JPH11118556A - Air flow rate-measuring apparatus - Google Patents

Air flow rate-measuring apparatus

Info

Publication number
JPH11118556A
JPH11118556A JP9278676A JP27867697A JPH11118556A JP H11118556 A JPH11118556 A JP H11118556A JP 9278676 A JP9278676 A JP 9278676A JP 27867697 A JP27867697 A JP 27867697A JP H11118556 A JPH11118556 A JP H11118556A
Authority
JP
Japan
Prior art keywords
flow
air
bypass
air flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278676A
Other languages
Japanese (ja)
Inventor
Tomoyuki Takiguchi
智之 滝口
Yasushi Kono
泰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9278676A priority Critical patent/JPH11118556A/en
Publication of JPH11118556A publication Critical patent/JPH11118556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce measurement errors because of installation displacements by generating the flow rate signal of an air path from the output of a flow rate-measuring element set in a bypass passage of the air path and curving an outer wall face of the bypass passage in a flow direction. SOLUTION: A part of the air flowing in a suction pipe 11 is separated and introduced to a bypass passage 18 and a Venturi tube part 16. The air entering the bypass passage 18 joins at the downstream side where a flow of the air of the Venturi tube part 16 becomes fast, and accelerates a bypass flow by the suction force of an outflow opening 22. A temperature difference to the detected temperature of a heat-sensitive element 30 is controlled to be constant by a current of a heat-generating element 29 exposed to the bypass flow. A flow rate of the sucked air is measured from a current value of the heat-generating element 29. At this time, the size relationship of the sectional areas A1, A2, A3 of an upstream path 18a, a bend part 18b, a downstream path 18c of the bypass passage 18 is set to hold A1<A2 and A1<A3. A vena contracta brought about at the lower stream side than the bend part 18b is restricted. Measurement accuracy for the flow rate is improved accordingly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気通路内に配置
されたバイパス流路を流れる空気流量を測定すること
で、空気通路内の空気流量を測定する空気流量測定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow measuring device for measuring an air flow rate in an air passage by measuring an air flow rate flowing through a bypass flow passage arranged in the air passage.

【0002】[0002]

【従来の技術】従来より、この種の空気流量測定装置
は、内燃機関の吸入空気流量を測定するのに用いられて
いる。例えば、内燃機関の吸気管にその中心方向に突出
する流量測定管を組み付け、この流量測定管内の空間を
上部を除いて仕切壁で上流側と下流側とに仕切ること
で、流量測定管内に逆U字状のバイパス流路を形成し、
吸気管内を流れる空気の一部を流量測定管の上流側側面
の流入口からバイパス流路内に流入させ、流量測定管の
下流側側面の流出口から吸気管内に流出させる空気流量
測定装置が知られている。そして、このバイパス流路内
に流量測定素子(発熱素子)と感温素子とを設置し、流
量測定素子に供給する電力と感温素子で検出する温度と
に基づいてバイパス流量ひいては吸入空気流量を測定す
る。このものでは、バイパス流路を逆U字状に形成する
ことで、バイパス流路の全長を長くしてバイパス流路内
の空気の慣性を大きくし、それによって、吸気管内の空
気の流れの脈動によるバイパス流の脈動を低減し、脈動
による流量測定精度低下を防止するようにしている。
2. Description of the Related Art Conventionally, this type of air flow measuring device has been used for measuring the intake air flow rate of an internal combustion engine. For example, a flow measuring pipe protruding in the center direction is assembled to an intake pipe of an internal combustion engine, and a space inside the flow measuring pipe is partitioned into an upstream side and a downstream side by a partition wall except for an upper part, so that the inside of the flow measuring pipe is reversed. Forming a U-shaped bypass flow path,
An air flow measuring device that allows a part of the air flowing in the intake pipe to flow into the bypass flow path from the inlet on the upstream side of the flow measurement pipe and flows out into the intake pipe from the outlet on the downstream side of the flow measurement pipe is known. Have been. Then, a flow rate measuring element (heating element) and a temperature sensing element are installed in the bypass flow path, and the bypass flow rate and, accordingly, the intake air flow rate are determined based on the power supplied to the flow rate measuring element and the temperature detected by the temperature sensing element. Measure. In this device, by forming the bypass flow path in an inverted U-shape, the overall length of the bypass flow path is lengthened to increase the inertia of the air in the bypass flow path, thereby pulsating the air flow in the intake pipe. The pulsation of the bypass flow due to the pulsation is reduced, and the flow measurement accuracy is prevented from lowering due to the pulsation.

【0003】[0003]

【発明が解決しようとする課題】近年、内燃機関の高出
力化に伴う吸気流量測定範囲の拡大やエミッション規制
の強化により低流量領域での測定精度向上が要求されて
きており、それを実現するためには低流量領域でもバイ
パス流の流速を速くする必要がある、しかし、上記の空
気流量測定装置のように、バイパス流路を逆U字状に形
成すると、バイパス流がバイパス流路の曲り部で急激に
180°方向転換されるため、その方向転換の際の流れ
の慣性によって曲り部の直後で強い縮流が生じ、流れの
抵抗が大きくなって、バイパス流の流速が低下する。こ
のため、低流量領域ではバイパス流の流速を十分に確保
できず、流量測定精度が悪くなる。
In recent years, there has been a demand for an improvement in measurement accuracy in a low flow rate region due to the expansion of the intake flow rate measurement range and the tightening of emission regulations accompanying the increase in output of an internal combustion engine. Therefore, it is necessary to increase the flow rate of the bypass flow even in a low flow rate region. However, when the bypass flow path is formed in an inverted U-shape as in the above-described air flow measurement device, the bypass flow is curved. Due to the rapid 180 ° turn at the section, the flow inertia during the turn causes a strong contraction immediately after the bend, increasing the flow resistance and reducing the flow velocity of the bypass flow. For this reason, in the low flow rate region, the flow velocity of the bypass flow cannot be sufficiently secured, and the flow rate measurement accuracy deteriorates.

