JPH11116358A - Processing of superplastic ceramic - Google Patents

Processing of superplastic ceramic

Info

Publication number
JPH11116358A
JPH11116358A JP9280274A JP28027497A JPH11116358A JP H11116358 A JPH11116358 A JP H11116358A JP 9280274 A JP9280274 A JP 9280274A JP 28027497 A JP28027497 A JP 28027497A JP H11116358 A JPH11116358 A JP H11116358A
Authority
JP
Japan
Prior art keywords
temperature
lithium aluminosilicate
spodumene
calcium silicate
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9280274A
Other languages
Japanese (ja)
Other versions
JP3798130B2 (en
Inventor
Chiharu Wada
千春 和田
Makoto Katagiri
誠 片桐
Makoto Sakamaki
誠 酒巻
Norihiko Misaki
紀彦 三崎
Masahiko Suzuki
正彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP28027497A priority Critical patent/JP3798130B2/en
Publication of JPH11116358A publication Critical patent/JPH11116358A/en
Application granted granted Critical
Publication of JP3798130B2 publication Critical patent/JP3798130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a superplastic ceramic to be processed at far much lower temperature than the conventional processing temperature, additionally at an equal to or higher strain rate than the conventional rate. SOLUTION: A ceramic that is mainly composed of complex crystalline structure of calcium silicate and lithium aluminosilicate, has an average crystal particle size of <=2 μm, the maximum crystal particle size of <=20 μm, a density of more than 98% theoretical density and contains 2-98 wt.% of lithium aluminosilicate based on the total amount of calcium silicate and lithium aluminosilicate is subjected to plastic working at a temperature of 800-1,100 deg.C at a strain rate of 10<-5> -5×10<-3> /sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱衝撃性を要求
される各種低高温部品・治具・機器、低熱膨脹性を要求
される各種精密型材・精密検査装置部品・高温計器部
品、断熱性を要求される半導体用断熱材、精密加工を要
求される各種精密部品等に好適な超塑性セラミックスの
加工方法に関し、特に低温かつ高速度での加工が可能な
超塑性セラミックスの加工方法に関する。
The present invention relates to various low- and high-temperature parts / jigs / equipments requiring thermal shock resistance, various precision mold materials / precision inspection equipment parts / high-temperature instrument parts requiring low thermal expansion properties, and heat insulating properties. The present invention relates to a method for processing superplastic ceramics suitable for heat insulating materials for semiconductors requiring high precision processing and various precision parts requiring high precision processing, and more particularly to a method for processing superplastic ceramics capable of processing at low temperature and high speed.

【0002】[0002]

【従来の技術】セラミックスは脆性な材料であるが、焼
結体結晶組織を微細化することで金属と同様な塑性加工
が可能であることが分かってきている。このような塑性
加工が可能なセラミックスを超塑性セラミックスと称し
ており、その代表例としてはジルコニア、ジルコニアに
アルミナが含有されたもの、窒化ケイ素、窒化ケイ素に
炭化ケイ素が含有されたものなどが知られている(特開
昭62-91480号公報,特開昭63-182279号公報,特開平4-1
03303号公報,特開平8-12443号公報)。
2. Description of the Related Art Ceramics are brittle materials, but it has been found that plastic processing similar to that of metal can be performed by reducing the crystal structure of a sintered body. Such ceramics that can be plastically processed are called superplastic ceramics. Representative examples thereof include zirconia, zirconia containing alumina, silicon nitride, and silicon nitride containing silicon carbide. (JP-A-62-91480, JP-A-63-182279, JP-A-4-1279)
03303, JP-A-8-12443).

【0003】しかし、これら従来の開示技術では、その
塑性加工温度は、実際上1400℃前後という非常な高温を
要し、それ以下の温度では超塑性を示さないという問題
がある。例えば、特開昭62-91480号公報の実施例におい
ては、塑性加工温度は1400〜1500℃であり、アルミ合金
の550℃、チタン合金の850℃程度という金属での塑性加
工温度に比べて著しく高温である。このような高温で
は、塑性加工を行うための型などの付帯設備を全てセラ
ミックス製とするか、または真空系を有する装置でカー
ボン製の治工具を用いる必要があり、いずれにしろ高価
な設備を必要とするものである。
[0003] However, these conventional techniques have a problem that the plastic working temperature actually requires a very high temperature of about 1400 ° C, and at a temperature lower than that, superplasticity is not exhibited. For example, in the example of Japanese Patent Application Laid-Open No. 62-91480, the plastic working temperature is 1400 to 1500 ° C., which is remarkably compared to the plastic working temperature of a metal such as 550 ° C. for aluminum alloy and 850 ° C. for titanium alloy. High temperature. At such a high temperature, it is necessary to make all the ancillary equipment such as a mold for performing plastic working made of ceramics, or to use carbon jigs and tools in a device having a vacuum system. It is what you need.

【0004】また、加工時の歪速度が小さいことも大き
な問題である。一般に超塑性セラミックスの塑性加工時
の歪速度は金属に比すと極端に小さいため、生産速度が
金属よりも劣ることになる。従って、より歪速度の大き
な生産性の良いセラミックスの塑性加工が望まれるのは
言を俟たない。
[0004] Another problem is that the strain rate during processing is low. In general, the strain rate during plastic working of superplastic ceramics is extremely small compared to metals, so that the production rate is inferior to metals. Therefore, there is no mention that plastic working of ceramics having a higher strain rate and good productivity is desired.

