させることなく有機物を分解することが出来る。
更に、分解温度が高いシリコーンオイルについても完全に分解することが出来る。従って珪素含有量を正確に且つ簡便に定量することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for determining silicon contained in an organic silicon compound.
[0002]
[Prior art]
Most of the silicon contained in the organic silicon compound is an organic silicon compound contained as a compound. As a method of quantifying silicon in an organic silicon compound, there is a method of quantifying the silicon content by cutting an organic group bonded to silicon with sulfuric acid and quantifying generated silicon dioxide.
[0003]
In this quantitative determination method (pressure decomposition method), a sample is weighed in a crucible with a Teflon lid (hereinafter abbreviated as a closed container) in a closed container, sulfuric acid is added thereto, and the mixture is sealed. And further heat in air to completely thermally decompose the organic matter to produce silicon dioxide. This silicon dioxide is measured by a gravimetric method, a colorimetric method, and an atomic absorption method. In this method, it is possible to analyze only silicon in the organosilicon compound in which other components coexist.
[0004]
With the pressure decomposition method, a sealed container containing a sample and a reagent for decomposition is placed in a pressure-resistant stainless steel container, and left for a certain time in a heating device such as a dryer set to a constant temperature, In a method of decomposing a sample by increasing the pressure in the closed container due to an increase in the temperature of the closed container, since the container containing the sample and the reagent is sealed, the volatile components are decomposed without volatilizing.
[0005]
However, when the pressure decomposition method is used for the method of quantifying silicon in an organic silicon compound, the pressure rise due to the decomposition reaction of sulfuric acid and the organic silicon compound and the pressure decrease due to cooling after the decomposition cause deformation of the closed container after use. Can not be reused remarkably.
[0006]
A set of closed containers is expensive at about 15,000 yen per set, which is not suitable for a routine analysis method.
[0007]
In addition, since the container is a closed container, the decomposition state of the organosilicon compound cannot be confirmed. If the decomposition is incomplete, the decomposition process must be repeated.
[0008]
Decomposition temperatures of organic silicon compounds vary greatly depending on the composition, structure, or degree of polymerization. Therefore, some organic silicon compounds cannot be sufficiently decomposed by the pressure decomposition method. In order to solve this problem, a method of using a crucible as a decomposition vessel, adding a decomposition reagent, first cutting the organic groups bonded to silicon at a low temperature, and then raising the temperature to completely decompose the organic matter is considered. Can be However, in that case, it is necessary to prevent volatilization of silicon during decomposition.
[0009]
As an analysis method therefor, tetraammonium hydroxide (TMAH), sodium hydroxide or potassium hydroxide as a decomposition reagent is added to an organosilicon compound weighed in a crucible (30 ml in content), and 150 to 170 ° on a hot plate. C, then heat and melt using a burner to completely decompose the organic matter, dissolve the molten salt in hydrochloric acid solution, measure the solution with an ICP (inductively coupled plasma) emission spectrometer, and quantify it. Can be considered.
[0010]
However, when TMAH is used as a decomposition reagent, the boiling point of TMAH is as low as 130 to 140 ° C., and the heating temperature cannot be increased. Therefore, there is a problem that decomposition is incomplete and accurate quantification cannot be performed.
[0011]
When sodium hydroxide is used as the decomposition reagent, the melting point of sodium hydroxide is 320 ° C, so that it cannot be completely mixed with the organic silicon compound, and the silicon in the low boiling organic silicon compound is volatilized. There is a problem that it is not possible to quantitatively determine.
[0012]
When potassium hydroxide is used as the decomposition reagent, the melting point of potassium hydroxide is 360 ° C, so that it cannot be completely mixed with the organic silicon compound and the silicon in the low boiling organic silicon compound volatilizes. There is a problem that it is not possible to quantitatively determine.
[0013]
[Problems to be solved by the invention]
Due to the above problems, no method has been found for analyzing silicon in the organosilicon compound other than the pressure decomposition method.
[0014]
An object of the present invention is to provide a method for analyzing silicon contained in an organic silicon compound without volatilizing the silicon without using a closed container.
[0015]
[Means for Solving the Problems]