【0004】この欠点を解消するため、吸気管の中央部
に砲弾形の流量測定部材を配置してこの流量測定部材の
中心部にバイパス流路を形成し、このバイパス流路の流
出口を流量測定部材の外周面に開口する空気流量測定装
置が知られている。この場合、吸気管の流路断面積が流
量測定部材で絞られるため、流量測定部材の外周面に沿
って流れる空気の流速が増大して、バイパス流路の流出
口に吸出し力(負圧)が作用するようになり、それによ
ってバイパス流の流速を速くするようにしている。
In order to solve this drawback, a shell-shaped flow rate measuring member is arranged at the center of the intake pipe, a bypass flow path is formed at the center of the flow rate measuring member, and the outlet of the bypass flow path is connected to the flow rate outlet. 2. Description of the Related Art There is known an air flow measuring device that opens on an outer peripheral surface of a measuring member. In this case, since the flow path cross-sectional area of the intake pipe is narrowed by the flow rate measuring member, the flow velocity of the air flowing along the outer peripheral surface of the flow rate measuring member increases, and the suction force (negative pressure) is applied to the outlet of the bypass flow path. In order to increase the flow rate of the bypass flow.

【0005】しかしながら、上記の空気流量測定装置で
は、バイパス流路の流出口に作用する吸出し力を大きく
するため、流量測定部材の外径を大きくして吸気管の流
路断面積を絞るようにしている。このため、吸気管の通
気抵抗が大きくなり、吸気効率が低下する。そこで、特
開平8−327422号公報に開示される空気流量測定
装置では、回路部とバイパス流路部とを一体のモジュー
ルとし、回路部とバイパス流路部とを連結する支持部を
バイパス流路の入口面よりも吸気管内の空気流により発
生する動圧が小さくなる形状とすることで吸気管の通気
抵抗を小さくし、吸気効率を向上させている。具体的に
は、支持部の空気流れ方向に対して垂直方向となる横幅
をバイパス流路の入口部分を構成する部分の横幅よりも
小さくするか、あるいは支持部の形状を円筒形または空
気流れ方向に従った流線形としている。
However, in the above-mentioned air flow measuring device, in order to increase the suction force acting on the outlet of the bypass flow passage, the outer diameter of the flow measuring member is increased to narrow the flow passage cross-sectional area of the intake pipe. ing. For this reason, the ventilation resistance of the intake pipe increases, and the intake efficiency decreases. Therefore, in the air flow measuring device disclosed in Japanese Patent Application Laid-Open No. 8-327422, the circuit section and the bypass flow path section are formed as an integrated module, and the support section connecting the circuit section and the bypass flow path section is provided with a bypass flow path section. The shape is such that the dynamic pressure generated by the air flow in the intake pipe is smaller than that of the inlet face, thereby reducing the ventilation resistance of the intake pipe and improving the intake efficiency. Specifically, the width of the support portion in the direction perpendicular to the air flow direction is made smaller than the width of the portion forming the inlet portion of the bypass flow passage, or the shape of the support portion is cylindrical or in the air flow direction. Streamlined according to

【0006】しかしながら、特開平8−327422号
公報に開示される空気流量測定装置では、バイパス流路
を構成するバイパス流路部の側面が平面形状であるた
め、モジュールを吸気管に取付けたときのモジュール回
転方向に対する取付角度のばらつきによる計測誤差が大
きいという問題があった。本発明は、このような問題を
解決するためになされたものであり、取付けずれによる
計測誤差を低減することができる空気流量測定装置を提
供することを目的とする。
However, in the air flow measuring device disclosed in Japanese Patent Application Laid-Open No. 8-327422, since the side surface of the bypass flow path constituting the bypass flow path has a planar shape, the air flow measurement device when the module is mounted on the intake pipe is not provided. There is a problem that a measurement error due to a variation in the mounting angle with respect to the module rotation direction is large. The present invention has been made in order to solve such a problem, and an object of the present invention is to provide an air flow measuring device capable of reducing a measurement error due to a mounting displacement.

【0007】本発明の他の目的は、通気抵抗を増加させ
ずにバイパス流を高速化でき、出力変動を抑えることの
できる空気流量測定装置を提供することにある。
Another object of the present invention is to provide an air flow measuring device capable of increasing the speed of a bypass flow without increasing airflow resistance and suppressing output fluctuation.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1記載の
空気流量測定装置によると、空気通路内に設けられ、こ
の空気通路を流れる空気の一部を流入させるバイパス流
路を構成するバイパス流路部の少なくとも空気通路の空
気流れ方向の外壁面に設けられる曲面部を備える。この
ため、空気通路内のバイパス流路部近傍の空気流れの剥
離を抑制し、空気流れを滑らかにすることができる。し
たがって、バイパス流路部と回路部とからなるモジュー
ルを空気通路内に設置するときのモジュール回転方向に
対する取付角度のばらつきによる計測誤差を低減するこ
とができる。
According to the air flow measuring device of the first aspect of the present invention, a bypass is provided in an air passage and forms a bypass flow passage through which a part of air flowing through the air passage flows. A curved surface portion is provided on at least the outer wall surface of the air passage in the air flow direction of the air passage. For this reason, separation of the air flow near the bypass passage in the air passage can be suppressed, and the air flow can be smoothed. Therefore, it is possible to reduce a measurement error due to a variation in the mounting angle with respect to the module rotation direction when the module including the bypass flow path and the circuit is installed in the air passage.

【0009】さらに、空気通路内のバイパス流路部近傍
の空気流れの剥離を抑制することにより、空気通路内の
圧力損失を低減することができる。さらにまた、空気通
路内のバイパス流路部近傍の空気流れを滑らかにするこ
とにより、バイパス流が安定するので、出力変動を抑え
ることができる。本発明の請求項2記載の空気流量測定
装置によると、曲面部は、空気流れ方向の外壁面からバ
イパス流路部の空気通路の空気流れと垂直方向の入口側
ならびに出口側外壁面にかけて設けられるので、取付け
ずれによる計測誤差をさらに低減することができ、空気
通路内の圧力損失をさらに低減し、出力変動をさらに抑
えることができる。
Further, by suppressing separation of the air flow near the bypass passage in the air passage, the pressure loss in the air passage can be reduced. Furthermore, since the bypass flow is stabilized by smoothing the air flow near the bypass passage in the air passage, output fluctuations can be suppressed. According to the air flow measuring device according to the second aspect of the present invention, the curved surface portion is provided from the outer wall surface in the air flow direction to the outer wall surface on the inlet side and the outlet side in the direction perpendicular to the air flow in the air passage of the bypass flow passage portion. Therefore, the measurement error due to the mounting displacement can be further reduced, the pressure loss in the air passage can be further reduced, and the output fluctuation can be further suppressed.