【0005】[0005]

【発明が解決しようとする課題】このように、従来の技
術ではセラミックスの塑性加工温度は極めて高く、また
加工速度も十分なものではなかった。従って、本発明
は、従来よりもはるかに低い温度で、かつ従来と同等以
上に大きい歪速度での加工が可能な超塑性セラミックス
の加工方法を提供することを目的とするものである。
As described above, in the prior art, the plastic working temperature of ceramics is extremely high, and the working speed is not sufficient. Accordingly, an object of the present invention is to provide a method for processing a superplastic ceramic which can be processed at a temperature much lower than the conventional one and at a strain rate equal to or greater than the conventional one.

【0006】[0006]

【課題を解決するための手段】かかる実情において本発
明者らは鋭意研究を重ねた結果、一定比率のカルシウム
シリケートとリチウムアルミノシリケートからなる結晶
粒径が小さく高密度の複合焼結体においては、低温かつ
十分に大きな速度での塑性加工が可能であることを見出
し、本発明を完成した。
Under such circumstances, the present inventors have conducted intensive studies and as a result, have found that a high-density composite sintered body having a small crystal grain size composed of a fixed ratio of calcium silicate and lithium aluminosilicate has the following problems. The present inventors have found that plastic working at a low temperature and at a sufficiently large speed is possible, and have completed the present invention.

【0007】すなわち本発明は、カルシウムシリケート
とリチウムアルミノシリケートが複合した結晶組織を主
体とし、平均結晶粒径が2μm以下、最大結晶粒径が20
μm以下、密度が理論密度の98%以上であり、カルシウ
ムシリケートとリチウムアルミノシリケートの合量に対
しリチウムアルミノシリケートが2〜98重量%含まれる
セラミックスを、800〜1100℃の温度下、10-5〜5×10
-3/secの歪速度で塑性加工することを特徴とする超塑性
セラミックスの加工方法を提供するものである。
That is, the present invention mainly comprises a crystal structure composed of calcium silicate and lithium aluminosilicate, and has an average crystal grain size of 2 μm or less and a maximum crystal grain size of 20 μm or less.
μm or less, the density is at least 98% of theoretical density, a ceramic lithium aluminosilicate to the total amount of calcium silicate and lithium aluminosilicate is contained 2 to 98 wt%, a temperature of 800 to 1100 ° C., 10 -5 ~ 5 × 10
An object of the present invention is to provide a method for processing superplastic ceramics, which is characterized by performing plastic processing at a strain rate of -3 / sec.

【0008】[0008]

【発明の実施の形態】本発明で用いる超塑性セラミック
スは、カルシウムシリケートとリチウムアルミノシリケ
ートを主要構成相とする複合焼結体である。カルシウム
シリケートあるいはリチウムアルミノシリケートのいず
れか1種類のみでは、低温かつ高速での塑性加工ができ
ないと共に、セラミックス材料としての特性も劣ること
となる。
BEST MODE FOR CARRYING OUT THE INVENTION The superplastic ceramic used in the present invention is a composite sintered body mainly composed of calcium silicate and lithium aluminosilicate. If only one of calcium silicate and lithium aluminosilicate is used, plastic working at low temperature and high speed cannot be performed, and characteristics as a ceramic material will be inferior.

【0009】また、上記超塑性セラミックスの平均結晶
粒径は2μm以下でなくてはならず、1μm以下である
のが好ましい。平均結晶粒径が2μmを超える場合、超
塑性挙動自体は現出するが、塑性加工の限界歪量が低下
するため好ましくない。
The average crystal grain size of the superplastic ceramic must be 2 μm or less, and preferably 1 μm or less. When the average crystal grain size exceeds 2 μm, the superplastic behavior itself appears, but it is not preferable because the critical strain amount of plastic working decreases.

【0010】更に、本超塑性セラミックスの結晶粒径は
最大でも20μm以下でなくてはならず、10μm以下、特
に5μm以下であるのが好ましい。平均結晶粒径に比べ
て著しく粗大な結晶が存在すると、その結晶粒子が欠陥
として作用するため、塑性加工時にボイドの生成や破壊
の原因となる。
Further, the crystal grain size of the present superplastic ceramic must be at most 20 μm, preferably at most 10 μm, particularly preferably at most 5 μm. If there is a crystal that is significantly larger than the average crystal grain size, the crystal grain acts as a defect, which causes voids or breakage during plastic working.

【0011】また、本超塑性セラミックスの密度は理論
密度の98%以上でなくてはならず、99%以上に緻密化さ
れていることがより好ましい。密度がこれに満たない場
合、焼結体中に存在する空隙が塑性加工時に大きなボイ
ドと化し限界の歪量が著しく低下するため好ましくな
い。なお、本焼結体中には原料に含まれる不純物、製造
工程上の不可避の不純物が2重量%程度まで含まれてい
ても構わない。従って、上記理論密度の98%以上とは、
厳密にはこの2重量%以下の不純物を考慮したものであ
るべきであるが、ここではカルシウムシリケートとリチ
ウムアルミノシリケートのみからなるものと考えて換算
した数値をいう。
Further, the density of the present superplastic ceramic must be 98% or more of the theoretical density, and more preferably 99% or more. If the density is less than this, voids existing in the sintered body become large voids during plastic working, and the limit strain amount is significantly reduced, which is not preferable. The sintered body may contain up to about 2% by weight of impurities contained in the raw material and unavoidable impurities in the production process. Therefore, 98% or more of the theoretical density is
Strictly speaking, it is necessary to consider the impurity of 2% by weight or less, but here, the numerical value converted by considering that it is composed only of calcium silicate and lithium aluminosilicate is used.

