JPH11118464A - Thickness measuring method - Google Patents

Thickness measuring method

Info

Publication number
JPH11118464A
JPH11118464A JP31883797A JP31883797A JPH11118464A JP H11118464 A JPH11118464 A JP H11118464A JP 31883797 A JP31883797 A JP 31883797A JP 31883797 A JP31883797 A JP 31883797A JP H11118464 A JPH11118464 A JP H11118464A
Authority
JP
Japan
Prior art keywords
sheet
reference horizontal
contact
thickness
distance meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31883797A
Other languages
Japanese (ja)
Inventor
Toshiaki Mihara
俊朗 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futec Inc
Original Assignee
Futec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futec Inc filed Critical Futec Inc
Priority to JP31883797A priority Critical patent/JPH11118464A/en
Publication of JPH11118464A publication Critical patent/JPH11118464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a precise non-contact thickness measurement free from error by arranging reference horizontal objects on both upper and lower sides of a sheet like matter, and arranging a range finder and a non-contact range finger between the sheet like matter and the reference horizontal objects. SOLUTION: Reference horizontal objects 4A, 4B are arranged above and under a sheet like matter 1 to be measured. Range finders 5A, 5B are firmly fixed to non-contact range finders 3A, 3B, and arranged between the sheet 1 and the reference horizontal objects 4A, 4B. The reference horizontal, objects 4A, 4B are formed of liquids put in vessels, and the levels opposed to the range fingers 5A, 5B are horizontal face and mutually parallel flat face. The range finder 5A and the non-contact range finder 3A, and the range finder 5B and the non-contact range finder 3B are self-traveled on guide rails 6A, 6B, respectively, and the self-traveling speeds and self-traveling distances of the two sets are mutually synchronized. By use of the measured values by the range finders 5A, 5B in the part of a reference calibration body 2 having a known thickness, the precise measured value of the sheet like matter in an optional position is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、シート状物の厚さを非
接触で測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of a sheet without contact.

【0002】[0002]

【従来の技術】例えば走行する、紙シート、ビニールシ
ート、金属箔等の非接触厚さ測定に於ては、赤外線、ベ
ータ線、X線等を照射し、照射線が被測定シート材に吸
収される量の多少を測定し、厚さに換算するのである。
即ち厚いものはより多く照射線を吸収し、薄いものはよ
り少く照射線を吸収する現象を利用し、吸収量測定値を
厚さに換算する。
2. Description of the Related Art In the non-contact thickness measurement of running paper sheets, vinyl sheets, metal foils, etc., for example, infrared rays, beta rays, X rays, etc. are irradiated, and the irradiated rays are absorbed by the sheet material to be measured. The amount of the amount to be measured is measured and converted into a thickness.
That is, the measured value of the absorbed amount is converted into a thickness by using the phenomenon that a thicker one absorbs more irradiation light and a thinner one absorbs less irradiation light.

【0003】[0003]

【発明が解決しようとする課題】前述の従来技術は被測
定シート材に吸収される照射線量の多い、少いを測定
し、厚さに換算するものであり、直接に厚さを測定する
ものではなく、各種の換算誤差を生ずる。
The above-mentioned prior art measures a large or small irradiation dose absorbed by a sheet material to be measured and converts it into a thickness, and directly measures the thickness. Instead, various conversion errors occur.

【0004】換算誤差の一例は例えばシート材への製造
工程での不純物の混入、厚さ計の周囲温度の変化、周囲
湿度の変化等の原因により、照射線量の吸収量をシート
材の厚さに換算する換算係数の不正確さであり、従って
正確な厚さが測定できなくなる。
[0004] One example of the conversion error is that the absorbed amount of the irradiation dose is determined by the thickness of the sheet material due to contamination of the sheet material during the manufacturing process, changes in the ambient temperature of the thickness gauge, changes in the ambient humidity, and the like. Is inaccurate in the conversion factor, and thus the accurate thickness cannot be measured.

