JPH01250743A - Measuring method of density with high precision - Google Patents

Measuring method of density with high precision

Info

Publication number
JPH01250743A
JPH01250743A JP8016888A JP8016888A JPH01250743A JP H01250743 A JPH01250743 A JP H01250743A JP 8016888 A JP8016888 A JP 8016888A JP 8016888 A JP8016888 A JP 8016888A JP H01250743 A JPH01250743 A JP H01250743A
Authority
JP
Japan
Prior art keywords
thickness
density
measured
count
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8016888A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sugimura
杉村 利之
Tatsuo Shinoda
篠田 龍男
Yurikazu Yanai
柳井 百合和
Katsuya Kondo
勝也 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narumi China Corp
Nippon Steel Corp
Original Assignee
Narumi China Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narumi China Corp, Sumitomo Metal Industries Ltd filed Critical Narumi China Corp
Priority to JP8016888A priority Critical patent/JPH01250743A/en
Publication of JPH01250743A publication Critical patent/JPH01250743A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a measured value of a surface density in high precision by a transmitted X-ray measurer and a measured value of a thickness in high precision by a thickness measurer respectively, by making a correction by means of a prescribed formula when the measured value of the surface density of a ceramic tape is determined by a specific formula. CONSTITUTION:On the occasion when a measured value of the surface density of a ceramic tape 3 is determined by the formula I (where N denotes transmitted X-ray detection count cps after correction, (t) the thickness (m) of the tape 3, (rho) the density g/m<2>, (k) an inverse number g/m<2> of the absorption coefficient of the tape 3 for the X-ray, N0 the transmitted X-ray count at t=0, and Ns the transmitted X-ray detection count in case of t=infinity ), a value N corrected by the formula II is substituted for the values N, N0 and Ns in said formula. When the thickness (t) of the tape 3 is measured by a laser thickness measurer 8, the measurer 8 is subjected to a temperature control. Thereby a measured value of a pc counter 5 is corrected and an accurate X-ray count can be calculated. As the result, the surface density (rho) can be measured with high precision, and the density of the tape 3 can be measured with high precision, in combination with the result of highly-precise measurement of the thickness by the measurer 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 集積回路のケースとして用いられるセラミックパッケー
ジ等は、アルミナ粉体にバインダー、焼結助剤に溶剤を
加えてスラリー状にしたものをドクターブレード法によ
りテープ状にしたセラミックテープ、所謂グリーンシー
トを金型を用いて圧下し、乾燥焼成してつくられる。
[Detailed Description of the Invention] [Field of Industrial Application] Ceramic packages and the like used as cases for integrated circuits are made by adding a binder to alumina powder, a sintering aid, and a solvent to form a slurry using the doctor blade method. It is made by pressing down a ceramic tape, a so-called green sheet, into a tape shape using a mold, drying it, and firing it.

均質な製品を得るためには圧下条件、セラミック粉の性
状にもよるがグリーンシートの密度(生密度)を厳重に
調整する必要がある。
In order to obtain a homogeneous product, it is necessary to strictly adjust the density of the green sheet (green density), depending on the rolling conditions and the properties of the ceramic powder.

生密度の測定法として、グリーンシートのプレスライン
において、蛍光XvA密度計によりグリーンシートの面
密度を測定し、別途当該部分のグリーンシートの厚みを
測定して前記測定した面密度と厚みからグリーンシート
の生密度を算出する方法がある0本発明はこの密度測定
を改良するものでグリーンシートの高精度密度測定法に
関する。
As a method of measuring green sheet density, the areal density of the green sheet is measured using a fluorescent XvA densitometer on the green sheet press line, and the thickness of the green sheet at the relevant part is separately measured, and the green sheet is determined from the measured areal density and thickness. There is a method for calculating the green density of green sheets.The present invention improves this density measurement and relates to a high-precision density measurement method for green sheets.