The method of the present invention solves the above problems by weighing 0.1 g of an organosilicon compound in a crucible, adding 2 g of alkali hydroxide, further adding 1 ml of alcohol, and heating from 50 ° C to 140 ° on a hot plate. C. The heating temperature is gradually increased to evaporate the alcohol to dryness. Next, the heating temperature is gradually increased by a burner and the mixture is heated and melted, the molten salt is dissolved in a hydrochloric acid solution, and the solution is measured by an ICP (inductively coupled plasma) emission spectrometer to volatilize silicon in the organosilicon compound. It is a method of quantification without any problem.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method of the present invention, the difference from the pressure decomposition method is that a crucible is used as a decomposition vessel, an alkali hydroxide and an alcohol are used as decomposition reagents, and an organic substance bonded to silicon by first heating at a low temperature. Any organic substance can be completely decomposed without completely volatilizing the group and then melting at high temperature to decompose the organic substance and volatilize the silicon.
[0017]
As a decomposition vessel, a nickel crucible, a zirconia crucible, an iron crucible, or the like can be used, but it is preferable to use a high-purity nickel crucible having a low silicon content.
[0018]
Since alkali hydroxide is soluble in alcohol, the organosilicon compound is easily dispersed in an alcohol solution of alkali hydroxide. The heating temperature of the solution is gradually increased from 50 ° C. to 140 ° C. on a hot plate to evaporate alcohol and water to dryness, whereby organic groups can be cut in a short time. Therefore, volatilization of silicon does not occur even if it is melted by a burner to completely decompose organic substances.
[0019]
Potassium hydroxide and sodium hydroxide can be used as alkali hydroxide, and methanol, ethanol and propanol can be used as alcohol. However, as shown in Table 1 below, since the solubility of potassium hydroxide in methyl alcohol is as high as 40%, This combination is suitable.
[Table 1]
Figure 2004069413
[0020]
When heating with a burner from the beginning without performing the heating operation on the hot plate, the alcohol and the water contained therein volatilize at once, and the alcohol solution of the alkali hydroxide in which the organosilicon compound is dispersed is scattered. , The correct value cannot be obtained.
[0021]
(Conventional example)
The results of quantifying the silicone oils A and B by the pressure decomposition method are shown below.
[0022]
Two 0.1 g samples were weighed in a closed container, 5 ml of 97% sulfuric acid was added, and after sealing, the mixture was heated and decomposed at 160 ° C. for 24 hours in a drier, allowed to cool, and the solution and precipitate in the closed container were removed. Transfer to a platinum dish and evaporate sulfuric acid at 200 ° C on a hot plate to dryness. Further, the organic matter is completely decomposed by heating with a burner. Next, it is placed in an electric furnace at 1200 ° C. for 30 minutes and completely fired. After cooling, the weight was weighed together with a platinum dish and the generated silicon dioxide (a). After weighing, 5 ml of hydrofluoric acid and 5 ml of 60% perchloric acid were added to volatilize the silicon, and then an electric furnace at 1200 ° C. And baked for 5 minutes. After cooling, the weight of the platinum dish is weighed (b). The value obtained by subtracting the weighing (b) from the weighing (a), multiplying by 0.4674 and dividing by the sample amount is defined as the silicon amount. The results of the quantification are shown in Table 2 below.
[Table 2]
Figure 2004069413
[0023]
From this result, it was found that the average value of the silicon content of the silicone oil A was 35.1% and the average value of the silicon content of the silicone oil B was 19.8%.
[0024]
(Example 1)
Hereinafter, the method of the present invention will be described in detail with reference to examples. In the following examples, an ICP (inductively coupled plasma) emission spectrometer was used for measuring silicon. The calibration curve required for the quantification was prepared by taking reagents other than the sample in a crucible in the same manner as the sample, adding a standard solution of silicon to a solution operated in the same manner as the sample, and quantifying the solution with the above apparatus.
[0025]
Three points each of the silicone oils A and B were weighed in 0.05 g, 0.1 g and 0.2 g of a high-purity nickel crucible, 2 g of high-purity potassium hydroxide (99.9% purity) and methyl alcohol (99.9% purity). %), Shake and mix the crucible. The mixture was left at room temperature for 1 hour to disperse silicone oil in a methanol solution of potassium hydroxide. In the meantime, shake the brim several times to mix. Next, the crucible is placed on a hot plate, and the heating temperature is gradually increased from 50 ° C. to 140 ° C., and a heating operation is performed for about 2 hours to completely volatilize methanol and water and dry the mixture. The temperature is gradually increased from about 200 ° C. to 500 ° C. with a burner to melt the organic substance completely. After standing to cool, the crucible is put into a solution of 100 ml of water and 20 ml of 36% hydrochloric acid to dissolve the salt in the crucible. Water was added to the solution taken out of the crucible to make a fixed amount, and silicon in this solution was quantified. The measurement was performed using an ICP emission spectrometer (SPS4000) manufactured by Seiko Instruments Inc. The value obtained by multiplying the concentration in the obtained solution by the amount of the measurement liquid and dividing by the amount of the weighed silicone oil was used as the quantitative value. The results of the quantification are shown in Tables 3 and 4 below.