【0012】本超塑性セラミックス中のカルシウムシリ
ケートとリチウムアルミノシリケートの比率は、両者の
合量に対するリチウムアルミノシリケートの比率として
2〜98重量%でなければならず、5〜95重量%であるの
がより好ましい。リチウムアルミノシリケートが2重量
%未満の場合、及び98重量%を超える場合、焼結体は理
論密度の98%まで緻密化せず気孔が多数残るため超塑性
が損なわれる。
The ratio of calcium silicate and lithium aluminosilicate in the present superplastic ceramic must be 2 to 98% by weight as the ratio of lithium aluminosilicate to the total amount of both, and is preferably 5 to 95% by weight. More preferred. When the content of lithium aluminosilicate is less than 2% by weight or more than 98% by weight, the sintered body is not densified to 98% of the theoretical density and many pores remain, so that superplasticity is impaired.

【0013】本超塑性セラミックスを構成するカルシウ
ムシリケートとしては、CaOをC、SiO2をSと略し、C
S、C2S、C3S、C3S2等が挙げられるが、このうちCSのウ
ォラストナイトが好ましく、更にウォラストナイトには
αとβの2種類があるが、β-ウォラストナイトが最も
好ましい。C2S、C3S等が含まれても構わないが、量的に
多いと超塑性現象が損なわれるため、2重量%までとす
るのが好ましい。
As the calcium silicate constituting the superplastic ceramic, CaO is abbreviated as C, SiO 2 is abbreviated as S, and C
S, C 2 S, C 3 S, C 3 S 2 and the like. Among them, CS wollastonite is preferable, and wollastonite has two types of α and β. Knight is most preferred. C 2 S, C 3 S and the like may be contained, but if the amount is large, the superplasticity phenomenon is impaired, so that it is preferably up to 2% by weight.

【0014】本超塑性セラミックスを構成するリチウム
アルミノシリケートとしては、Li2OをL、Al2O3をA、S
iO2をSと略し、LAS2のユークリプタイト、LAS4のスポ
ジューメン、スポジューメン固溶体が挙げられる。この
うちスポジューメンがユークリプタイトに比べてコスト
面などで好ましい。スポジューメンにはαとβの2種類
あるが、β-スポジューメンが最も好ましい。
As the lithium aluminosilicate constituting the superplastic ceramic, Li 2 O is L, Al 2 O 3 is A, S
iO 2 is abbreviated as S and includes eucryptite of LAS 2 , spodumene of LAS 4 , and solid solution of spodumene. Of these, spojumen are preferred in terms of cost and the like as compared with eucryptite. There are two types of spodumene, α and β, with β-spodumene being most preferred.

【0015】またこれら以外に、本超塑性セラミックス
には不可避の不純物成分としてFe2O 3、TiO2、MgO、Mn
O、Na2O、K2O、P2O5等が2重量%まで含まれていても構
わない。
In addition to these, the superplastic ceramics
Fe as an unavoidable impurity componentTwoO Three, TiOTwo, MgO, Mn
O, NaTwoOKTwoO, PTwoOFiveEtc. may be contained up to 2% by weight.
I don't know.

【0016】本超塑性セラミックスは、例えば平均粒径
が1μm未満のウォラストナイト又は焼成によりウォラ
ストナイトに転移するカルシウムシリケートの少なくと
も1種と、平均粒径が1μm未満のリチウムアルミノシ
リケートの少なくとも1種を含む原料配合物を成形し、
これを1000〜1150℃で焼成することにより製造すること
ができる。
The superplastic ceramics may include, for example, at least one kind of wollastonite having an average particle diameter of less than 1 μm or calcium silicate which transforms to wollastonite upon firing, and at least one of lithium aluminosilicate having an average particle diameter of less than 1 μm. Forming a raw material mixture containing seeds,
This can be manufactured by firing at 1000 to 1150 ° C.

【0017】出発原料であるカルシウムシリケートとし
ては、ウォラストナイトのほか、CSH(カルシウムシリ
ケート結晶質水和物の前駆体であり、CaとSiのモル比Ca
/Siが種々の比率を取り得る非晶質水和物の総称)、ト
バモライト、ゾノトライト、ジャイロライト、オーケナ
イト等が挙げられ、いずれかを単独で又は2種以上を組
合せて使用することができる。このうち、CSH、ゾノト
ライト及びウォラストナイトが好ましく、CSHはCa/Siモ
ル比が0.5〜1.5前後のCSHが、ウォラストナイトは天然
のβ-ウォラストナイトが好ましい。
The starting materials for calcium silicate include wollastonite as well as CSH (a precursor of calcium silicate crystalline hydrate, and a molar ratio of Ca to Si of Ca).
/ Si is a general term for amorphous hydrates that can have various ratios), tobermorite, zonotolite, gyrolite, orkenite, and the like. Any of these can be used alone or in combination of two or more. Among them, CSH, zonotolite and wollastonite are preferable, CSH having a Ca / Si molar ratio of about 0.5 to 1.5 is preferable, and wollastonite is preferably natural β-wollastonite.

【0018】もう一方の出発原料であるリチウムアルミ
ノシリケートとしては、L:A:S=1:1:2、1:1:3、1:1:4、
1:1:6、1:1:8、1:1:10、1:1:12、1:1:15等のものが挙げ
られ、いずれかを単独で又は2種以上を組合せて使用す
ることができる。このうち、LAS2のユークリプタイト、
LAS4のスポジューメン及びLAS8のペタライトが好まし
く、特にコスト面等の点から天然に産するα-スポジュ
ーメンもしくはそれを焼成して転移させたβ-スポジュ
ーメン、又は天然のペタライトが好ましい。ペタライト
は高温でβ-スポジューメン固溶体となる。
As the other starting material, lithium aluminosilicate, L: A: S = 1: 1: 2, 1: 1: 3, 1: 1: 4,
1: 1: 6, 1: 1: 8, 1: 1: 10, 1: 1: 12, 1: 1: 15, etc., either of which is used alone or in combination of two or more. be able to. Of these, LAS 2 eucryptite,
The LAS 4 spodumene and the LAS 8 petalite are preferred, and from the viewpoint of cost and the like, naturally-occurring α-spodumene, β-spodumene obtained by calcining the α-spodumene, and natural petalite are preferred. Petalite becomes a β-spodumene solid solution at high temperatures.