【0010】本発明の請求項3記載の空気流量測定装置
によると、空気流れ方向の外壁面の最も外部に位置する
最外部と、空気流れ方向の外壁面の最も内部に位置する
最内部との空気通路の空気流れと垂直方向の距離は所定
の範囲にあるので、取付けずれによる計測誤差を確実に
低減することができ、空気通路内の圧力損失を確実に低
減し、出力変動を確実に抑えることができる。
According to the air flow measuring device of the third aspect of the present invention, the outermost outermost wall of the outer wall in the air flow direction and the innermost innermost wall of the outer wall in the airflow direction are separated. Since the vertical distance between the air flow and the air flow in the air passage is within a predetermined range, measurement errors due to misalignment can be reliably reduced, pressure loss in the air passage is reliably reduced, and output fluctuation is reliably suppressed. be able to.

【0011】本発明の請求項4記載の空気流量測定装置
によると、バイパス流路を隣接する平行な2本の流路を
曲り部でつないだ逆U字状の流路に形成することで、バ
イパス流路の全長を長くして空気通路内の空気の流れの
脈動によるバイパス流の脈動を低減することができる。
さらに、バイパス流路の曲り部および下流側流路を曲り
部より下流側で生じる縮流を抑制する形状に形成するこ
とで、縮流による流速低下を防ぎ、低流量領域でもバイ
パス流の流速を確保して流量測定精度を向上させること
ができる。
According to the air flow measuring device of the present invention, the bypass flow path is formed into an inverted U-shaped flow path in which two adjacent parallel flow paths are connected by a bent portion. By increasing the total length of the bypass passage, pulsation of the bypass flow due to pulsation of the air flow in the air passage can be reduced.
Furthermore, by forming the curved portion of the bypass flow passage and the downstream flow passage in a shape that suppresses the contraction flow that occurs downstream of the bend portion, the flow velocity is prevented from decreasing due to the contraction flow, and the flow velocity of the bypass flow is reduced even in a low flow rate region. As a result, the flow measurement accuracy can be improved.

【0012】この場合、曲り部と下流側流路との境界付
近の流路断面積を上流側流路の流路断面積よりも大きく
し、かつその流路断面積を緩やかに変化させてもよい。
これにより、曲り部より下流側で生じる縮流が効果的に
抑制される。また、バイパス流路の下流側流路全体の流
路断面積を上流側流路の流路断面積よりも大きくしても
よい。つまり、縮流は下流側流路で発生するため、下流
側流路全体の流路断面積を大きくしても縮流を抑制する
効果が得られる。
In this case, even if the cross-sectional area of the flow path near the boundary between the bent portion and the downstream flow path is made larger than the cross-sectional area of the upstream flow path, and the cross-sectional area of the flow path is gradually changed. Good.
This effectively suppresses the contraction that occurs downstream of the bend. Also, the flow path cross-sectional area of the entire downstream flow path of the bypass flow path may be larger than the flow path cross-sectional area of the upstream flow path. In other words, since the contraction occurs in the downstream flow path, the effect of suppressing the contraction can be obtained even if the flow path cross-sectional area of the entire downstream flow path is increased.

【0013】あるいは、バイパス流路の曲り部の流路断
面積を上流側流路の流路断面積よりも大きくしてもよ
い。このように、曲り部の流路断面積を大きくすると、
曲り部内の流れの方向転換が緩やかになり、曲り部直後
で流れの慣性によって発生する縮流が少なくなる。ま
た、流量測定素子をバイパス流路の流路断面積が小さい
場所に設置することが好ましい。つまり、バイパス流路
の流路断面積が小さい場所は、バイパス流の流速が速く
なり、安定した流量測定が可能となる。
Alternatively, the cross-sectional area of the bent portion of the bypass flow path may be larger than the cross-sectional area of the upstream flow path. As described above, when the flow path cross-sectional area of the bent portion is increased,
The direction change of the flow in the bend becomes gentle, and the contraction generated by the inertia of the flow immediately after the bend is reduced. Further, it is preferable that the flow rate measuring element is installed in a place where the cross-sectional area of the bypass flow path is small. That is, in a place where the cross-sectional area of the bypass flow passage is small, the flow velocity of the bypass flow is increased, and stable flow measurement can be performed.

【0014】また、流量測定素子をバイパス流路の上流
側流路に設置してもよい。上流側流路は、他の部分と比
較してバイパス流の流速が速くかつ安定しているため、
上流側流路に流量測定素子を設置すると、安定した流量
測定が可能となる。
[0014] Further, the flow rate measuring element may be provided in the upstream flow path of the bypass flow path. Because the flow rate of the bypass flow is faster and more stable in the upstream flow path compared to other parts,
If a flow measurement element is installed in the upstream flow path, stable flow measurement can be performed.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を示す
実施例を図面に基づいて説明する。本発明の一実施例に
よる空気流量測定装置を図1〜図5に示す。図2および
図3に示すように、内燃機関の空気通路としての吸気管
11の所定位置に形成された取付穴12に空気流量測定
装置のモジュール13がプラグイン方式で組み付けられ
ている。このモジュール13は、回路部としての回路モ
ジュール14とバイパス流路部としての流量測定体15
とからなる。流量測定体15は、全体として取付穴12
から吸気管11の中心軸C付近まで延びる筒状に形成さ
れている。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 show an air flow measuring device according to an embodiment of the present invention. As shown in FIGS. 2 and 3, a module 13 of the air flow measuring device is assembled in a mounting hole 12 formed at a predetermined position of an intake pipe 11 as an air passage of the internal combustion engine by a plug-in method. The module 13 includes a circuit module 14 as a circuit section and a flow rate measuring body 15 as a bypass flow path section.
Consists of The flow rate measuring body 15 is attached to the mounting hole 12 as a whole.
, And is formed in a cylindrical shape extending to near the central axis C of the intake pipe 11.