[Table 3]
Figure 2004069413
[Table 4]
Figure 2004069413
[0026]
From these results, the average silicon content of the silicone oil A was 35.3%, and the average silicon content of the silicone oil B was 20.0%. It was found that the values almost coincided with each other, and also coincided with the values obtained by the pressure decomposition method of Example 1.
[0027]
(Example 2)
The operation was performed in the same manner as in Example 1 except that the amount of potassium hydroxide was changed to 1, 2 and 3 g with 0.1 g of silicone oil A. The results of the quantification at that time are shown in Table 5 below.
[Table 5]
Figure 2004069413
[0028]
From this result, it was found that the quantitative values almost matched even when the amount of potassium hydroxide was changed.
[0029]
(Example 3)
The same operation as in Example 1 was performed except that the amount of silicone oil A was changed to 0.1 g, the amount of potassium hydroxide to 2 g, and the amounts of methanol to 0.5, 1, and 2 ml. The results of the quantification at that time are shown in Table 6 below.
[Table 6]
Figure 2004069413
[0030]
From this result, it was found that even when the amount of methanol was changed, the measured value coincided with the quantitative value.
[0031]
(Example 4)
0.1 g of silicone oils A and B are weighed into a high-purity nickel crucible, 2 g of high-purity sodium hydroxide (99.9% purity) and 1 ml of methanol (99.9% purity) are added, and the crucible is shaken to mix. After leaving at room temperature for 1 hour, the sample was dispersed in a methanol solution of sodium hydroxide. Thereafter, the same operation as in (Example 1) was performed. Table 7 below shows the results of the quantification.
[Table 7]
Figure 2004069413
[0032]
From these results, it was found that even when sodium hydroxide was used, the results agreed with the quantitative values obtained when potassium hydroxide was used. However, since sodium hydroxide contains several percent of water, it took about 3 hours to heat methanol and water on a hot plate.
[0033]
(Comparative Example 1)
The same operation as in Example 1 was carried out except that the amount of the silicone oil A was changed to 0.1 g and the amount of potassium hydroxide was changed to 0.2, 0.4, 0.6 and 0.8 g. Table 8 below shows the results of the quantification.
[Table 8]
Figure 2004069413
[0034]
From these results, the quantitative value was as low as 32% or less at 0.8 g or less.
[0035]
(Comparative Example 2)
The same operation as in Example 2 was performed except that the amount of silicone oil A was changed to 0.1 g, the amount of potassium hydroxide was changed to 2 g, and the amount of methanol was changed to 0.2, 0.3, 0.4 and 0.5 ml. The results of the quantification at that time are shown in Table 9 below.
[Table 9]
Figure 2004069413
[0036]
From this result, the value was as low as 34% or less when the amount of methanol was 0.4 ml or less.
[0037]
(Comparative Example 3)
After weighing 0.1 g of silicone oil A into three platinum dishes, adding 10 ml of 97% sulfuric acid and 10 ml of 60% nitric acid to each, heat-decompose on a hot plate, and further heat to evaporate sulfuric acid and nitric acid to dryness. The organic matter is completely decomposed by heating with a burner. Next, it is baked in an electric furnace at 1200 ° C. for 30 minutes. After cooling, the weight was measured (a) together with a platinum dish and the generated silicon oxide, and after weighing, 5 ml of hydrofluoric acid and 5 ml of 60% perchloric acid were added to volatilize the silicon, and then the electric furnace was heated to 1200 ° C. And baked for 5 minutes. After cooling, the weight of the platinum dish is weighed (b). The value obtained by subtracting the weighing (b) from the weighing (a), multiplying by 0.4674, and dividing by the sample amount is defined as the silicon amount. The quantification results at that time are shown in Table 10 below.
[Table 10]
Figure 2004069413
[0038]
From these results, when the silicone oil A was used in an open container, the quantitative value of silicone oil A was as low as 30% or less due to volatilization of silicon.
[0039]
【The invention's effect】
According to the present invention, when quantifying silicon in silicone oil, organic substances can be decomposed without volatilizing silicon without using an expensive closed container.
Further, silicone oil having a high decomposition temperature can be completely decomposed. Therefore, the silicon content can be accurately and simply determined.