〔従来の技術〕[Conventional technology]

グリーンシートはこれを焼成してセラミックパッケージ
素材とするが、焼成後の寸法は焼成前の寸法の約20%
も収縮する。この様な収縮量に対し製品寸法の要求精度
は±0.5%以内であり厳しい、ところが、収縮量と焼
成前後の密度変化率とは明確な相関があり、かつ焼成後
の密度はセラミックの粒子径によって一定であることか
ら、製品寸法を高精度で得るためには、焼成前のグリー
ンシートの密度を高精度で測定しておく必要がある。
The green sheet is fired to become a ceramic package material, and the dimensions after firing are approximately 20% of the dimensions before firing.
It also contracts. The required accuracy of product dimensions for such shrinkage is within ±0.5%, which is strict.However, there is a clear correlation between shrinkage and the density change rate before and after firing, and the density after firing is Since it is constant depending on the particle size, it is necessary to measure the density of the green sheet with high precision before firing in order to obtain the product dimensions with high precision.

従来の密度測定方法として、液中に固体を浸して液中重
量を測定することによる比重測定法がある(JIS  
Z8807)、この方法ではサンプルを適当な寸法、重
量に切り取って作成する等の破壊試験となる。従ってグ
リーンシートを生産ライン上で局部的に密度測定するこ
とは無理である。
As a conventional density measurement method, there is a specific gravity measurement method in which a solid is immersed in a liquid and its weight in the liquid is measured (JIS
Z8807), this method involves a destructive test in which a sample is cut to an appropriate size and weight. Therefore, it is impossible to locally measure the density of green sheets on the production line.

(発明が解決しようとする課題〕 これを解決する手段として透過X線の吸収法により密度
ρ×厚みt (面密度ρt)を求め、別途測定した厚み
tで除算して密度ρを算出する方法が考えられる。
(Problem to be solved by the invention) As a means of solving this problem, a method is to obtain density ρ x thickness t (area density ρt) by the absorption method of transmitted X-rays, and divide it by a separately measured thickness t to calculate density ρ. is possible.

第1図(イ)(ロ)は透過X線による面密度測定法を示
す、(イ)図のものはX線管1より出たビームが21反
射板2に当たって蛍光X線Z、−KX線となり、セラミ
ックテープ3を通過してコリメーター4内のプロポーシ
ョナルカウンター(pcCカウンター5に入る。(ロ)
図のものはZr反射板2が下方にあってビームがセラミ
ックテープ3を2回通過してpCカウンター5に入る。
Figures 1 (a) and 1 (b) show the areal density measurement method using transmitted X-rays. In the figure (a), the beam emitted from the X-ray tube 1 hits the 21 reflector 2 and produces fluorescent X-rays Z, -K X-rays. It passes through the ceramic tape 3 and enters the proportional counter (pcC counter 5) in the collimator 4. (b)
In the example shown, the Zr reflector 2 is located below, and the beam passes through the ceramic tape 3 twice and enters the PC counter 5.

前記pcCカウンターはX線量をカウント数として測定
できるxvAm検出器であり、■ 検出器の周囲温度の
影響が少なく、安定性が良い、 ■ 高カウント領域でカウントでき(第2図にp・Cカ
ウンターと半導体カウンターの最大検出カウント数を比
較して示す)、短時間測定によって精度を高め得る等の
特徴を有する。
The above-mentioned pcC counter is an xvAm detector that can measure the X-ray dose as a count number. ■ It is less affected by the ambient temperature of the detector and has good stability. ■ It can count in a high count area (Figure 2 shows the pcC counter). and the maximum detection count number of a semiconductor counter), and has features such as being able to improve accuracy by short-term measurement.

しかし、第3図に示すごとく、pcCカウンター検出カ
ウント数は波高弁別器10を通した場合、その特性によ
り高カウント域になるに従いカウントミスが増えpcC
カウンターの入射X&I検出強度と直線関係にあるX線
管電流との関係が直線でなく″なる。即ち、カウント数
の大きな所でカウント数が減るが如きリニアリティのく
ずれがあり、測定されたpcCカウンターカウント数を
そのままpcCカウンターの入射X線強度値として面密
度を計算すると面密度の計算値に誤差を生ずる問題があ
った。
However, as shown in FIG. 3, when the pcC counter detection count number is passed through the wave height discriminator 10, due to its characteristics, as it moves into the high count range, the number of counting errors increases and the pcC
The relationship between the counter's incident X&I detection intensity and the X-ray tube current, which has a linear relationship, is no longer a straight line.In other words, the linearity is distorted, such that the count decreases at a large count, and the measured pcC counter If the areal density is calculated by directly using the count number as the incident X-ray intensity value of the pcC counter, there is a problem that an error occurs in the calculated value of the areal density.