【0016】図1に示すように、流量測定体15は、吸
気管11内の空気流れ方向の外壁面150と、吸気管1
1内の空気流れと垂直方向の入口側の外壁面156と、
吸気管11内の空気流れと垂直方向の出口側の外壁面1
55とを備えている。外壁面150、155および15
6は、それぞれ凸状の曲面形状に形成されている。外壁
面150は、流量測定体15の軸方向全域に設けられ、
この軸方向全域に曲面形状が形成されている。外壁面1
56は、流量測定体15の後述するフランジ部20から
後述する流入口19まで設けられており、外壁面156
の軸方向全域に曲面形状が形成されている。外壁面15
5は、流量測定体15のフランジ部20から後述する流
出口22まで設けられており、外壁面155の軸方向全
域に曲面形状が形成されている。さらに、外壁面150
と外壁面156との接続部151は凸状の曲面形状に形
成されており、外壁面150と外壁面155との接続部
153も凸状の曲面形状に形成されている。外壁面15
0、155および156と、接続部151および153
とは、曲面部を構成している。外壁面150には、吸気
管11内の空気流れ方向の略中央部に外壁面150上で
最も外部に位置する最外部152が設けられている。最
外部152は、外壁面150上で、接続部151ならび
に153と吸気管11内の空気流れと垂直方向に最も距
離が離れている。接続部151ならびに153は、外壁
面150上で最も内部に位置する最内部を構成してい
る。
As shown in FIG. 1, the flow rate measuring body 15 has an outer wall surface 150 in the air flow direction in the intake pipe 11 and an intake pipe 1.
1, an outer wall surface 156 on the inlet side in the vertical direction with respect to the air flow in
Outer wall surface 1 on the outlet side in the vertical direction with respect to the air flow in intake pipe 11
55. Outer walls 150, 155 and 15
6 are each formed in a convex curved shape. The outer wall surface 150 is provided in the entire axial direction of the flow measurement body 15,
A curved surface shape is formed in the entire area in the axial direction. Outer wall 1
56 is provided from a flange portion 20 to be described later of the flow rate measuring body 15 to an inflow port 19 to be described later.
Are formed in the entire area in the axial direction. Outer wall 15
Numeral 5 is provided from a flange portion 20 of the flow rate measuring body 15 to an outlet 22 to be described later, and a curved surface shape is formed on the entire outer wall surface 155 in the axial direction. Furthermore, the outer wall 150
A connecting portion 151 between the outer wall surface 156 and the outer wall surface 156 is formed in a convex curved shape, and a connecting portion 153 between the outer wall surface 150 and the outer wall surface 155 is also formed in a convex curved surface shape. Outer wall 15
0, 155 and 156, and connecting parts 151 and 153
And constitute a curved surface portion. The outer wall surface 150 is provided with an outermost portion 152 located at the outermost position on the outer wall surface 150 at a substantially central portion in the air flow direction in the intake pipe 11. The outermost portion 152 is farthest away from the connection portions 151 and 153 on the outer wall surface 150 in a direction perpendicular to the airflow in the intake pipe 11. The connection parts 151 and 153 constitute the innermost part located on the outermost part on the outer wall surface 150.

【0017】図2および図3に示すように、流量測定体
15は、吸気管11の後方向に沿って延在する2本の管
を吸気管11の空気流れ方向に沿って並べて接合壁17
で接合することで、隣接する平行な2本の流路18a、
18cを曲り部18bでつないだ逆U字状のバイパス流
路18を形成している。このバイパス流路18の上流側
流路18aの流路断面積A1と曲り部18bの流路断面
積A2と下流側流路18cの流路断面積A3の大小関係
を、A1<A2かつA1<A3と設定することで曲り部
18bより下流側で生じる縮流を抑制するようにしてい
る。
As shown in FIGS. 2 and 3, the flow measuring body 15 is configured such that two pipes extending along the rear direction of the intake pipe 11 are arranged side by side along the air flow direction of the intake pipe 11, and the joining wall 17 is provided.
The two parallel flow paths 18a adjacent to each other
An inverted U-shaped bypass flow path 18 is formed by connecting the bent portions 18c with the bent portions 18b. The relationship between the cross-sectional area A1 of the upstream flow path 18a, the cross-sectional area A2 of the bent portion 18b, and the cross-sectional area A3 of the downstream flow path 18c of the bypass flow path 18 is represented by A1 <A2 and A1 < By setting A3, the contraction generated downstream of the bent portion 18b is suppressed.

【0018】この流量測定体15の上流側側面には、吸
気管11内を流れる空気(主流)の一部をバイパス流路
18内に流入させる流入口19が吸気管11の中心軸C
に隣接するように形成されている。また、流量測定体1
5の上端外周部にはフランジ部20が形成され、このフ
ランジ部20が取付穴12の周縁部上面に係止(抜止
め)されるようになっている。
An inflow port 19 through which a part of the air (main flow) flowing in the intake pipe 11 flows into the bypass flow path 18 is provided on the upstream side surface of the flow measurement body 15.
Is formed to be adjacent to. In addition, the flow measurement body 1
A flange portion 20 is formed on the outer peripheral portion of the upper end of 5, and this flange portion 20 is locked (stopped) on the upper surface of the peripheral portion of the mounting hole 12.

【0019】一方、流量測定体15の下端にはベンチュ
リ管部16が主流方向に平行に一体成形され、このベン
チュリ管部16の流入口21とバイパス流路18の流入
口19とが互いに吸気管11の中心軸Cを挟んで近接し
ている。ベンチュリ管部16の下流側周壁には、バイパ
ス流路18の流出口22が形成され、ベンチュリ管部1
6の下流側すなわち喉部の近傍でバイパス流路18の流
れ(バイパス流)がベンチュリ管部16内の流れ(ベン
チュリ流)と合流するようになっている。
On the other hand, a venturi tube 16 is integrally formed at the lower end of the flow measuring body 15 in parallel with the main flow direction, and the inlet 21 of the venturi tube 16 and the inlet 19 of the bypass passage 18 are connected to each other by the intake pipe. 11 are close to each other with the central axis C interposed therebetween. An outlet 22 of the bypass flow path 18 is formed on the downstream peripheral wall of the Venturi tube 16, and the Venturi tube 1
The flow (bypass flow) of the bypass flow path 18 is merged with the flow (Venturi flow) in the Venturi pipe part 16 on the downstream side of 6, ie, near the throat.

【0020】さらに、ベンチュリ管部16の下流側周壁
には、バイパス流路18からのバイパス流が合流する部
分にベンチュリ管部16の流路断面積を拡大する流路拡
大部23が周方向に延在するように形成されている。そ
して、この流路拡大部23の上流側端面を斜面状に形成
することで、バイパス流をベンチュリ管都16の下流側
に向けてガイドするガイド部24がバイパス流路18の
流出口22に形成されている。
Further, on the downstream side peripheral wall of the Venturi tube section 16, a flow path enlarging section 23 for enlarging the flow path cross-sectional area of the Venturi tube section 16 at a portion where the bypass flow from the bypass flow path 18 joins is provided in the circumferential direction. It is formed to extend. By forming the upstream end face of the enlarged flow path portion 23 into a slope shape, a guide portion 24 for guiding the bypass flow toward the downstream side of the venturi tube 16 is formed at the outlet 22 of the bypass flow passage 18. Have been.