【0005】本発明は、前述のように不可避的に誤差の
可能性のある間接的な吸収法測定ではなく、直接厚さを
非接触で測定する方法を得ることにある。
An object of the present invention is to provide a method for directly measuring the thickness in a non-contact manner, instead of the indirect absorption method which may inevitably cause an error as described above.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明の厚さ測定方法は、被測定物体である、シー
ト状物の上下両側に基準水平物体を配設し、シート状物
と基準水平物体の間に距離計および非接触式距離計の組
を1組以上配設する。
In order to achieve the above object, a thickness measuring method according to the present invention comprises the steps of: disposing a reference horizontal object on both upper and lower sides of a sheet to be measured; At least one set of a range finder and a non-contact type range finder is provided between and a reference horizontal object.

【0007】[0007]

【作用】図2に於て、シート状物1の厚さTは、T=C
−A−B で与えられる。ここでCは上側の非接触距離
計3Aと下側の非接触距離計3Bの間の距離である。A
は上側の非接触距離計とシート状物の上側表面までの距
離であり、Bは下側の非接触距離計とシート状物の下側
表面までの距離である。
In FIG. 2, the thickness T of the sheet material 1 is T = C
-AB. Here, C is the distance between the upper non-contact distance meter 3A and the lower non-contact distance meter 3B. A
Is the distance between the upper non-contact distance meter and the upper surface of the sheet, and B is the distance between the lower non-contact distance meter and the lower surface of the sheet.

【0008】ここで距離Cを決定することは例えば次の
ようにしてなされる。即ち図2に於て、シート状物1の
外側に厚さが既知の基準較正体2を配設し、非接触距離
計3を基準較正体の所まで移動し、前述のT=C−A−
Bの関係式を適用する。
Here, the distance C is determined, for example, as follows. That is, in FIG. 2, a reference calibrator 2 having a known thickness is disposed outside the sheet-like material 1, the non-contact distance meter 3 is moved to the reference calibrator, and the aforementioned T = CA. −
The relational expression of B is applied.

【0009】基準較正体についてはその厚さTは既知で
あり、一方A,Bは測定値であるのて、Cは決定され
る。このCをC=Coとする。
The thickness T of the reference calibrator is known, while A and B are measured values, so C is determined. This C is assumed to be C = Co.

【0010】ここで再び非接触距離計を被測定シート状
物上に移動して戻す。シート状物の厚さTを測定するた
めに前述の関係式T=C−A−Bを適用したい訳である
が、ここで困難が生じる。即ちシート状物上に非接触距
離計を移動するので、この場所でのCはCoとはならな
くなる。
Here, the non-contact distance meter is moved again onto the sheet-like object to be measured and returned. It is desired to apply the above-mentioned relational expression T = CAB in order to measure the thickness T of the sheet-shaped material, but here, difficulty arises. That is, since the non-contact distance meter is moved on the sheet-like object, C at this position does not become Co.

【0011】CがCoとはならない原因は非接触距離計
を移動することによって、その支持金具または吊下げ金
具等のガタ、重量たわみ、熱膨張などが存在するためで
あり、従ってCは不定値となり、T=C−A−Bに対し
てA,Bのみが測定できるが、Cが不定であるので、T
も不定となる。
The reason why C does not become Co is that the movement of the non-contact distance meter causes backlash, weight deflection, thermal expansion, etc. of the supporting bracket or hanging bracket, and therefore C is an undefined value. Thus, only A and B can be measured for T = CAB, but since C is indefinite, T
Is also undefined.

【0012】図1に於て、基準水平物体4A,4Bが被
測定シート状物1の上下に配設されている。更に距離計
5A,5Bは、非接触距離計3A,3Bと強固に固定さ
れている。こうすると前述の、支持金具のガタ、重量た
わみ等は距離計5A,5Bによって基準水平物体との距
離を測ることによって計測されるので前述のCは不定と
ならず確定値となり、従ってTは測定可能になる。
In FIG. 1, reference horizontal objects 4A and 4B are arranged above and below a sheet-like material 1 to be measured. Further, the distance meters 5A and 5B are firmly fixed to the non-contact distance meters 3A and 3B. In this case, since the above-mentioned backlash and weight deflection of the support bracket are measured by measuring the distance from the reference horizontal object by the distance meters 5A and 5B, the above-mentioned C becomes a definite value without being uncertain, and accordingly, T is measured. Will be possible.