【0019】これら出発原料の平均粒径は1μm未満、
特に0.5μm以下が好ましい。本超塑性セラミックス
は、平均結晶粒径が2μm以下、最大結晶粒径が20μm
以下であることが必要であり、その焼結体中の結晶粒径
の大きさは、用いる出発原料の粒径と焼成温度に依存す
るためである。すなわち、粒径の大きな原料を用いれば
焼結体組織の結晶粒径が大きくなるのは当然のこと、小
さな粒径の原料を用いても焼結時に粒成長が起きるた
め、焼成温度に応じた形で焼結体結晶粒径は原料粒径よ
りも大きくなる。従って、用いる原料粒径はより粒径の
小さなものが望ましい。
These starting materials have an average particle size of less than 1 μm,
In particular, it is preferably 0.5 μm or less. This superplastic ceramic has an average crystal grain size of 2 μm or less and a maximum crystal grain size of 20 μm.
This is necessary because the size of the crystal grain in the sintered body depends on the grain size of the starting material used and the firing temperature. That is, if a raw material having a large particle size is used, it is natural that the crystal grain size of the sintered body structure becomes large, and even if a raw material having a small particle size is used, grain growth occurs during sintering. In the form, the crystal grain size of the sintered body becomes larger than the grain size of the raw material. Therefore, it is desirable that the raw material particle size used is smaller.

【0020】なお、これら出発原料の1μm未満の超微
粒子を容易に得る方法としては、例えば、以下の方法が
挙げられる。
As a method for easily obtaining ultrafine particles of less than 1 μm of these starting materials, for example, the following methods can be mentioned.

【0021】すなわち、ウォラストナイトの超微粒子
は、Si原料とCa原料のCa/Siモル比を0.5〜1.5に調合し
たスラリーを水熱処理してケイ酸カルシウム水和物を合
成した後、700〜1200℃で焼成し、必要に応じて粉砕す
ることにより、また、スポジューメンの超微粒子は、α
-スポジューメンを1000〜1300℃で焼成し相転移させて
得られたβ-スポジューメンを粉砕することにより製造
することができる。
That is, ultra-fine wollastonite particles are obtained by hydrothermally treating a slurry in which the Ca / Si molar ratio of the Si raw material and the Ca raw material is adjusted to 0.5 to 1.5 to synthesize calcium silicate hydrate. By firing at 1200 ° C and pulverizing if necessary,
Β-spodumene can be manufactured by sintering the spodumene at 1000 to 1300 ° C. and subjecting it to a phase transition to pulverize the obtained β-spodumene.

【0022】上記のごとく焼成することにより、前者は
β-ウォラストナイトの微粒子ないしその集合体が得ら
れ、後者はβ-スポジューメンの微細な結晶粒界を有す
る多結晶体的構造が得られ、いずれもアトライター等の
特殊な超微粉砕機を用いることなく、ボールミル等によ
って容易に超微粒子を得ることができる。
By calcination as described above, the former provides fine particles of β-wollastonite or an aggregate thereof, and the latter obtains a polycrystalline structure having fine crystal grain boundaries of β-spodumene, In each case, ultrafine particles can be easily obtained by a ball mill or the like without using a special ultrafine pulverizer such as an attritor.

【0023】原料配合物の組成としては、焼成後に焼結
体結晶相中のカルシウムシリケートとリチウムアルミノ
シリケートの合量に対しリチウムアルミノシリケートが
2〜98重量%となる比率で配合すればよいが、不純物成
分の含量が2重量%以下であるような原料を用いた場
合、カルシウムシリケート原料とリチウムアルミノシリ
ケート原料の合量に対しリチウムアルミノシリケート原
料が2〜98重量%となる比率で配合することができる。
The composition of the raw material blend may be such that the lithium aluminosilicate is 2-98% by weight based on the total amount of calcium silicate and lithium aluminosilicate in the crystal phase of the sintered body after firing. When a raw material having an impurity component content of 2% by weight or less is used, the lithium aluminosilicate raw material may be blended at a ratio of 2 to 98% by weight based on the total amount of the calcium silicate raw material and the lithium aluminosilicate raw material. it can.

【0024】上記の原料配合物を焼成することにより、
本発明で用いる超塑性セラミックスが得られる。この焼
成温度としては、1000〜1150℃が好ましい。焼成温度が
1000℃未満の場合、焼結体が緻密化しにくく気孔が増大
するため超塑性の性能が損なわれ易い。1150℃を超える
場合、原料粒径にも依存するが粒成長が増大するため平
均粒径が2μm以上となりやすい、焼結体中にわずかに
発泡が生じる結果、破壊の起点となるボイドが生成す
る、などの理由で超塑性が損なわれる。焼成時間は、目
的とする焼結体の寸法によっても異なるが、通常は60分
程度で十分である。
By baking the above raw material mixture,
The superplastic ceramic used in the present invention is obtained. The firing temperature is preferably from 1000 to 1150 ° C. Firing temperature
If the temperature is lower than 1000 ° C., the sintered body is hardly densified, and the pores increase, so that the superplasticity performance is easily deteriorated. When the temperature exceeds 1150 ° C., the average particle diameter is liable to be 2 μm or more because the grain growth increases, depending on the raw material particle diameter. Superplasticity is impaired for reasons such as The firing time varies depending on the size of the target sintered body, but usually about 60 minutes is sufficient.