【0021】ベンチュリ管部16は、外径が下流側ほど
大きくなるように形成され、ベンチュリ管部16の外周
面と吸気管11の内周面との間の空気流路がベンチュリ
管部16の下流側ほど狭くなっている。これにより、吸
気管11内の空気流がベンチュリ管部16の下流側ほど
速くなり、その主流によってベンチュリ管部16の流出
口に作用する吸出し力が大きくなり、ベンチュリ管部1
6内の空気の流速が速くなる。
The venturi pipe portion 16 is formed so that the outer diameter increases toward the downstream side, and the air flow path between the outer peripheral surface of the venturi pipe portion 16 and the inner peripheral surface of the intake pipe 11 It becomes narrower on the downstream side. As a result, the airflow in the intake pipe 11 becomes faster toward the downstream side of the Venturi pipe 16, and the main flow increases the suction force acting on the outlet of the Venturi pipe 16, so that the Venturi pipe 1
The flow velocity of the air in 6 increases.

【0022】一方、流量測定体15の上端開口部は、回
路モジュール14で閉鎖されている。この回路モジュー
ル14の下面には、流量測定素子としての発熱素子29
と感温素子30とがそれぞれ支持部材31、32によっ
て所定間隔で組み付けられ、これら発熱素子29と感温
素子30とがバイパス流路18のうちの上流側流路18
aに設置されている。ここで、発熱素子29を上流側流
路18aに設置する理由は、バイパス流路18のうち上
流側流路18aの流路断面積A1が最も小さく、上流側
流路18aでバイパス流の流速が最も速くなるためであ
り、流量測定精度はバイパス流の流速が速い方が向上す
るためである。また、感温素子30は、発熱素子29に
触れる空気の温度を測定するため、発熱素子29の放熱
の影響を受けない範囲で発熱素子29の近くに設置する
ことが好ましい。
On the other hand, the upper end opening of the flow measuring body 15 is closed by the circuit module 14. On the lower surface of the circuit module 14, a heating element 29 as a flow rate measuring element is provided.
The heating element 29 and the temperature sensing element 30 are assembled at predetermined intervals by supporting members 31 and 32, respectively.
a. Here, the reason why the heating element 29 is installed in the upstream flow path 18a is that the flow path cross-sectional area A1 of the upstream flow path 18a in the bypass flow path 18 is the smallest, and the flow velocity of the bypass flow in the upstream flow path 18a is small. This is because the flow rate is the highest, and the flow rate measurement accuracy is improved when the flow velocity of the bypass flow is high. In addition, the temperature sensing element 30 is preferably installed near the heating element 29 within a range that is not affected by the heat radiation of the heating element 29 in order to measure the temperature of the air touching the heating element 29.

【0023】回路モジュール14の内部には、発熱素子
29と感温素子30への通電を制御する回路基板33が
設けられ、回路モジュール14の側部には、図示しない
ワイヤハーネスを接続するためのコネクタ34がインサ
ート成形されている。また、回路モジュール14の下面
側には、吸気温センサ35が下方に突出するようにイン
サート成形され、この吸気温センサ35が流量測定体1
5の側方に位置して吸気管11内を流れる空気の温度
(吸気温度)を検出する。
Inside the circuit module 14, there is provided a circuit board 33 for controlling the energization of the heating element 29 and the temperature sensing element 30, and a side portion of the circuit module 14 for connecting a wire harness (not shown). The connector 34 is insert-molded. An intake air temperature sensor 35 is insert-molded on the lower surface side of the circuit module 14 so as to protrude downward.
5, the temperature of the air flowing through the intake pipe 11 (intake temperature) is detected.

【0024】なお、流量測定体15の上端のフランジ部
20は回路モジュール14の下面の嵌合凸部36に融着
または接着等により接合され、嵌合凸部36の外周に装
着したOリング37によって取付穴12の内局部がシー
ルされている。そして、回路モジュール14の側部に形
成した固定片部38のネジ挿通孔にネジ39を挿通して
吸気管11に形成した取付フランジ40のネジ孔に締め
込むことで、空気流量測定装置13をプラグイン方式で
吸気管11の取付穴12に組み付けている。
The flange portion 20 at the upper end of the flow measurement body 15 is joined to the fitting protrusion 36 on the lower surface of the circuit module 14 by fusion or adhesion or the like, and an O-ring 37 attached to the outer periphery of the fitting protrusion 36 is provided. This seals the inner part of the mounting hole 12. Then, the screw 39 is inserted into the screw insertion hole of the fixing piece 38 formed on the side of the circuit module 14 and screwed into the screw hole of the mounting flange 40 formed on the intake pipe 11, so that the air flow measuring device 13 is used. It is assembled to the mounting hole 12 of the intake pipe 11 by a plug-in method.

【0025】以上のように構成した空気流量測定装置1
3では、吸気管11内を流れる空気の一部がバイパス流
路18とベンチュリ管部16に分かれて流入する。バイ
パス流路18に流入した空気(バイパス流)は、ベンチ
ュリ管都16のうちの空気の流速が速くなる下流側で、
ベンチュリ管部16内の空気の流れ(ベンチュリ流)と
合流する。この合流部では、ベンチュリ流によってバイ
パス流路18の流出口22に吸出し力が作用し、バイパ
ス流の流速を速くする。そして、このバイパス流に晒さ
れる発熱素子29に供給する電力と感温素子30で検出
する温度とに基づいてバイパス流量ひいては吸入空気流
量を測定する。つまり、発熱素子29の電流(発熱温
度)を感温素子30の検出温度(吸気温度)との温度差
が一定となるように制御し、そのときの発熱素子29の
電流値によって吸入空気流量を測定する。
The air flow measuring device 1 configured as described above
In 3, a part of the air flowing in the intake pipe 11 flows into the bypass flow path 18 and the venturi pipe section 16 separately. The air (bypass flow) that has flowed into the bypass flow path 18 is located on the downstream side of the venturi tube 16 where the flow velocity of the air is high,
It merges with the air flow (Venturi flow) in the Venturi tube section 16. At this junction, a suction force acts on the outlet 22 of the bypass passage 18 by the Venturi flow, thereby increasing the flow velocity of the bypass flow. Then, the bypass flow rate and thus the intake air flow rate are measured based on the power supplied to the heating element 29 exposed to the bypass flow and the temperature detected by the temperature sensing element 30. That is, the current (heating temperature) of the heating element 29 is controlled so that the temperature difference from the detected temperature (intake temperature) of the temperature-sensitive element 30 becomes constant. Measure.