【0013】ここで基準水平物体はより完全な水平面を
有することが求められ、図1に示すように、液体4A,
4Bの表面は完全な水平面であるので基準水平物体とし
て有効である。
Here, the reference horizontal object is required to have a more complete horizontal plane, and as shown in FIG.
Since the surface of 4B is a perfect horizontal plane, it is effective as a reference horizontal object.

【0014】ガラス面は表面が滑らかで、水平に支持す
ると基準水平物体として有効である。また、支持される
ための重量たわみ(水平からの逸脱量)は力学的たわみ
量の計算値により算出可能であるので、たわみ量が計算
補正等によって、補正されたガラス面は基準水平物体と
して有効である。
The glass surface has a smooth surface and is effective as a reference horizontal object when supported horizontally. In addition, since the weight deflection (deviation from the horizontal) to be supported can be calculated from the calculated value of the mechanical deflection, the glass surface whose deflection is corrected by calculation correction or the like is effective as a reference horizontal object. It is.

【0015】更にガラス材質を石英ガラスにすると、気
温変動等の温度変化による膨張、たわみ、歪みなどの水
平からの逸脱誤差が極小となる。即ち石英ガラスの熱膨
張率はガラス材のなかでは最小であるためである。
Further, if the glass material is quartz glass, deviations from the horizontal such as expansion, deflection and distortion due to temperature changes such as temperature fluctuations are minimized. That is, the thermal expansion coefficient of quartz glass is the smallest among the glass materials.

【0016】更に図3に示すように複数組の距離計5A
1〜5B4非接触距離計3A1〜3B4の組を等ピッチ
(ピッチ距離=P)配列し、かつその等ピッチ以上を往
復運動(基準水平物体4A,4Bに略平行に配設された
スライド金具6A,6B上を矢印STの方向に運動)さ
せると、被測定シート状物1の同一点の厚さを別個の隣
接する2組の非接触距離計で測定できる。従って、当該
隣接の非接触距離計の相互較正が実現可能となり、起り
得る各種誤差を相互較正によりゼロあるいは最小に押え
ることが可能になる。
Further, as shown in FIG. 3, a plurality of sets of distance meters 5A are provided.
A set of non-contact distance meters 3A1 to 3B4 is arranged at an equal pitch (pitch distance = P), and reciprocates over the equal pitch (slide bracket 6A disposed substantially parallel to reference horizontal objects 4A and 4B). , 6B in the direction of arrow ST), the thickness of the same point of the sheet-like material 1 to be measured can be measured by two separate sets of non-contact distance meters. Therefore, mutual calibration of the adjacent non-contact distance meters can be realized, and various errors that can occur can be reduced to zero or minimum by the mutual calibration.

【0017】ここで起り得る各種誤差とは重量たわみ以
外にも、例えば図1に於る接続金具7Aの温度変動によ
る、熱膨張誤差であり、更には非接触距離計自身に内在
する熱膨張誤差などである。
The various errors that can occur here are, besides weight deflection, thermal expansion errors due to, for example, temperature fluctuations of the connection fitting 7A in FIG. 1, and further, thermal expansion errors inherent in the non-contact distance meter itself. And so on.

【0018】[0018]

【実施例】以下図1を参照して本発明の一実施例を説明
する。図1に於て、基準水平物体4A,4Bは容器に入
れられた液体であり、距離計5A,5Bに対面する面は
水平面であり互に平行平面である。距離計5Aと非接触
距離計3Aは相互に固定されていて、ガイドレール6A
上を自走する。また距離計5Bと非接触距離計3Bは相
互に固定されていて、ガイドレール6B上を自走する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, reference horizontal objects 4A and 4B are liquids placed in containers, and the surfaces facing the distance meters 5A and 5B are horizontal planes and parallel planes to each other. The distance meter 5A and the non-contact distance meter 3A are fixed to each other, and the guide rail 6A
Run on the top. The distance meter 5B and the non-contact distance meter 3B are fixed to each other, and run on the guide rail 6B by themselves.