次に、高精度の厚み測定法として知られるレーザー変位
計は次の特性を持っている。セラミックテープの表面が
セラミック粒子の凹凸のある場合でもセラミック粒子の
凹凸によってレーザーが乱反射されても広い面積の値の
平均値によって厚みが求められる。しかし、レーザー変
位計は、その測定器が温度変化の影響を受けて誤差を生
じやすい問題があワた。
Next, the laser displacement meter, which is known as a highly accurate thickness measurement method, has the following characteristics. Even if the surface of the ceramic tape is uneven with ceramic particles, and even if the laser is diffusely reflected by the unevenness of the ceramic particles, the thickness can be determined by the average value of the values over a wide area. However, the problem with laser displacement meters was that the measuring instruments were susceptible to temperature changes and were susceptible to errors.

本発明は如上の問題を解決して透過XvA測定器により
精度の高い面密度を得、また厚み測定器により精度の高
い厚み測定値を得て従来にない高精度の密度を算出し得
る方法を提供することを目的とする。
The present invention solves the above problems and provides a method for obtaining highly accurate areal density using a transmission XvA measuring device, and obtaining highly accurate thickness measurement values using a thickness measuring device to calculate density with unprecedentedly high accuracy. The purpose is to provide.

〔課題を解決するための手段〕[Means to solve the problem]

Zrの蛍光X綿の透過に際してのX線強度の減衰状況に
ついて公知の原理式は ρt N−Ns= (No−Ns)C’  ・・・fll原理
式但し N :補正後の透過X線検出カウント(cps
)【 :セラミックテープの厚み(m) ρ :密度(g/n?) K :X線に対するセラミックテープ の吸収係数の逆数(g/イ) N6:t=Qにおける透過x線検出 カウント(cps) Ns:t=■における透過X線検出 カウント(cps) として示され、N−、No 、Kが既知のときNを測定
することによって面密度ρtが計算され得る。
The known principle formula for the attenuation of X-ray intensity when Zr fluorescence (cps
) [: Thickness of ceramic tape (m) ρ: Density (g/n?) K: Reciprocal of absorption coefficient of ceramic tape for X-rays (g/a) N6: Transmitted x-ray detection count at t=Q (cps) Ns: denoted as transmitted X-ray detection counts (cps) at t=■, and the areal density ρt can be calculated by measuring N when N-, No, and K are known.

本発明者はpcカウンター5の測定カウント数のドリフ
ト等による変動を補正する方法を求めようとした。
The inventor attempted to find a method for correcting fluctuations due to drift in the measured count number of the PC counter 5.

pcカウンターへの入射X線強度に応じてpcカウンタ
ーの検出カウント数N”  (cps)が変化する関係
を第4図の曲線Sに示した。
A curve S in FIG. 4 shows the relationship in which the detected count number N'' (cps) of the PC counter changes depending on the intensity of X-rays incident on the PC counter.

もし性能曲線Sが直線的関係にあるとすると、基準較正
条件で較正した初期較正カウント数N c r、同条件
で較正した最新の較正カウント数Nsに対して、X線源
、センサ等のドリフトによるN”の変動の補正式は、 隅 N = −X N ”・・・(3) Nc& となるであろう。
If the performance curve S has a linear relationship, the drift of the X-ray source, sensor, etc. with respect to the initial calibration count number N cr calibrated under the standard calibration conditions and the latest calibration count number Ns calibrated under the same conditions. The correction formula for the variation of N'' due to the following will be: Corner N = -X N'' (3) Nc&.

しかし、実際のN0値はpcに接続される波高弁別器の
特性により高カウント域になるに従いカウントミスが増
加し、曲線Sを描くため、全カウント領域で一率に(3
)式を採用することはできない。
However, due to the characteristics of the wave height discriminator connected to the PC, the actual N0 value increases in count errors as it gets higher in the count range, and as it draws a curve S, it is uniformly (3
) formula cannot be adopted.