【0026】この場合、流量測定精度を向上させるに
は、発熱素子29に触れるバイパス流の流速を速くする
必要がある。バイパス流路18は逆U字形に形成されて
いるため、バイパス流が曲り部18bで方向転換される
ときの流れの慣性によって曲り部18bの直後で縮流が
発生することは避けられないが、この縮流が強くなる
と、流れの抵抗が大きくなって、バイパス流の流速が低
下する。
In this case, it is necessary to increase the flow velocity of the bypass flow touching the heating element 29 in order to improve the flow measurement accuracy. Since the bypass flow path 18 is formed in an inverted U-shape, it is unavoidable that contraction occurs immediately after the bent portion 18b due to the inertia of the flow when the bypass flow is changed in direction at the bent portion 18b. When the contraction becomes strong, the flow resistance increases, and the flow velocity of the bypass flow decreases.

【0027】そこで、本実施例では、バイパス流路18
の上流側流路18aの流路断面積A1と曲り都18bの
流路断面積A2と下流側流路18cの流路断面積A3と
の大小関係を、Al<A2かつA1<A3と設定するこ
とで、曲り部18bより下流側で生じる縮流を抑制す
る。つまり、上流側流路18aの流路断面積A1と比較
して曲り部18bと下流側流路18cの流路断面積A
2、A3を大きくすると、上流側流路18aから曲り部
18bを経由して下流側流路18cに流れるときの方向
転換が緩やかになり、曲り部18b直後で流れの慣性に
よって発生する縮流が少なくなると共に、曲り部18b
や下流側流路18cの内壁面と空気との摩擦による圧力
損失も流路断面積の拡大によって小さくなり、曲り部1
8bから下流側流路18cを経由して流出口22への流
れがスムーズになり、発熱素子29に触れるバイパス流
の流速が従来よりも速くなる。また、バイパス流路18
を逆U字状に形成することで、バイバス流路18の全長
が長くなり、吸気管11内の空気の流れの脈動によるバ
イパス流の脈動を低減でき、バイパス流の高速化と相侯
って、流量測定精度を向上させることができる。
Therefore, in this embodiment, the bypass passage 18
The relationship between the cross-sectional area A1 of the upstream flow path 18a, the cross-sectional area A2 of the curved path 18b, and the cross-sectional area A3 of the downstream flow path 18c is set as Al <A2 and A1 <A3. This suppresses the contraction that occurs downstream of the bent portion 18b. That is, as compared with the cross-sectional area A1 of the upstream flow path 18a, the cross-sectional area A of the bent portion 18b and the downstream flow path 18c is compared.
2. When A3 is increased, the direction change when flowing from the upstream flow path 18a to the downstream flow path 18c via the curved portion 18b becomes gentle, and the contraction generated by the inertia of the flow immediately after the curved portion 18b causes Bends 18b
And the pressure loss due to the friction between the inner wall surface of the downstream flow passage 18c and the air are also reduced by the increase in the cross-sectional area of the flow passage.
The flow from 8b to the outlet 22 via the downstream flow path 18c becomes smoother, and the flow velocity of the bypass flow touching the heating element 29 becomes higher than before. In addition, the bypass passage 18
Is formed in an inverted U-shape, the overall length of the bypass flow path 18 is increased, the pulsation of the bypass flow due to the pulsation of the air flow in the intake pipe 11 can be reduced, and the speed of the bypass flow is increased. In addition, the flow measurement accuracy can be improved.

【0028】次に、図4に示すように、最外部152
と、接続部151ならびに153との吸気管11内の空
気流れと垂直方向の距離をLとし、このL寸法と、発熱
素子29の出力変動幅、および吸気管11内の空気流量
測定装置のモジュール13による圧力損失との関係を図
5に示す。また図6には、L寸法をゼロとし、吸気管1
1内の空気流れ方向の外壁面159を平面とした流量測
定体115を備えた空気流量測定装置のモジュール13
0を比較例として示す。本実施例と実質的に同一なその
他の構成部分に同一符号を付す。
Next, as shown in FIG.
The distance between the air flow in the intake pipe 11 and the vertical direction to the connection parts 151 and 153 is represented by L, and the L dimension, the output fluctuation width of the heating element 29, and the module of the air flow measuring device in the intake pipe 11 FIG. 5 shows the relationship between the pressure loss and the pressure loss due to the pressure loss. FIG. 6 shows that the L dimension is zero and the intake pipe 1
1 is a module 13 of an air flow measurement device provided with a flow measurement body 115 having an outer wall surface 159 in the air flow direction in the inside 1 as a plane.
0 is shown as a comparative example. Other components that are substantially the same as those in this embodiment are denoted by the same reference numerals.

【0029】図6に示す比較例では、外壁面159が平
面であるので、吸気管11内の流量測定体115近傍の
空気流れに剥離が発生し、空気流れが乱れる。このた
め、図5に示すように、吸気管11内の圧力損失は比較
的大きくなる。さらに、吸気管11内の流量測定体11
5近傍の空気流れが乱れることにより、流量測定体11
5内のバイパス流が不安定となり、図5に示すように、
発熱素子29の出力の変動幅が比較的大きくなる。さら
にまた、モジュール130を吸気管11内に設置すると
きのモジュール130の回転方向に対する取付角度のば
らつきによる計測誤差が比較的大きくなる。
In the comparative example shown in FIG. 6, since the outer wall surface 159 is flat, the air flow near the flow rate measuring body 115 in the intake pipe 11 is separated, and the air flow is disturbed. For this reason, as shown in FIG. 5, the pressure loss in the intake pipe 11 becomes relatively large. Furthermore, the flow rate measuring body 11 in the intake pipe 11
5 is disturbed, the flow measurement body 11
5, the bypass flow becomes unstable, and as shown in FIG.
The fluctuation range of the output of the heating element 29 is relatively large. Furthermore, when the module 130 is installed in the intake pipe 11, a measurement error due to a variation in the mounting angle with respect to the rotation direction of the module 130 becomes relatively large.