【0019】この自走は上下に関して同期させる。即ち
距離計5Aと非接触距離計3Aの組(被測定シート状物
の上側の組)の自走速度、自走距離は距離計5Bと非接
触距離計3Bの組(被測定シート状物の下側の組)の自
走速度、自走距離と同期させている。
This self-running is synchronized vertically. That is, the self-running speed and the self-propelled distance of the set of the distance meter 5A and the non-contact distance meter 3A (the upper set of the sheet-like object to be measured) are the same as the set of the distance meter 5B and the non-contact distance meter 3B (the It is synchronized with the self-propelled speed and self-propelled distance of the lower pair.

【0020】距離計と非接触距離計の組は厚さが既知
(厚さ=To)である基準較正体2部分で前述のCo値
が決定される。即ち基準較正体2の厚さが既知であるの
で、Co=Ao+Bo+Toとなる。AoとBoは測定
値でありCoは確定する。
In the pair of the distance meter and the non-contact distance meter, the above-mentioned Co value is determined by the reference calibrator 2 having a known thickness (thickness = To). That is, since the thickness of the reference calibrator 2 is known, Co = Ao + Bo + To. Ao and Bo are measured values, and Co is determined.

【0021】次に距離計を自走させた任意の場所での測
定値がA’,B’であるとその場所での被測定シート状
物の厚さT’はT’=C’−A’−B’である。ここで
C’はCoからの各種変動(たわみ、ガタ、温度膨張な
ど)を補正したもので、C’+D’+E’=Co+Do
+EoであるのでC’=Co+Do+Eo−D’−E’
である。ここでDo,Eoは基準較正体2部分での距離
計5A,5Bの測定値であり、D’,E’はシート状物
の当該測定部分での距離計5A,5Bの測定値である。
Next, if the measured values at arbitrary places where the rangefinder is self-propelled are A 'and B', the thickness T 'of the sheet-like object at that place is T' = C'-A '-B'. Here, C ′ is obtained by correcting various fluctuations (deflection, backlash, temperature expansion, etc.) from Co, and C ′ + D ′ + E ′ = Co + Do
+ Eo, C ′ = Co + Do + Eo−D′−E ′
It is. Here, Do and Eo are the measured values of the rangefinders 5A and 5B at the reference calibrator 2 portion, and D 'and E' are the measured values of the rangefinders 5A and 5B at the measured portion of the sheet.

【0022】図1に於ては基準水平物体は液体であり、
望ましくはシリコンオイルなどの非蒸発性の粘性液体が
実用上(蒸発による液体の減少防止、外部振動による液
面の波立ち防止のため)使用される。また距離計およ
び、非接触距離計としてはレーザ変位計が代表的に使用
される。
In FIG. 1, the reference horizontal object is a liquid,
Desirably, a non-evaporable viscous liquid such as silicone oil is used practically (to prevent the liquid from decreasing due to evaporation and to prevent the liquid surface from waving due to external vibration). As a distance meter and a non-contact distance meter, a laser displacement meter is typically used.

【0023】[0023]

【発明の効果】以上説明したように、本発明に於る厚さ
測定方法では、照射線の吸収作用による厚さ換算ではな
く直接に厚さを測定できるので、吸収量換算に起因する
種々の誤差を含まず、正確な非接触厚さ測定が可能にな
る。
As described above, in the thickness measuring method according to the present invention, since the thickness can be measured directly instead of the thickness conversion by the absorption function of the irradiation radiation, various methods caused by the absorption amount conversion can be obtained. Accurate non-contact thickness measurement without errors is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図である。基準水平物
体が液体の例である。
FIG. 1 is a diagram showing one embodiment of the present invention. The reference horizontal object is an example of a liquid.

【図2】厚さ測定値を較正する方法を示す図。FIG. 2 illustrates a method for calibrating thickness measurements.

【図3】本発明の他の応用例を示す図である。距離計と
非接触距離計を複数組、等ピッチ配設している図であ
る。
FIG. 3 is a diagram showing another application example of the present invention. It is a figure which arranges two or more sets of a distance meter and a non-contact distance meter at equal pitch.