Claims (6)

有機珪素化合物をるつぼに秤量して、水酸化アルカリ及びアルコールと混合し、ホットプレート上で加熱乾固し、その後バーナーを用いて加熱融解することを特徴とする有機珪素化合物中の珪素の定量方法。A method for quantifying silicon in an organosilicon compound, comprising weighing an organosilicon compound in a crucible, mixing with an alkali hydroxide and an alcohol, heating to dryness on a hot plate, and then heating and melting using a burner. . 有機珪素化合物を水酸化アルカリ及びアルコールと混合し加熱融解した融解物を塩酸溶液に溶解させ、その溶液をICP(誘導結合プラズマ)発光分析装置、比色法、原子吸光法で測定し、その測定値から有機珪素化合物中の珪素を定量することを特徴とする請求項1記載の方法。An organic silicon compound is mixed with an alkali hydroxide and an alcohol and melted by heating and dissolved in a hydrochloric acid solution. The solution is measured by an ICP (inductively coupled plasma) emission spectrometer, a colorimetric method, and an atomic absorption method, and the measurement is performed. The method according to claim 1, wherein silicon in the organosilicon compound is determined from the value. 分解容器として、ニッケルるつぼ、ジルコニアるつぼ及び鉄るつぼを使用することを特徴とする請求項1記載の方法。2. The method according to claim 1, wherein a nickel crucible, a zirconia crucible and an iron crucible are used as decomposition vessels. 水酸化アルカリとして、水酸化カリウム及び水酸化ナトリウム、アルコールとして、メタノール、エタノール及びプロパノールを分解試薬として使用することを特徴とする請求項1記載の方法。2. The method according to claim 1, wherein potassium hydroxide and sodium hydroxide are used as alkali hydroxide and methanol, ethanol and propanol are used as alcohols as decomposition reagents. 0.05乃至0.2gの有機珪素化合物に対して1g以上の水酸化カリウム量及びを0.5ml以上のアルコールと混合し、ホットプレート上で加熱乾固後バーナーを用いて加熱融解することを特徴とする請求項1記載の定量方法。Mixing the amount of potassium hydroxide of 1 g or more and the alcohol of 0.5 ml or more with respect to 0.05 to 0.2 g of the organosilicon compound, heating to dryness on a hot plate, and then heating and melting using a burner. The quantification method according to claim 1, characterized in that: 0.05乃至0.2gの有機珪素化合物に対して1乃至3gの水酸化カリウム量及びを0.5乃至2mlアルコールと混合し、ホットプレート上で加熱乾固後バーナーを用いて加熱融解することを特徴とする請求項5記載の定量方法。Mixing 1 to 3 g of potassium hydroxide and 0.5 to 2 ml of alcohol with respect to 0.05 to 0.2 g of the organic silicon compound, heating to dryness on a hot plate, and then heating and melting using a burner. The method according to claim 5, characterized in that:
JP2002227184A 2002-08-05 2002-08-05 Method for determining the quantity of silicon in organic silicon compound Pending JP2004069413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227184A JP2004069413A (en) 2002-08-05 2002-08-05 Method for determining the quantity of silicon in organic silicon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227184A JP2004069413A (en) 2002-08-05 2002-08-05 Method for determining the quantity of silicon in organic silicon compound