【0030】一方本実施例では、外壁面150および接
続部151、153を曲面形状とし、図5の点線で示す
ように、L寸法を1mmから3mmの所定の範囲とする
ことにより、吸気管11内の流量測定体15近傍の空気
流れの剥離を抑制し、空気流れを滑らかにすることがで
きる。したがって、モジュール13を吸気管11内に設
置するときのモジュール13の回転方向に対する取付角
度のばらつきによる計測誤差を低減することができる。
さらに、吸気管11内の流量測定体15近傍の空気流れ
の剥離を抑制することにより、図5に示すように、吸気
管11内の圧力損失を低減することができる。したがっ
て、内燃機関の出力の向上を図ることができる。さらに
また、吸気管11内の流量測定体15近傍の空気流れを
滑らかにすることにより、流量測定体15内のバイパス
流路18のバイパス流が安定するので、図5に示すよう
に、発熱素子29の出力の変動を抑えることができる。
On the other hand, in the present embodiment, the outer wall surface 150 and the connecting portions 151 and 153 are formed into a curved shape, and the L dimension is set to a predetermined range of 1 mm to 3 mm as shown by a dotted line in FIG. The separation of the air flow near the flow measurement body 15 in the inside can be suppressed, and the air flow can be smoothed. Therefore, it is possible to reduce a measurement error due to a variation in the mounting angle with respect to the rotation direction of the module 13 when the module 13 is installed in the intake pipe 11.
Further, by suppressing the separation of the air flow near the flow measurement body 15 in the intake pipe 11, the pressure loss in the intake pipe 11 can be reduced as shown in FIG. Therefore, the output of the internal combustion engine can be improved. Further, by smoothing the air flow near the flow measurement body 15 in the intake pipe 11, the bypass flow in the bypass flow path 18 in the flow measurement body 15 is stabilized, and as shown in FIG. 29 can be suppressed from varying.

【0031】以上説明した本発明の一実施例では、流量
測定体15の下端にベンチュリ管部16を形成し、バイ
パス流路18の流出口22をベンチュリ管部16の下流
側周壁に開口させているので、ベンチュリ管部16内を
流れる高速の空気流によってバイパス流路18の流出口
22に効率良く吸出し力を作用させることができ、これ
によってもバイパス流の流速を速くすることができる。
In the embodiment of the present invention described above, the venturi tube 16 is formed at the lower end of the flow measuring body 15, and the outlet 22 of the bypass flow path 18 is opened to the downstream peripheral wall of the venturi tube 16. As a result, the suction force can be efficiently applied to the outlet 22 of the bypass flow channel 18 by the high-speed air flow flowing in the venturi tube section 16, and the flow velocity of the bypass flow can also be increased.

【0032】なお、バイパス流路18の流出口22に吸
出し力を作用させる手段は、ベンチュリ管部16に限定
されず、種々の構造が考えられる。したがって本発明で
は、ベンチュリ管部を用いずにバイパス流路の流出口に
吸出し力を作用させてもよい。本実施例では、バイパス
流路18のうち上流側流路18aが流路断面積が最も小
さく、バイパス流の流速が最も速くなることを考慮し
て、上流側流路18aに発熱素子29を設置して流量測
定精度を向上させるようにしている。しかし、発熱素子
29の設置場所は上流側流路18aに限定されず、下流
側流路18cに流路断面積が小さく、流速が速い場所が
あれば、そこに発熱素子29を設置するようにしてもよ
い。
The means for applying a suction force to the outlet 22 of the bypass passage 18 is not limited to the venturi tube section 16, and various structures can be considered. Therefore, according to the present invention, the suction force may be applied to the outlet of the bypass flow path without using the venturi tube. In the present embodiment, the heating element 29 is installed in the upstream flow path 18a in consideration of the fact that the upstream flow path 18a has the smallest flow passage cross-sectional area and the bypass flow velocity is the fastest among the bypass flow paths 18. To improve the flow measurement accuracy. However, the location of the heating element 29 is not limited to the upstream channel 18a. If there is a location where the downstream channel 18c has a small channel cross-sectional area and a high flow velocity, the heating element 29 is installed there. You may.

【0033】なお本実施例では、モジュール13は、プ
ラグイン方式による組付けを行うことができるため、モ
ジュール13の組付箇所は、吸気管11に限らず、エア
クリーナ、スロットルボディ等、吸気通路の一部を構成
する他の部材でも所定寸法の取付穴を形成すれば、モジ
ュール13を極めて簡単に組み付けることができ、モジ
ュール13の共通化ならびにコストダウンが可能とな
る。
In the present embodiment, since the module 13 can be assembled by the plug-in method, the place where the module 13 is assembled is not limited to the intake pipe 11, but may be an air cleaner, a throttle body or the like. If a mounting hole of a predetermined size is formed in another member constituting a part, the module 13 can be assembled very easily, and the module 13 can be shared and the cost can be reduced.

【0034】また本発明は、内燃機関の吸入空気量を測
定する装置に限定されず、種々の空気通路を流れる空気
流量を測定する装置として利用できる。
The present invention is not limited to a device for measuring an intake air amount of an internal combustion engine, but can be used as a device for measuring a flow rate of air flowing through various air passages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による空気流量測定装置のモ
ジュールを示す図であって、(A)は(B)のA−A線
断面図であり、(B)は正面図である。
1A and 1B are diagrams showing a module of an air flow measuring device according to an embodiment of the present invention, wherein FIG. 1A is a sectional view taken along line AA of FIG. 1B, and FIG. 1B is a front view.

【図2】本発明の一実施例による空気流量測定装置の組
付状態を示す縦断左側面図である。
FIG. 2 is a longitudinal left side view showing an assembled state of the air flow measuring device according to one embodiment of the present invention.

【図3】本発明の一実施例による空気流量測定装置の組
付状態を示す縦断正面図である。
FIG. 3 is a vertical sectional front view showing an assembled state of the air flow measuring device according to one embodiment of the present invention.

【図4】図1(A)の拡大図である。FIG. 4 is an enlarged view of FIG.

【図5】流量測定体の側面部の曲面のL寸法と、発熱素
子の出力変動幅、および吸気管内の空気流量測定装置に
よる圧力損失との関係を示すデータ図である。
FIG. 5 is a data diagram showing a relationship between an L dimension of a curved surface of a side surface portion of the flow measurement body, an output fluctuation width of a heating element, and a pressure loss by an air flow measurement device in an intake pipe.