【0025】本発明では、以上のセラミックスの塑性加
工を、800〜1100℃の温度、10-5〜5×10-3/secの歪速
度で行うものである。温度が800℃に満たない場合でも
塑性加工は可能であるが、歪速度が小さく10-5/secに満
たなくなるため工業的に不利となる。また温度が1100℃
を超える場合、焼結温度に近づき焼結体の粒成長が起き
るため、結晶粒子が欠陥として作用してボイドの生成、
破壊の原因となり、好ましくない。
In the present invention, the above plastic working of the ceramics is performed at a temperature of 800 to 1100 ° C. and a strain rate of 10 −5 to 5 × 10 −3 / sec. Although plastic working is possible even when the temperature is lower than 800 ° C., it is industrially disadvantageous because the strain rate is too low to be lower than 10 −5 / sec. The temperature is 1100 ℃
When the temperature exceeds sintering temperature, the sintering temperature is approached and grain growth of the sintered body occurs.
It causes destruction and is not preferred.

【0026】歪速度は、10-5/secに満たない場合でもさ
して不都合は無いが、効率の低さの点で工業的でない。
一方、歪速度が5×10-3/secを超える場合、圧力が大き
くなり大型装置が必要になること、焼結体中にボイドが
形成されることなどの点で好ましくない。
[0026] Even if the strain rate is less than 10 -5 / sec, there is no inconvenience, but it is not industrial in terms of low efficiency.
On the other hand, when the strain rate exceeds 5 × 10 −3 / sec, it is not preferable in that the pressure increases and a large-sized apparatus is required, and voids are formed in the sintered body.

【0027】塑性加工の加工圧力(応力)は、ガス圧な
どある一定の圧力制御で行う場合と、ある一定の変位速
度で加工する変位制御の場合で異なる。変位制御の場
合、加工圧力は変形速度に依存する。すなわち、変形速
度が小さい場合はより小さな加工圧力で飽和し、大変形
速度の場合は飽和圧力はより大きくなる。好ましい加工
圧力は1〜50MPaであり、この下限に満たない場合、塑
性加工を行う温度にも依存するが、一般的には歪速度が
小さくなりすぎ工業的でなく、また上限を超える場合、
歪速度が大きくなり過ぎ、焼結体中にボイドが形成され
ることになり好ましくない。
The working pressure (stress) of the plastic working is different between a case where the pressure is controlled by a certain fixed pressure such as gas pressure and a case where the displacement is controlled by a certain fixed displacement speed. In the case of displacement control, the processing pressure depends on the deformation speed. That is, when the deformation speed is low, the saturation occurs at a lower processing pressure, and when the deformation speed is high, the saturation pressure becomes higher. The preferred working pressure is 1 to 50 MPa, and if less than this lower limit, it depends on the temperature at which the plastic working is performed, but in general, the strain rate is too low for industrial use, and when exceeding the upper limit,
The strain rate becomes too high, and voids are formed in the sintered body, which is not preferable.

【0028】[0028]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0029】なお、各実施例において、β-ウォラスト
ナイトとβ-スポジューメンの一方が少ない場合に焼結
体の結晶相を完全に同定するのは難しいため、予備試験
として、実施例1〜4で用いたβ-ウォラストナイトと
β-スポジューメンを50:50の割合として得られた焼結
体の結晶相を確認したところ、結晶相はβ-ウォラスト
ナイトとβ-スポジューメンであり、反応生成物は認め
られなかった。従って、個々の出発原料の高温における
重量減(強熱減量)を考慮すれば、焼結体結晶相の割合
は出発原料配合とほぼ同じ数値ということになるが、以
下の実施例における結晶相の割合の数値は、この不純物
を除いた純分としての値を示す。
In each of the examples, when one of β-wollastonite and β-spodumene is small, it is difficult to completely identify the crystal phase of the sintered body. The crystal phase of the sintered body obtained with the ratio of β-wollastonite and β-spodumene used at 50:50 was confirmed. The crystal phases were β-wollastonite and β-spodumene. Nothing was found. Therefore, taking into account the weight loss (ignition loss) of each starting material at a high temperature, the ratio of the crystal phase of the sintered body is almost the same as that of the starting material, but the ratio of the crystal phase in the following examples is The numerical value of the ratio indicates a value as a pure content excluding this impurity.

【0030】実施例1〜4 (1) 使用原料 リチウムアルミノシリケート原料として、天然のα-ス
ポジューメン(Li2O:7.6重量%,Al2O3:26.5重量%,
SiO2:64.5重量%,その他:1.2重量%,強熱減量0.2重
量%)を、カルシウムシリケート原料として、天然のβ
-ウォラストナイト(CaO:46.2重量%,SiO2:51.1重量
%,その他:1.6重量%,強熱減量1.1重量%)を用い
た。
Examples 1-4 (1) Raw Materials Used As a lithium aluminosilicate raw material, natural α-spodumene (Li 2 O: 7.6% by weight, Al 2 O 3 : 26.5% by weight,
SiO 2 : 64.5% by weight, other: 1.2% by weight, ignition loss 0.2% by weight)
- wollastonite (CaO: 46.2 wt%, SiO 2: 51.1 wt%, Other: 1.6 wt%, ignition loss 1.1 wt%) was used.