Publications (1)

Publication Number Publication Date
JP2004069413A true JP2004069413A (en) 2004-03-04

Family

ID=32014287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227184A Pending JP2004069413A (en) 2002-08-05 2002-08-05 Method for determining the quantity of silicon in organic silicon compound

Country Status (1)

Country Link
JP (1) JP2004069413A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108156A (en) * 2005-09-14 2007-04-26 Mitsui Chemical Analysis & Consulting Service Inc Method for determining quantity of silicon in organic silicon compound
WO2007097241A1 (en) * 2006-02-22 2007-08-30 Nippon Mining & Metals Co., Ltd. Nickel crucible for melting of analytical sample, method of preparing analytical sample and method of analysis
WO2007138768A1 (en) * 2006-05-26 2007-12-06 Nippon Mining & Metals Co., Ltd. Zirconium crucible for analytical sample melting, method of preparing analytical sample and method of analysis
JP2009041947A (en) * 2007-08-06 2009-02-26 Nikko Kinzoku Kk Nickel crucible
JP2009047543A (en) * 2007-08-20 2009-03-05 Nikko Kinzoku Kk Zirconium crucible
CN102393364A (en) * 2011-08-25 2012-03-28 浙江天能电池(江苏)有限公司 Testing method for iron content of basic sodium silica sol
CN102866042A (en) * 2011-07-05 2013-01-09 内蒙古蒙牛乳业(集团)股份有限公司 Pretreatment method of Acesulfame-K and detection method for potassium in Acesulfame-K
JP2015506477A (en) * 2012-01-11 2015-03-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for determining the sulfur content in fibers
CN111122373A (en) * 2018-10-30 2020-05-08 贝特瑞新材料集团股份有限公司 Method for testing silicon content in nano silicon-based material
CN114384038A (en) * 2021-12-09 2022-04-22 河北硅谷肥业有限公司 Quantitative detection method for organic silicon in organic silicon functional fertilizer

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108156A (en) * 2005-09-14 2007-04-26 Mitsui Chemical Analysis & Consulting Service Inc Method for determining quantity of silicon in organic silicon compound
JP2011107148A (en) * 2006-02-22 2011-06-02 Jx Nippon Mining & Metals Corp Nickel crucible for melting analysis sample, preparation method and analysis method for analysis sample
JPWO2007097241A1 (en) * 2006-02-22 2009-07-09 日鉱金属株式会社 Nickel crucible for melting analytical sample, analytical sample preparation method and analytical method
US7892843B2 (en) 2006-02-22 2011-02-22 Jx Nippon Mining & Metals Corporation Nickel crucible for melting analytical sample, method of preparing analytical sample and method of analysis
WO2007097241A1 (en) * 2006-02-22 2007-08-30 Nippon Mining & Metals Co., Ltd. Nickel crucible for melting of analytical sample, method of preparing analytical sample and method of analysis
JP4919299B2 (en) * 2006-02-22 2012-04-18 Jx日鉱日石金属株式会社 Nickel crucible for melting analytical sample, analytical sample preparation method and analytical method
WO2007138768A1 (en) * 2006-05-26 2007-12-06 Nippon Mining & Metals Co., Ltd. Zirconium crucible for analytical sample melting, method of preparing analytical sample and method of analysis
JPWO2007138768A1 (en) * 2006-05-26 2009-10-01 日鉱金属株式会社 Zirconium crucible for melting analysis sample, method for preparing analysis sample and analysis method
JP2011090010A (en) * 2006-05-26 2011-05-06 Jx Nippon Mining & Metals Corp Zirconium crucible for melting analytical sample, method of preparing analytical sample, and method of analysis
US7927879B2 (en) 2006-05-26 2011-04-19 Jx Nippon Mining & Metals Corporation Zirconium crucible for melting analytical sample, method of preparing analytical sample and method of analysis
JP4968649B2 (en) * 2006-05-26 2012-07-04 Jx日鉱日石金属株式会社 Zirconium crucible for melting analysis sample, method for preparing analysis sample and analysis method
JP2009041947A (en) * 2007-08-06 2009-02-26 Nikko Kinzoku Kk Nickel crucible
JP2009047543A (en) * 2007-08-20 2009-03-05 Nikko Kinzoku Kk Zirconium crucible
US8449845B2 (en) 2007-08-20 2013-05-28 Jx Nippon Mining & Metals Corporation Zirconium crucible
CN102866042A (en) * 2011-07-05 2013-01-09 内蒙古蒙牛乳业(集团)股份有限公司 Pretreatment method of Acesulfame-K and detection method for potassium in Acesulfame-K
CN102393364A (en) * 2011-08-25 2012-03-28 浙江天能电池(江苏)有限公司 Testing method for iron content of basic sodium silica sol
JP2015506477A (en) * 2012-01-11 2015-03-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for determining the sulfur content in fibers
CN111122373A (en) * 2018-10-30 2020-05-08 贝特瑞新材料集团股份有限公司 Method for testing silicon content in nano silicon-based material
CN111122373B (en) * 2018-10-30 2024-01-02 贝特瑞新材料集团股份有限公司 Method for testing silicon content in nano silicon-based material
CN114384038A (en) * 2021-12-09 2022-04-22 河北硅谷肥业有限公司 Quantitative detection method for organic silicon in organic silicon functional fertilizer
CN114384038B (en) * 2021-12-09 2023-09-01 河北硅谷肥业有限公司 Quantitative detection method for organic silicon in organic silicon functional fertilizer

Similar Documents

Publication Publication Date Title
JP2004069413A (en) Method for determining the quantity of silicon in organic silicon compound
CN103837396B (en) The digestion procedure of a kind of crystal glass and the assay method of crystal glass lead content
Zhou et al. Quantitative determination of trace metals in high-purity silicon carbide powder by laser ablation inductively coupled plasma mass spectrometry without binders
CN102393371B (en) Sample processing method for detecting boron in industrial silicon with graphite furnace atomic absorption spectrometry
CN109324036A (en) The method that ICP measures lanthanum, cobalt, strontium, barium, calcium content in permanent-magnet ferrite
Fitzpatrick et al. Fabrication of solid calibration standards by a sol–gel process and use in laser ablation ICPMS
Knapp Decomposition methods in elemental trace analysis
CN114414539B (en) Method for measuring content of bismuth and antimony elements in roasted molybdenum concentrate
Vanhaecke et al. Solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the direct determination of Hg in sludge samples
CN110146490A (en) A method of with micro ruthenium element in ICP-OES measurement drug
CN115753662A (en) Method for detecting element content in transition metal boride
Okamoto Furnace-fusion system for the direct determination of cadmium in biological samples by inductively coupled plasma atomic emission spectrometry using tungsten boat furnace–sample cuvette technique
JP2008082951A (en) Method for quantitatively determining impurity in ruthenium hydroxide
JP2019066249A (en) Sample preparation method for elemental impurity measurement
JPH05273132A (en) Composition analyzing method for ceramic
CN110987907A (en) Method for simultaneously measuring cerium content and lanthanum content in gold alloy by using plasma atomic emission spectrometry
JP3584620B2 (en) Sample preparation method and analysis method
CN111323280A (en) Pretreatment method for determination of silicon element in fluorine-containing injection packaged by medicinal glass
CN111239172A (en) Method for determining phosphorus content in coal
CN109387597A (en) The method for decomposing dioxide-containing silica in potassium fluoride volumetry detection quartz sand using hydrofluoric acid
Gentscheva et al. Slurry sampling electrothermal atomic absorption spectrometric determination of sodium and iron impurities in optical crystals of rubidium titanyl phosphate
CN104897648B (en) Method for measuring gallium in bauxite by inductively coupled plasma emission spectrometry
Hoenig Dry ashing
JP4602070B2 (en) Sample pretreatment method for arsenic analysis by chemical form
Beck et al. Determination of the oxygen content of ceramic materials by Carrier-Gas-Heat-Extraction (CGHE)–feasibility and restrictions of the method