本発明者は各カウント領域での各種入射XwA強度と直
線関係にある管電流の微小変化に応じたpcカウンター
のNoについてのカウント変化率を測定して、厳密に実
測値に適合する次の補正式%式%(21 : : の関係において、カウント変化率R4eの値を求めるこ
とを試みた。
The present inventor measures the count change rate for No of the PC counter in response to minute changes in tube current, which has a linear relationship with various incident XwA intensities in each count region, and makes the following correction that strictly matches the actual measurement value. An attempt was made to find the value of the count change rate R4e in the relationship of the formula % (21::).

第5図は本発明者の実験によるR4rとX線カウント数
との関係を示す。この実験はXkI管電流0゜220m
Aより出発し、0.215mAに変化したときの結果を
・印にて、0.225mAに変化したときの結果をO印
にて示す0図中較正点は約70000cpsのA点でカ
ウント変化率Racの太きさはAB間Nc/NcIであ
る。・印、○印を結ぶ曲線は、A点より出発し、A点の
上方AC間C+。
FIG. 5 shows the relationship between R4r and the X-ray count according to the inventor's experiment. In this experiment, the XkI tube current was 0°220m.
Starting from A, the result when changing to 0.215 mA is shown by the mark O, and the result when changing to 0.225 mA is shown by the mark 0. The calibration point in the figure is the count change rate at point A of about 70,000 cps. The thickness of Rac is Nc/NcI between AB.・The curve connecting the marks and ○ marks starts from point A and is between AC and C+ above point A.

×Ne/NcIにある0点を通る水平線を漸近線とし、
その漸近線に向かう減衰面vA(A点を原点とし縦軸N
c/Nc、xc。
The horizontal line passing through the 0 point at ×Ne/NcI is an asymptote,
Attenuation surface vA toward its asymptote (with point A as the origin and vertical axis N
c/Nc, xc.

C*(N−−)l”) (但しCr−C,(1−C’        ))、横
軸Nc−N”の座標に画かれる)であることが明らかに
なった。
C*(N--)l'') (where Cr-C, (1-C')), drawn at the coordinates of the horizontal axis Nc-N'').

本発明は、面密度測定値を前記+1)式にて求める際、
(1)式に代入すべきNsNs、Ns値に前記(2)式
によって補正されたN値を代入することを特徴とするグ
リーンシートの高精度密度測定法をその要旨とする。
In the present invention, when obtaining the areal density measurement value using the above-mentioned formula +1),
The gist of the present invention is a high-precision density measurement method for green sheets, which is characterized by substituting the N value corrected by the above-mentioned equation (2) into the NsNs and Ns values to be substituted into the equation (1).

また本発明の実施に際し、厚み測定器の温度をコントロ
ールし変形による誤差発生を防止することが不可欠とな
る。故に第2の発明は、本発明方法において、厚み測定
器による厚み測定に際し、厚み測定器を温度コントロー
ルすることを特徴とする。
Further, when carrying out the present invention, it is essential to control the temperature of the thickness measuring device to prevent errors caused by deformation. Therefore, the second invention is characterized in that, in the method of the present invention, the temperature of the thickness measuring device is controlled when the thickness is measured by the thickness measuring device.

(作  用〕 本発明によると、測定されたpcカウンターの測定値を
補正して正確なXIカウントを算出することができるも
のであり、その結果面密度を高精度に測定でき、別途厚
み測定器による高精度の厚み測定結果と相持ってグリー
ンシートの高精度の密度測定を可能にする。
(Function) According to the present invention, it is possible to calculate an accurate XI count by correcting the measured value of the PC counter, and as a result, the areal density can be measured with high precision, and a separate thickness measuring device is required. Coupled with the highly accurate thickness measurement result obtained by the method, it is possible to measure the density of green sheets with high accuracy.

〔実施例〕〔Example〕

本発明の測定方法を実施するに適した装置の例を第6図
にて説明する。
An example of an apparatus suitable for carrying out the measuring method of the present invention will be explained with reference to FIG.