【0031】(2) 原料微粒子の製造 (a) 使用した天然のα-スポジューメンは平均粒径200
μmであり、これを5℃/分で1100℃まで昇温し、この
温度で1時間焼成した後、徐冷してβ-スポジューメン
を得た。このβ-スポジューメン中には微細な亀裂が多
数入っており、また0.5μm前後のサイズで一種の結晶
粒界が現出していた。この粉末をボールミルにより72時
間湿式粉砕しところ、平均粒径0.45μmの超微粒子が容
易に得られた。粉砕条件は、ミル容積:400リットル、
ミル回転数:100rpm、メディア:φ5mmのアルミナボー
ル400kg、上記β-スポジューメン粗粒100kgに水100kgを
加えてスラリー濃度50%とした。 (b) 一方、使用した天然のβ-ウォラストナイトは平均
粒径2.5μmであり、これを72時間粉砕し、平均粒径0.5
2μmの超微粒子を得た。粉砕条件は、粉砕時に固形分1
00重量%に対し外割で15重量%の分散剤を加えた以外は
スポジューメンの場合と同様である。
(2) Production of raw material fine particles (a) The natural α-spodumene used has an average particle diameter of 200
The temperature was raised to 1100 ° C. at a rate of 5 ° C./min, baked at this temperature for 1 hour, and then gradually cooled to obtain β-spodumene. The β-spodumene contained many fine cracks, and a kind of grain boundary appeared at a size of about 0.5 μm. When this powder was wet-pulverized by a ball mill for 72 hours, ultrafine particles having an average particle diameter of 0.45 μm were easily obtained. Milling conditions are mill volume: 400 liters,
Mill rotation speed: 100 rpm, media: 400 kg of alumina balls having a diameter of 5 mm, 100 kg of the above-mentioned β-spodumene coarse particles, and 100 kg of water were added to make a slurry concentration of 50%. (b) On the other hand, the natural β-wollastonite used had an average particle size of 2.5 μm, which was pulverized for 72 hours to obtain an average particle size of 0.5 μm.
2 μm ultrafine particles were obtained. Grinding conditions are as follows:
It is the same as in the case of spojumen except that 15% by weight of the dispersant is added to 00% by weight.

【0032】(3) 焼成・研削加工 それぞれのスラリーから、種々の比率でβ-ウォラスト
ナイト原料とβ-スポジューメン原料を採取し、このス
ラリーに結合剤として3重量%のポリビニルアルコール
を加えて混合し、スプレードライヤーにて造粒した。こ
の顆粒を型に入れ1t/cm2で成形し、得られた成形体を
表1に示す温度まで5℃/minで加熱し、1時間保持
後、室温まで炉冷し直径50mm、板厚4mmの焼結体を得
た。この焼結体の両面を#400のダイヤモンド砥石で平面
研削した(岡本工作機械社製,精密平面研削盤PSG-52D
X)。
(3) Firing / grinding Raw materials of β-wollastonite and β-spodumene are collected from the respective slurries at various ratios, and 3% by weight of polyvinyl alcohol is added as a binder to the slurries and mixed. And granulated with a spray dryer. The granules are put into a mold and molded at 1 t / cm 2 , and the obtained molded body is heated at a temperature of 5 ° C./min to a temperature shown in Table 1, held for 1 hour, and then cooled to a room temperature and cooled in a furnace to a diameter of 50 mm and a thickness of 4 mm. Was obtained. Both surfaces of this sintered body were ground using a # 400 diamond wheel (Okamoto Machine Tool Co., Ltd., precision surface grinder PSG-52D
X).

【0033】(4) 各種測定法 密度:アルキメデス法により算出した。 曲げ強度:焼結体を3×4×40mmに加工し、JIS R 1601
により測定した。 結晶粒径:焼結体組織の走査型電子顕微鏡(SEM)観察
により測定した。
(4) Various measuring methods Density: Calculated by Archimedes' method. Flexural strength: Processing a sintered body to 3 × 4 × 40mm, JIS R 1601
Was measured by Crystal grain size: measured by scanning electron microscope (SEM) observation of the structure of the sintered body.

【0034】(5) 塑性加工 上記JIS R 0601試験片の三点曲げによる塑性加工を、大
気中、表1に示す温度、変形速度で、負荷方向に5mm変
形するまで行った。なお、引張りの歪速度は、6tδ/
2(t:試験片板厚,δ:試験片の変形速度,S:曲
げの下部支点間距離)より算出した。
(5) Plastic Working The above JIS R 0601 test piece was subjected to plastic working by three-point bending at a temperature and a deformation rate shown in Table 1 in the atmosphere until it was deformed by 5 mm in the load direction. The tensile strain rate was 6tδ /
Calculated from S 2 (t: thickness of test piece, δ: deformation speed of test piece, S: distance between lower fulcrums of bending).

【0035】(6) 結果 この結果を表1に示すように、いずれも従来よりもはる
かに低い温度・低い圧力で超塑性を示し、歪速度も従来
より大きかった。また曲げ加工後、試験片の引張り面を
顕微鏡観察したところ、いずれも亀裂は認められなかっ
た。
(6) Results As shown in Table 1, the results all showed superplasticity at a much lower temperature and pressure than those of the prior art, and the strain rate was higher than that of the conventional one. After bending, when the tensile surface of the test piece was observed with a microscope, no crack was observed in any case.