【図6】比較例による空気流量測定装置のモジュールを
示す図であって、(A)は(B)のA−A線断面図であ
り、(B)は正面図である。
6A and 6B are diagrams showing a module of an air flow measuring device according to a comparative example, wherein FIG. 6A is a sectional view taken along line AA of FIG. 6B, and FIG. 6B is a front view.

【符号の説明】[Explanation of symbols]

11 吸気管(吸気通路) 13 モジュール 14 回路モジュール(回路部) 15 流量測定体(バイパス流路部) 16 ベンチュリ管部 17 接合壁 18 バイパス流路 18a 上流側流路 18b 曲り部 18c 下流側流路 19 流入口 20 フランジ部 22 流出口 29 発熱素子(流量測定素子) 30 感温素子 150、155、156 外壁面(曲面部) 151、152 接続部(最内部) 152 最外部 DESCRIPTION OF SYMBOLS 11 Intake pipe (intake passage) 13 Module 14 Circuit module (Circuit part) 15 Flow rate measuring body (Bypass flow path part) 16 Venturi pipe part 17 Joining wall 18 Bypass flow path 18a Upstream flow path 18b Bent part 18c Downstream flow path Reference Signs List 19 inflow port 20 flange section 22 outflow port 29 heating element (flow rate measurement element) 30 temperature sensing element 150, 155, 156 outer wall surface (curved surface portion) 151, 152 connection portion (innermost portion) 152 outermost portion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 空気通路内に設けられ、前記空気通路を
流れる空気の一部を流入させるバイパス流路を構成し、
前記バイパス流路内に設けられる空気流量測定用の流量
測定素子を備えるバイパス流路部と、 前記流量測定素子の出力信号をもとに前記空気通路を流
れる空気流量に関係した信号を出力する回路部と、 前記バイパス流路部の少なくとも前記空気通路の空気流
れ方向の外壁面に設けられる曲面部と、 を備えることを特徴とする空気流量測定装置。
1. A bypass passage provided in an air passage and configured to allow a part of air flowing through the air passage to flow therein,
A bypass flow path unit including a flow rate measurement element for measuring an air flow rate provided in the bypass flow path; and a circuit for outputting a signal related to an air flow rate flowing through the air passage based on an output signal of the flow rate measurement element. And a curved surface portion provided on an outer wall surface of at least the air passage in the air flow direction of the bypass flow passage portion.
【請求項2】 前記曲面部は、前記空気流れ方向の外壁
面から前記バイパス流路部の前記空気通路の空気流れと
垂直方向の入口側ならびに出口側外壁面にかけて設けら
れることを特徴とする請求項1記載の空気流量測定装
置。
2. The air conditioner according to claim 1, wherein the curved surface portion is provided from an outer wall surface in the air flow direction to an outer wall surface on an inlet side and an outlet side in a direction perpendicular to an air flow in the air passage of the bypass flow passage portion. Item 7. An air flow measuring device according to Item 1.
【請求項3】 前記空気流れ方向の外壁面の最も外部に
位置する最外部と、前記空気流れ方向の外壁面の最も内
部に位置する最内部との前記空気通路の空気流れと垂直
方向の距離は、所定の範囲にあることを特徴とする請求
項2記載の空気流量測定装置。
3. A distance in a direction perpendicular to the air flow of the air passage between an outermost outermost surface of the outer wall surface in the air flow direction and an innermost innermost surface of the outer wall surface in the air flow direction. 3. The air flow measuring device according to claim 2, wherein the distance is within a predetermined range.
【請求項4】 前記バイパス流路は、隣接する平行な2
本の流路を曲り部でつないだ逆U字状の流路に形成さ
れ、その一方の流路が上流側、他方の流路が下流側に配
置され、前記曲り部および下流側流路は、前記曲り部よ
り下流側で生じる縮流を抑制する形状に形成されている
ことを特徴とする請求項1、2または3記載の空気流量
測定装置。
4. The device according to claim 1, wherein the bypass passages are adjacent to each other.
Are formed in an inverted U-shaped flow path in which the two flow paths are connected by a bent portion, one of which is disposed on the upstream side, the other flow path is disposed on the downstream side, and the bent portion and the downstream side flow path are 4. The air flow measuring device according to claim 1, wherein the air flow measuring device is formed in a shape that suppresses a contraction generated downstream of the bent portion.
JP9278676A 1997-10-13 1997-10-13 Air flow rate-measuring apparatus Pending JPH11118556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278676A JPH11118556A (en) 1997-10-13 1997-10-13 Air flow rate-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278676A JPH11118556A (en) 1997-10-13 1997-10-13 Air flow rate-measuring apparatus

Publications (1)

Publication Number Publication Date
JPH11118556A true JPH11118556A (en) 1999-04-30

Family

ID=17600625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278676A Pending JPH11118556A (en) 1997-10-13 1997-10-13 Air flow rate-measuring apparatus

Country Status (1)

Country Link
JP (1) JPH11118556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234970A (en) * 2012-05-11 2013-11-21 Denso Corp Flow rate measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234970A (en) * 2012-05-11 2013-11-21 Denso Corp Flow rate measuring apparatus

Similar Documents

Publication Publication Date Title
JP4826140B2 (en) Flow measuring device
US6619140B2 (en) Fluid flow meter having thermal flow sensor disposed in one of a plurality of fluid passages
JP3783896B2 (en) Air flow measurement device
JP4569831B2 (en) Air flow measurement device
JP3169808B2 (en) Air flow measurement device and air cleaner case
JP4934198B2 (en) Plug-in sensor with optimized outflow
JPH085430A (en) Thermal type flow meter
JP3416526B2 (en) Thermal flow sensor
JP3292817B2 (en) Thermal flow sensor
JP3985801B2 (en) Air flow measurement device
JP3848934B2 (en) Air flow measurement device
JP2002005713A (en) Air flow measuring device
JP4089654B2 (en) Air flow measurement device
JP3649258B2 (en) Air flow measurement device
JPH11118556A (en) Air flow rate-measuring apparatus
JPH09287991A (en) Airflow measuring device
JPH085427A (en) Heating resistance type air flow rate measuring apparatus
JP5288294B2 (en) Flow measuring device
JP3345994B2 (en) Engine intake system
JPH01206223A (en) Hot-wire type air flowmeter
JP3386982B2 (en) Heating resistor type air flow measurement device
JPH11229979A (en) Air cleaner
JP3070642B2 (en) Flowmeter
JP2001099688A (en) Heating resistance type apparatus for measuring air flow rate
JP2981058B2 (en) Flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060224