グリーンシート3は矢印方向に間欠的に送られる。グリ
ーンシート3の上方にX線管法lを設け、X線管法lよ
り出たX線はコリメーター4にて照射面積を限定されて
グリーンシート3を透過してグリーンシート3下方の2
7反射板2に入り、蛍光XiZ、−KX線となって反射
される。反射された蛍光X線はグリーンシート3を再び
透過してグリーンシート斜上方のpcカウンター5に入
る。
The green sheet 3 is intermittently fed in the direction of the arrow. An X-ray tube 1 is provided above the green sheet 3.
7 enters the reflection plate 2 and is reflected as fluorescent XiZ, -KX rays. The reflected fluorescent X-rays pass through the green sheet 3 again and enter the PC counter 5 located diagonally above the green sheet.

グリーンシート3の流れの後方に温調エアー6により保
温されたCフレー゛ム7よりなりレーザ厚み測定器8が
あり、Cフレーム7に取りつけられた上方レーザ19a
と下方レーザ源9bより各々レーザ光が発射されてグリ
ーンシート3より反射してそれぞれの受光端に入る。
Behind the flow of the green sheet 3, there is a laser thickness measuring device 8 consisting of a C frame 7 kept warm by temperature-controlled air 6, and an upper laser 19a attached to the C frame 7.
Laser light is emitted from the lower laser source 9b, reflected from the green sheet 3, and enters the respective light receiving ends.

前記装置における本発明方法の実施手順は次の通りであ
る。
The procedure for carrying out the method of the present invention in the apparatus is as follows.

pcカウンター5で測定された電流は波高弁別H(SC
A)10に入って一定以上の波高の波が取り出されてカ
ウント制御部1)でその数がカウントされる。
The current measured by the PC counter 5 is pulse height discrimination H (SC
A) Waves having a wave height of a certain level or more are taken out at 10, and the number is counted by the count control section 1).

レーザ厚み測定器8では駆動制御12されたスパン追従
機構13及びスキャン機構14により走査されたレーザ
ビームによってグリーンシート3のさきにxmi3過測
定器が測定した部分の全面のレーザビーム変位が測定さ
れ平均化される。このビーム変位は上変位変換器15及
び下変位変換器16を経て厚み演算部17に入り、グリ
ーンシート3面の各部の厚みが順次計算される。
In the laser thickness measuring device 8, the laser beam displacement of the entire surface of the part measured by the xmi3 thickness measuring device before the green sheet 3 is measured by the laser beam scanned by the span following mechanism 13 and the scanning mechanism 14 which are drive-controlled by the drive control 12, and the average displacement is measured. be converted into This beam displacement passes through the upper displacement converter 15 and the lower displacement converter 16 and enters the thickness calculating section 17, where the thickness of each part of the three green sheets is sequentially calculated.

面密度演算、生密度演算器18では、前記pCカウンタ
ー50カウント数に補正を加えて面密度が精度高く演算
される番この面密度の値が人力された前記厚み計算値に
よって除算され、グリーンシートの全面における高精度
の生密度が演算されるのである。
In the areal density calculation and raw density calculator 18, the areal density value is calculated with high accuracy by adding correction to the 50 counts of the PC counter, and the areal density value is divided by the manually calculated thickness value, and the green sheet is Highly accurate raw density over the entire surface is calculated.

〔発明の効果〕〔Effect of the invention〕

精度は統計学上の変位係数σ/Y(σ:標準偏差、Y:
平均値)で代表される。測定数は(カウント数N)×(
測定時間t)であるので、σ=f「[、x=Ntとなり
変位係数は1/=fN]−となる、故に精度はカウント
数が大となる程、また測定時間tが長くなる程良くなる
Accuracy is determined by the statistical coefficient of displacement σ/Y (σ: standard deviation, Y:
average value). The number of measurements is (number of counts N) x (
Measurement time t), so σ = f "[, x = Nt, and the displacement coefficient is 1/= fN] - Therefore, the accuracy is better as the number of counts increases and as the measurement time t becomes longer. Become.

第7図は6種類、A、 B、 C,D、 E、  Pの
厚みのグリーンシートの生密度について生密度ばらつき
3σ/Yと測定時間との関係を示している。
FIG. 7 shows the relationship between the green density variation 3σ/Y and the measurement time for the green densities of six types of green sheets, A, B, C, D, E, and P.

測定時間が長くなると共に生密度ばらつきは当然小さく
なり、測定精度が向上している。また、どの厚みにおい
てもカウント数の大きい領域で測定した効果があり、比
較的短時間でも高精度が得られている。厚みAについて
の生密度のばらつき3σ/Xは0.20%の良成績であ
る。
Naturally, as the measurement time becomes longer, the green density variation becomes smaller, and the measurement accuracy improves. Furthermore, regardless of the thickness, there is an effect of measuring in a region with a large number of counts, and high accuracy is obtained even in a relatively short time. The green density variation 3σ/X for thickness A is a good result of 0.20%.

次に本発明法を実施した効果を説明する。Next, the effects of implementing the method of the present invention will be explained.

厚みゼロのときのX線カウントが約73000cpsで
あるとき サンプル0−・−・・・−・厚み0.5w、X線カウン
ト約50000cps サンプ4−・−・−・厚み1.0鶴、x*カウント約3
0000cps サンプ)L@、@につき、同一点の生密度を測定時間3
00秒/点で繰り返し測定した5点の移動平均を第8図
、第9図にプロットした。
When the X-ray count is approximately 73,000 cps when the thickness is zero, Sample 0--- Thickness 0.5w, X-ray count approximately 50,000 cps Sample 4--- Thickness 1.0 Tsuru, x* Count about 3
0000cps sample) Measure the fresh density at the same point for L @, @ for time 3
The moving average of 5 points repeatedly measured at 00 seconds/point is plotted in FIGS. 8 and 9.

本発明法の補正を行わない場合の結果を第8図に示す、
較正時のカウント約73000と離れたX線カウントの
小さいサンプ)4)では±0.1%程度の誤差を生じた
Figure 8 shows the results when no correction is made to the method of the present invention.
Sample 4) with a small X-ray count far from the count of approximately 73,000 during calibration resulted in an error of approximately ±0.1%.

本発明法の補正を行った結果を第9図に示す。The results of the correction of the method of the present invention are shown in FIG.

サンブノイリでも±0.05%以下の誤差に止めること
が可能となった。
It has become possible to keep the error to less than ±0.05% even with sambu noise.

また、レーザ厚み測定器におけるCフレーム7温度を±
0.2℃に保った場合、グリーンシートの3鶴のスキャ
ン面積中の512点の厚みについての平均値のばらつき
は±0.4μmの小さな範囲で、かつその再現性を確保
する良結果を得た。
In addition, the temperature of the C frame 7 in the laser thickness measuring device is ±
When kept at 0.2℃, the variation in the average thickness of 512 points in the scanning area of 3 cranes on the green sheet was within a small range of ±0.4μm, and good results were obtained to ensure reproducibility. Ta.

本発明は上述の如く、グリーンシートの密度を高精度に
測定することを可能にするもので、セラミックパッケー
ジの生産に大きく寄与する。
As described above, the present invention makes it possible to measure the density of green sheets with high precision, and greatly contributes to the production of ceramic packages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は透過X線による面密度測定法を示す概念図、第
2図は検出器べの入射X線強度と検出器出力との関係を
示す線図、第3図はpcカウンターへの検出カウントと
X線管電流との関係を示す線図、第4図はpCカウンタ
ーのカウント数とpCカウンターへの入射xi強度との
関係を示す線図、第5図はカウント変化率R4tの13
iI4X線カウントに応じる変化を示す線図、第6図は
本発明の実施に適した装置の例を示す模式図、第7図は
各厚み毎の生密度ばらつきと測定時間との関係を示す線
図、第8図は本発明法の補正を行わない場合の生密度の
変化を示す線図、第9図は本発明法の補正を行った場合
の生密度の変化を示す線IAである。 l:X線管、2:Zr反射板、3;グリーンシート、セ
ラミックテープ、4:コリメーター、5;pcカウンタ
ー、6:部端エア、7:cフレーム、8:レーザ厚み測
定器、9a、9b:レーザ変位計。 厚み  なりン) 測定時間(See) 第7図 第  1  図 第2図 X線管電bA) 第3図 第4図 透逼X@力りシトN(C1)S) 第5図 第6図
Figure 1 is a conceptual diagram showing the areal density measurement method using transmitted X-rays, Figure 2 is a diagram showing the relationship between the incident X-ray intensity on the detector and the detector output, and Figure 3 is a diagram showing the relationship between the incident X-ray intensity on the detector and the detector output. A diagram showing the relationship between the count and the X-ray tube current, Figure 4 is a diagram showing the relationship between the count number of the pC counter and the intensity of xi incident on the pC counter, and Figure 5 is a diagram showing the relationship between the count change rate R4t of 13
iI4 A line diagram showing changes in response to X-ray counts, Figure 6 is a schematic diagram showing an example of an apparatus suitable for carrying out the present invention, and Figure 7 is a line showing the relationship between green density variation and measurement time for each thickness. 8 is a line diagram showing the change in green density when no correction is made by the method of the present invention, and FIG. 9 is a line IA showing the change in green density when the correction is made by the method of the present invention. l: X-ray tube, 2: Zr reflector, 3: green sheet, ceramic tape, 4: collimator, 5: PC counter, 6: end air, 7: c frame, 8: laser thickness measuring device, 9a, 9b: Laser displacement meter. Thickness) Measurement time (See) Fig. 7 Fig. 1 Fig. 2 X-ray tube bA) Fig. 3 Fig. 4 Clearance

Claims (1)

【特許請求の範囲】 1、セラミックテープ(3)について、透過蛍光X線を
プロポーショナルカウンター(5)に受ける方式によっ
て面密度ρtを測定し、別途厚み測定器により厚みtを
測定し、面密度を厚みにて除算して密度ρを算出する方
法において、面密度の測定値を次記(1)式N−N_2
=(N_0−N_s)■^−^ρ^t^/^K・・・(
1)原理式但しN:補正後の透過X線検出カウント(c
ps)t:セラミックテープの厚み(m) ρ:密度(g/m^3) K:X線に対するセラミックテープの吸収係数の逆数(
g/m^3) N_0:t=0における透過X線検出カウント(cps
) N_s:t=∞における透過X線検出カウント(cps
) にて求める際、(1)式に代入すべきN、N_0、N_
s値に次記(2)式 ▲数式、化学式、表等があります▼ ・・・(2)数値変換式 但しN:補正された透過X線検出カウント数(cps) N^*:測定された透過X線検出カウント数(cps) N_c:基準とした較正条件での最新較正時の透過X線
検出カウント数(cps) N_c_i:基準とした較正条件での検量線作成時の初
期透過X線検出カウント数(cps) C_1:常数 C_2:常数 によって補正されたN値を代入することを特徴とするセ
ラミックテープの高精度密度測定方法。 2、厚み測定器による厚み測定において、厚み測定器を
温度コントロールしながら厚み測定を行うことを特徴と
する請求項(1)記載のセラミックテープの高精度密度
測定方法。
[Claims] 1. Regarding the ceramic tape (3), the areal density ρt is measured by a method in which a proportional counter (5) receives transmitted fluorescent X-rays, and the thickness t is separately measured with a thickness measuring device, and the areal density is determined. In the method of calculating the density ρ by dividing by the thickness, the measured value of the areal density is calculated using the following formula (1) N-N_2
=(N_0-N_s)■^-^ρ^t^/^K...(
1) Principle formula where N: transmitted X-ray detection count after correction (c
ps) t: Thickness of ceramic tape (m) ρ: Density (g/m^3) K: Reciprocal of absorption coefficient of ceramic tape for X-rays (
g/m^3) N_0: Transmitted X-ray detection count at t=0 (cps
) N_s: Transmitted X-ray detection count at t=∞ (cps
), N, N_0, N_ should be substituted into equation (1).
The s value has the following formula (2) ▲ Numerical formula, chemical formula, table, etc. ▼ ... (2) Numerical conversion formula where N: Corrected transmitted X-ray detection count number (cps) N^*: Measured Number of transmission X-ray detection counts (cps) N_c: Number of transmission X-ray detection counts (cps) during the latest calibration under the standard calibration conditions N_c_i: Initial transmission X-ray detection when creating a calibration curve under the standard calibration conditions Count number (cps) C_1: Constant C_2: A high-precision density measurement method for ceramic tape, characterized by substituting an N value corrected by a constant. 2. The method for high-precision density measurement of a ceramic tape according to claim 1, wherein the thickness is measured by a thickness measuring device while controlling the temperature of the thickness measuring device.
JP8016888A 1988-03-30 1988-03-30 Measuring method of density with high precision Pending JPH01250743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8016888A JPH01250743A (en) 1988-03-30 1988-03-30 Measuring method of density with high precision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8016888A JPH01250743A (en) 1988-03-30 1988-03-30 Measuring method of density with high precision

Publications (1)

Publication Number Publication Date
JPH01250743A true JPH01250743A (en) 1989-10-05

Family

ID=13710795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8016888A Pending JPH01250743A (en) 1988-03-30 1988-03-30 Measuring method of density with high precision

Country Status (1)

Country Link
JP (1) JPH01250743A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753060A (en) * 1994-09-27 1998-05-19 Murata Manufacturing Co., Ltd. Method of manufacturing multilayer ceramic component
AU711955B2 (en) * 1996-03-21 1999-10-28 Kullenberg, Ragner Method and device for measuring density
JP2009255049A (en) * 2008-03-27 2009-11-05 Mitsubishi Electric Corp Sorting apparatus, sorting method and manufacturing method of recyclable resin material
JP2009279541A (en) * 2008-05-23 2009-12-03 Mitsubishi Electric Corp Apparatus and method for selecting bromine-base flame retardant-containing resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753060A (en) * 1994-09-27 1998-05-19 Murata Manufacturing Co., Ltd. Method of manufacturing multilayer ceramic component
US5942063A (en) * 1994-09-27 1999-08-24 Murata Manufacturing Co., Ltd. Method of manufacturing multilayer ceramic component including capacitor
AU711955B2 (en) * 1996-03-21 1999-10-28 Kullenberg, Ragner Method and device for measuring density
US6151379A (en) * 1996-03-21 2000-11-21 Kullenberg; Ragnar Method and device for measuring density
JP2009255049A (en) * 2008-03-27 2009-11-05 Mitsubishi Electric Corp Sorting apparatus, sorting method and manufacturing method of recyclable resin material
JP2009279541A (en) * 2008-05-23 2009-12-03 Mitsubishi Electric Corp Apparatus and method for selecting bromine-base flame retardant-containing resin

Similar Documents

Publication Publication Date Title
US20160216099A1 (en) Measurement apparatus and film-coating device
JP5702298B2 (en) Improved differential coat weight measurement by means of nuclear or X-ray gauge
JPH01250743A (en) Measuring method of density with high precision
JPS635683B2 (en)
Taylor et al. The influence of absorption on the shapes and positions of lines in debye-scherrer powder photographs
Wooster Microdensitometry applied to X-ray photographs
GB2046900A (en) Method of controlling the thickness of a moving web
US4089054A (en) Device for measuring the thickness of layers with a radionuclide irradiating the layer
CN115508311A (en) Transparent solution concentration measuring device and method based on hollow triangular prism lens
US5020356A (en) Method and apparatus for measuring characteristics of a multilayer product
Gailar et al. Range‐Energy Relations for Alpha‐Particles and Deuterons in the Kodak NTB Emulsion
Norton X-Ray Stress Measurement by the Single-Exposure Technique
US4388389A (en) Photo resist spectral matching technique
CN218546534U (en) Transparent solution concentration measuring device based on hollow triangular prism lens
CN214150328U (en) Calibration diaphragm for ray-method particulate matter monitor
CN216283276U (en) Device for measuring thickness of transparent substance by using refraction principle of laser sensor
JPS5999339A (en) Painted amount measuring device
CN208269871U (en) A kind of calibrator
CN117129371B (en) Calibration method and device for surface density measuring instrument and readable storage medium
JP2552802Y2 (en) Glass thickness measuring device
JPH01124703A (en) Method and device for noncontact measurement of film characteristic
JPS6145916A (en) Radiation sticking quantity meter
JPH0861943A (en) X-ray measuring device
JPS60133308A (en) Method for measuring attached amount of plated film
JP2014044162A (en) Radiation measuring method