【0036】実施例5〜8 珪藻土と工業用消石灰を、Ca/Siモル比1の割合で混合
し、水/固体比(W/S)=10.0のスラリーを調製し、140℃
で1時間水熱処理しCSHを合成した。このCSHを120℃で
乾燥した後、1000℃で1時間焼成した。X線回折により
結晶相を同定したところ、このものは不純物を含まない
100%転移したβ-ウォラストナイトであった。このもの
は平均粒径0.25μmの超微粒子の集合体であった。な
お、この際の重量減は13%である。実施例1〜4と同様
に相転移させた粉砕前のβ-スポジューメンと上記CSHか
ら得たβ-ウォラストナイトを固形分換算で50:50とな
るように配合した。これを実施例1〜4と同様にボール
ミルにて粉砕し平均粒径0.15μmの原料を得た。これを
1050℃で実施例1と同様に焼成して焼結体を得、各種特
性値を測定した。次いでこれを大気中、表1に示す条件
で塑性加工を行った結果、表1に示すように、いずれも
従来よりもはるかに低い温度・低い圧力で超塑性を示
し、歪速度も従来より大きかった。曲げ加工後、試験片
の引張り面を顕微鏡観察したところ、いずれも亀裂は認
められなかった。
Examples 5 to 8 Diatomaceous earth and slaked lime for industrial use were mixed at a Ca / Si molar ratio of 1 to prepare a slurry having a water / solids ratio (W / S) of 10.0.
For 1 hour to synthesize CSH. After drying this CSH at 120 ° C., it was baked at 1000 ° C. for 1 hour. When the crystal phase was identified by X-ray diffraction, it contained no impurities
It was β-wollastonite that was 100% transformed. This was an aggregate of ultrafine particles having an average particle size of 0.25 μm. The weight loss at this time is 13%. The β-spodumene before pulverization that had undergone a phase transition in the same manner as in Examples 1 to 4 and β-wollastonite obtained from the CSH were blended so that the solid content became 50:50. This was ground with a ball mill in the same manner as in Examples 1 to 4 to obtain a raw material having an average particle size of 0.15 μm. this
It was fired at 1050 ° C. in the same manner as in Example 1 to obtain a sintered body, and various characteristic values were measured. Then, the resultant was subjected to plastic working in the air under the conditions shown in Table 1, and as a result, as shown in Table 1, each of them exhibited superplasticity at a much lower temperature and lower pressure than the conventional one, and the strain rate was higher than the conventional one. Was. After bending, when the tensile surface of the test piece was observed with a microscope, no crack was observed in any case.

【0037】実施例9〜11 実施例5〜8と同様のCSHを出発材にしたβ-ウォラスト
ナイトと市販のβ-ユークリプタイト(強熱減量0.4重量
%)を実施例1〜4と同様にボールミルで粉砕し、それ
ぞれ平均粒径0.15μm及び0.21μmの原料を得た。これ
らを固形分換算で50:50となるように配合した。これを
1000℃で実施例1と同様に焼成して焼結体を得、各種特
性値を測定した。次いでこれを大気中、表1に示す条件
で塑性加工を行った結果、表1に示すように、いずれも
従来よりもはるかに低い温度・低い圧力で超塑性を示
し、歪速度も従来より大きかった。曲げ加工後、試験片
の引張り面を顕微鏡観察したところ、いずれも亀裂は認
められなかった。
Examples 9 to 11 β-Wollastonite starting from CSH as in Examples 5 to 8 and commercially available β-eucryptite (loss on ignition: 0.4% by weight) were used as in Examples 1 to 4. Similarly, pulverization was performed with a ball mill to obtain raw materials having an average particle size of 0.15 μm and 0.21 μm, respectively. These were blended so as to have a solid content of 50:50. this
It was fired at 1000 ° C. in the same manner as in Example 1 to obtain a sintered body, and various characteristic values were measured. Next, as a result of plastic working under the conditions shown in Table 1 in the atmosphere, as shown in Table 1, each of them showed superplasticity at a much lower temperature and lower pressure than the conventional one, and the strain rate was higher than the conventional one. Was. After bending, when the tensile surface of the test piece was observed with a microscope, no crack was observed in any case.

【0038】比較例1〜5 配合条件及び焼成条件を表1のようにした以外は、実施
例1〜4と同様にして焼成体を得た。次いでそれぞれ表
1に示す条件で塑性加工を行った。この結果、比較例
1、2及び5は加工試験後に亀裂が認められた。比較例
3及び4で用いた焼結体は実施例2と同じであるが、比
較例3では加工温度が低すぎ塑性変形が変形速度に追い
つかず、試験中に破断し、また比較例で4は温度が高す
ぎ負荷を受け持てず、クリープ変形した。
Comparative Examples 1 to 5 Except that the blending conditions and firing conditions were as shown in Table 1, fired bodies were obtained in the same manner as in Examples 1 to 4. Next, plastic working was performed under the conditions shown in Table 1, respectively. As a result, cracks were observed in Comparative Examples 1, 2 and 5 after the processing test. The sintered bodies used in Comparative Examples 3 and 4 were the same as those in Example 2. However, in Comparative Example 3, the processing temperature was too low, plastic deformation could not catch up with the deformation speed, and the sample broke during the test. Was too hot to carry the load and creeped.

【0039】比較例6 出発原料の平均粒径を1.1μm、焼成温度を1100℃とし
た以外は、実施例2と同様にして焼成体を得た。このも
のは結晶粒径が粗いため、塑性加工試験中に破断した。
Comparative Example 6 A fired body was obtained in the same manner as in Example 2 except that the average particle size of the starting materials was 1.1 μm and the firing temperature was 1100 ° C. It broke during the plastic working test due to the coarse grain size.

【0040】比較例7 塑性加工速度を10mm/分とした以外は、実施例2と同様
である。このものは、速度が速すぎて圧力が大きく増大
し、試験途中で破断した。
Comparative Example 7 The same as Example 2 except that the plastic working speed was 10 mm / min. It broke in the middle of the test because the speed was too high and the pressure increased significantly.

【0041】比較例8 平均結晶粒径0.3μmでほぼ100%緻密化した3モル%イ
ットリア固溶の部分安定化ジルコニア焼結体について表
1の条件で塑性加工を行ったが、このものは当該温度で
はほとんど変形を示さず、脆性的に破断した。
COMPARATIVE EXAMPLE 8 A partially stabilized zirconia sintered body of 3 mol% yttria solid solution having an average crystal grain size of 0.3 μm and almost 100% densified was subjected to plastic working under the conditions shown in Table 1. At the temperature, it showed little deformation and broke brittlely.