【符号の説明】[Explanation of symbols]

1……シート状物 2……基準較正体 3……非接触距離計 4……基準水平物体 5……距離計 6……スライド金具 7……接続金具 DESCRIPTION OF SYMBOLS 1 ... Sheet-shaped object 2 ... Reference calibration body 3 ... Non-contact distance meter 4 ... Reference horizontal object 5 ... Distance meter 6 ... Slide fitting 7 ... Connection fitting

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】被測定物体である、シート状物の上下両側
に基準水平物体を配設し、シート状物と基準水平物体の
間に距離計および非接触式距離計を配設したことを特徴
とする厚さ測定方法。
An object to be measured, wherein a reference horizontal object is provided on both upper and lower sides of a sheet-like object, and a distance meter and a non-contact type distance meter are provided between the sheet-like object and the reference horizontal object. Characteristic thickness measurement method.
【請求項2】前記請求項1に於て、基準水平物体が液体
であることを特徴とする厚さ測定方法。
2. The method according to claim 1, wherein the reference horizontal object is a liquid.
【請求項3】前記請求項1に於て、基準水平物体がガラ
スであり、吊り下げおよび支持に起因するたわみが補正
されていることを特徴とする、厚さ測定方法。
3. The thickness measuring method according to claim 1, wherein the reference horizontal object is glass, and deflection caused by suspension and support is corrected.
【請求項4】前記請求項3に於て、ガラスが石英ガラス
であることを特徴とする厚さ測定方法。
4. A thickness measuring method according to claim 3, wherein the glass is quartz glass.
【請求項5】前記請求項1に於て、距離計および非接触
式距離計の組が複数組等ピッチ配列され、かつその等ピ
ッチ以上を往復運動し、互に隣接する非接触式距離計の
測定値を相互に較正することを特徴とする厚さ測定方
法。
5. A non-contact distance meter according to claim 1, wherein a plurality of pairs of the distance meter and the non-contact distance meter are arranged at equal pitches, and reciprocate at equal pitches or more. A thickness measurement method comprising mutually calibrating measured values of the thickness.
JP31883797A 1997-10-16 1997-10-16 Thickness measuring method Pending JPH11118464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31883797A JPH11118464A (en) 1997-10-16 1997-10-16 Thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31883797A JPH11118464A (en) 1997-10-16 1997-10-16 Thickness measuring method

Publications (1)

Publication Number Publication Date
JPH11118464A true JPH11118464A (en) 1999-04-30

Family

ID=18103516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31883797A Pending JPH11118464A (en) 1997-10-16 1997-10-16 Thickness measuring method

Country Status (1)

Country Link
JP (1) JPH11118464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210039137A (en) * 2019-10-01 2021-04-09 문상호 Contactless type thickness measuring apparatus with function to correct errors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210039137A (en) * 2019-10-01 2021-04-09 문상호 Contactless type thickness measuring apparatus with function to correct errors

Similar Documents

Publication Publication Date Title
EP1892500B1 (en) Laser interferometer and method of its calibration and use
JPS5994012A (en) Method and device for measuring position
JPS6127690B2 (en)
US5189807A (en) Method and arrangement for determining the linear (heat) expansion of elongated bodies
JP2561861B2 (en) Combined scale and interferometer
Geckeler et al. Environmental influences on autocollimator-based angle and form metrology
JPH08327329A (en) Method and apparatus for measuring sectional size of h sections
Zeng et al. A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing
CN111886473B (en) Time-domain terahertz measurement system with single reference surface
JPH11118464A (en) Thickness measuring method
CN112344864A (en) Precision calibration method and device for laser thickness and length synchronous measuring instrument
Lipus et al. Analysis of laser interferometer measurement uncertainty by simulating error sources
JP2002022679A (en) X-ray diffraction device
JPH01221605A (en) Thickness measuring instrument
JPH06273103A (en) Method for measuring outside diameter of cylindrical object
US3716920A (en) Precision square
JP4444531B2 (en) Simple inspection vehicle and calibration method thereof
JPH0439522Y2 (en)
JPH01124703A (en) Method and device for noncontact measurement of film characteristic
JP2001194120A (en) Method for measuring cross-sectional dimension of h- shaped steel
SU1187029A1 (en) Flow-type refractometer
JPH01250743A (en) Measuring method of density with high precision
CN101074866A (en) Method for reinforcing measurement precision of substrate structure coordinate
JPH05180642A (en) Straightness measuring apparatus for planar body
JPH05172556A (en) Method and apparatus for measuring thickness of dielectric material