【0042】比較例9 3モル%イットリアを固溶するジルコニア粉末に20重量
%アルミナ粉末を加えた平均結晶粒径0.4μmのアルミ
ナ/ジルコニア複合焼結体について表1の条件で塑性加
工を行ったが、このものは当該温度ではほとんど変形を
示さず、脆性的に破断した。
Comparative Example 9 An alumina / zirconia composite sintered body having an average crystal grain size of 0.4 μm obtained by adding 20 wt% alumina powder to zirconia powder in which 3 mol% yttria is dissolved was subjected to plastic working under the conditions shown in Table 1. However, it did not show any deformation at this temperature and broke brittlely.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】本発明によれば、従来よりもはるかに低
い温度で、かつ従来と同等以上に大きい歪速度で超塑性
セラミックスの加工が可能となる。
According to the present invention, it is possible to process superplastic ceramics at a temperature much lower than the conventional one and at a strain rate which is equal to or greater than the conventional one.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三崎 紀彦 山口県小野田市大字小野田6276番地 秩父 小野田株式会社中央研究所内 (72)発明者 鈴木 正彦 宮城県仙台市青葉区昭和町1−29 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Norihiko Misaki 6276 Onoda, Onoda-shi, Yamaguchi Prefecture Chichibu Onoda Central Research Laboratory (72) Inventor Masahiko Suzuki 1-29 Showa-cho, Aoba-ku, Sendai City, Miyagi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カルシウムシリケートとリチウムアルミ
ノシリケートが複合した結晶組織を主体とし、平均結晶
粒径が2μm以下、最大結晶粒径が20μm以下、密度が
理論密度の98%以上であり、カルシウムシリケートとリ
チウムアルミノシリケートの合量に対しリチウムアルミ
ノシリケートが2〜98重量%含まれるセラミックスを、
800〜1100℃の温度下、10-5〜5×10-3/secの歪速度で
塑性加工することを特徴とする超塑性セラミックスの加
工方法。
1. A crystal structure mainly composed of a composite of calcium silicate and lithium aluminosilicate, having an average crystal grain size of 2 μm or less, a maximum crystal grain size of 20 μm or less, and a density of 98% or more of the theoretical density. Ceramics containing 2 to 98% by weight of lithium aluminosilicate based on the total amount of lithium aluminosilicate,
A method for processing superplastic ceramics, wherein plastic processing is performed at a temperature of 800 to 1100 ° C. and a strain rate of 10 −5 to 5 × 10 −3 / sec.
【請求項2】 カルシウムシリケートがウォラストナイ
トであり、リチウムアルミノシリケートがユークリプタ
イト、スポジューメン及びスポジューメン固溶体から選
ばれる少なくとも1種である請求項1記載の加工方法。
2. The processing method according to claim 1, wherein the calcium silicate is wollastonite, and the lithium aluminosilicate is at least one selected from eucryptite, spodumene, and spodumene solid solution.
JP28027497A 1997-10-14 1997-10-14 Processing method of superplastic ceramics Expired - Fee Related JP3798130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28027497A JP3798130B2 (en) 1997-10-14 1997-10-14 Processing method of superplastic ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28027497A JP3798130B2 (en) 1997-10-14 1997-10-14 Processing method of superplastic ceramics

Publications (2)

Publication Number Publication Date
JPH11116358A true JPH11116358A (en) 1999-04-27
JP3798130B2 JP3798130B2 (en) 2006-07-19

Family

ID=17622716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28027497A Expired - Fee Related JP3798130B2 (en) 1997-10-14 1997-10-14 Processing method of superplastic ceramics

Country Status (1)

Country Link
JP (1) JP3798130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065635A (en) * 2012-09-26 2014-04-17 Taiheiyo Cement Corp Low thermal expansion ceramics and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065635A (en) * 2012-09-26 2014-04-17 Taiheiyo Cement Corp Low thermal expansion ceramics and manufacturing method thereof

Also Published As

Publication number Publication date
JP3798130B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
JPS6140621B2 (en)
JPS64349B2 (en)
WO2018117161A1 (en) Oriented aln sintered body, and production method therefor
US5082809A (en) High-strength alumina sintered body and process for preparation thereof
JPH0553751B2 (en)
JP3007730B2 (en) Rare earth oxide-alumina sintered body and method for producing the same
JPH06219840A (en) Silicon nitride sintered compact and its production
JPH11116358A (en) Processing of superplastic ceramic
US5759933A (en) Gas pressure sintered silicon nitride having high strength and stress rupture resistance
JPH07315915A (en) Orientated alumina sintered compact
JPH11130523A (en) Calcium silicate complex sintered compact and its production
JP3975016B2 (en) Silicon nitride sintered body and manufacturing method thereof
US6066583A (en) Process for the production of ceramic materials
EP1044177A1 (en) Dense refractories with improved thermal shock resistance
Pyzik et al. Self-reinforced silicon nitride—a new microengineered ceramic
JP2927919B2 (en) Crystallizing heat treatment method for silicon nitride sintered body
JP2723170B2 (en) Superplastic silicon nitride sintered body
JPH06107454A (en) Alumina sintered body and production thereof
JPH1192216A (en) Oxide ceramic and its production
JP2000001386A (en) Method for plastic working of ceramics
JPS62275067A (en) Manufacture of silicon nitride sintered body
JP2008297135A (en) Boron carbide based sintered compact, its manufacturing method and protective member
JPH08198664A (en) Alumina-base sintered body and its production
JPH03146454A (en) Production of fine powder of ceramics and refractories

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees